Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate
2.3. Geology, Soil, and Hydrology
3. Methodology
3.1. Mapping and Monitoring of Grazing Land Cover and Pasture Quality
3.2. WorldView-4 Satellite Data
3.3. Conversion of DN to Radiance
3.4. Conversion of Radiance to Top-of-Atmosphere Reflectance
3.5. Drone Data
3.6. Grazing Land Cover Classification and Pasture Quality Monitoring
4. Results and Discussion
4.1. Grazing Land Cover Mapping
4.2. Pasture Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Imaz, J.A.; Giménez, D.O.; Grimoldi, A.A.; Striker, G.G. Ability to recover overrides the negative effects of flooding on growth of tropical grasses Chloris gayana and Panicum coloratum. Crop Pasture Sci. 2015, 66, 100–106. [Google Scholar] [CrossRef]
- Redfearn, D.; Beckman, B. Reclaiming Flood-Damaged Pastures and Forage Production; University of Nebraska–Lincoln, BEEF: Lincoln, NE, USA, 2019; Available online: https://beef.unl.edu/beefwatch/reclaiming-flood-damaged-pastures-and-forage-production (accessed on 16 November 2020).
- Striker, G.G.; Ploschuk, R.A. Recovery from short-term complete submergence in temperate pasture grasses. Crop Pasture Sci. 2018, 69, 745–753. [Google Scholar] [CrossRef]
- Hall, T.J. Pasture Recovery, Land Condition and Some Other Observations after the Monsoon Flooding, Chill Event in North-West Queensland in Jan–Mar 2019; Department of Agriculture and Fisheries, Queensland Government: George St. Brisbane, Queensland, Australia, 2020.
- Arabameri, A.; Pourghasemi, H.R. Spatial Modeling of Gully Erosion Using Linear and Quadratic Discriminant Analyses in GIS and R. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 299–321. [Google Scholar]
- Gessesse, A.A.; Melesse, A.M. Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 81–92. [Google Scholar]
- Insua, J.R.; Utsumi, S.A.; Basso, B. Estimation of spatial and temporal variability of pasture growth and digestibility in grazing rotations coupling unmanned aerial vehicle (UAV) with crop simulation models. PLoS ONE 2019, 14, e0212773. [Google Scholar] [CrossRef] [Green Version]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.A.L.; Blaise, Y.; Muñoz, E.C.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef] [Green Version]
- Wiesmair, M.; Feilhauer, H.; Magiera, A.; Otte, A.; Waldhardt, R. Estimating Vegetation Cover from High-Resolution Satellite Data to Assess Grassland Degradation in the Georgian Caucasus. Mt. Res. Dev. 2016, 36, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Ramoelo, A.; Cho, M.A.; Mathieu, R.; Madonsela, S.; van de Kerchove, R.; Kaszta, Z.; Wolff, E. Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 43–54. [Google Scholar] [CrossRef]
- Falldorf, T.; Strand, O.; Panzacchi, M.; Tømmervik, H. Estimating lichen volume and reindeer winter pasture quality from Landsat imagery. Remote Sens. Environ. 2014, 140, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Tsalyuk, M.; Kelly, M.; Koy, K.; Getz, W.M.; Butterfield, H.S. Monitoring the Impact of Grazing on Rangeland Conservation Easements Using MODIS Vegetation Indices. Rangel. Ecol. Manag. 2015, 68, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Ndungu, L.; Oware, M.; Omondi, S.; Wahome, A.; Mugo, R.; Adams, E. Application of MODIS NDVI for Monitoring Kenyan Rangelands Through a Web Based Decision Support Tool. Front. Environ. Sci. 2019, 7, 187. [Google Scholar] [CrossRef] [Green Version]
- Theau, J.; Lauzier-Hudon, E.; Aube, L.; Devillers, N. Estimation of forage biomass and vegetation cover in grasslands using UAV imagery. PLoS ONE 2021, 16, e0245784. [Google Scholar] [CrossRef]
- Meshesha, D.T.; Ahmed, M.M.; Abdi, D.Y.; Haregeweyn, N. Prediction of grass biomass from satellite imagery in Somali regional state, eastern Ethiopia. Heliyon 2020, 6, e05272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Tian, M.; Fan, Y.; Ma, J.; Xing, D. An evaluation model for aboveground biomass based on hyperspectral data from field and TM8 in Khorchin grassland, China. PLoS ONE 2020, 15, e0223934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Cheng, F.; Dong, S.; Zhao, H.; Hou, X.; Wu, X. Spatiotemporal Dynamics of Grassland Aboveground Biomass on the Qinghai-Tibet Plateau Based on Validated MODIS NDVI; Scientific Reports; Springer Nature: Berlin/Heidelberg, Germany, 2017; Available online: www.nature.com/scientificreports (accessed on 12 December 2020).
- Al-Najjar, H.A.H.; Kalantar, B.; Pradhan, B.; Saeidi, V.; Halin, A.A.; Ueda, N.; Mansor, S. Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1461. [Google Scholar] [CrossRef] [Green Version]
- Sandino, J.; Gonzalez, F.; Mengersen, K.; Gaston, K.J. UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands. Sensors 2018, 18, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, K.; Lim, J.; Kurokawa, Y.; Obitsu, T.; Yayota, M.; Ogura, S. Monitoring Spatial Heterogeneity of Pasture within Paddock Scale using a Small Unmanned Aerial Vehicle (sUAV). JIFS 2017, 14, 61–66. [Google Scholar]
- Oliveira, R.A.; Näsi, R.; Niemeläinen, O.; Nyholm, L.; Alhonoja, K.; Kaivosoja, J.; Jauhiainen, L.; Viljanen, N.; Nezami, S.; Markelin, L.; et al. Machine learning estimators for the quantity and quality of grass swards used for silage production using drone-based imaging spectrometry and photogrammetry. Remote Sens. Environ. 2020, 246, 111830. [Google Scholar] [CrossRef]
- Barnetson, J.; Phinn, S.; Scarth, S. Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2020, 2, 35. [Google Scholar] [CrossRef]
- U.S. Census Bureau. TENNESSEE—Core Based Statistical Areas (CBSAs) and Counties; U.S. Department of Commerce Economics and Statistics Administration, U.S. Census Bureau: Jeffersonville, IN, USA, 2013. Available online: https://www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_TN.pdf (accessed on 15 December 2020).
- Hodges, J.A.; Norrell, R.J.; Sarah, M.H. Tennessee; Encyclopedia Britannica, Inc., 2018. Available online: https://www.britannica.com/place/Tennessee/additional-info#contributors (accessed on 25 November 2020).
- United States Climate Data. Climate Nashville Area—Tennessee; Your Weather Sevice-World Climate, 2018. Available online: https://www.usclimatedata.com/climate/nashville/tennessee/united-states/ustn0357 (accessed on 15 December 2020).
- Mitsch, W.J.; Gosselink, J.G.; Zhang, L.; Anderson, C.J. Wetland Ecosystems; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- USDA. Published Soil Surveys for Tennessee; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2021. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey/state/?stateId=TN (accessed on 10 March 2021).
- Meador, M.R. Tennessee wetland resources. In National Water Summary on Wetland Resources; Fretwell, J.D., Williams, J.S., Redman, P.J., Eds.; U.S. Geological Survey Water-Supply Paper 2425; 1996. Available online: https://pubs.er.usgs.gov/publication/wsp2425 (accessed on 14 February 2021).
- Mather, P.M.; Koch, M. Computer Processing of Remotely-Sensed Images: An Introduction, 4th ed.; John Wiley and Sons: Chichester, UK, 2011. [Google Scholar]
- Maxar. Absolute Radiometric Calibration: 2018v0; Maxar Technologies: Westminster, CO, USA, 2018. Available online: https://www.maxar.com/ (accessed on 14 October 2020).
- Breiman, L. Random forests—Random Features; Technical Report 567; Statistics Department, University of California: Berkeley, CA, USA, 1999; Available online: ftp//ftp.stat.berkeley.edu/pub/users/breiman (accessed on 10 January 2021).
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems. J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle detection and counting in UAV images based on convolutional neural networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Zhang, W.; Amombo, E.; Hu, L.; Kjorven, J.O.; Chen, L. Mechanisms of Environmental Stress Tolerance in Turfgrass. Agronomy 2020, 10, 522. [Google Scholar] [CrossRef] [Green Version]
- Qiao, D.; Zhang, Y.; Xiong, X.; Li, M.; Cai, K.; Luo, H.; Zeng, B. Transcriptome analysis on responses of orchard grass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas 2020, 157, 1–16. [Google Scholar] [CrossRef]
- Mansour, J.; Moien, J. Study effect of flood productivity on vegetation changes using field work and Landsat satellite images (Case study: Shandak of Sistan region). J. Appl. Rs. Gis. Technol. Nat. Resour. Sci. 2020, 10, 57–73. [Google Scholar]
- Montserud, R.A.; Leamans, R. Comparing global vegetation maps with kappa statistics. Ecol. Modeling 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Zhou, X.; Geng, X.; Yin, G.; Hänninen, H.; Hao, F.; Zhang, X.; Fu, Y.H. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 2020, 281, 107845. [Google Scholar] [CrossRef]
- Sims, N.C.; Colloff, M.J. Remote sensing of vegetation responses to flooding of a semi-arid floodplain: Implications for monitoring ecological effects of environmental flows. Ecol. Indic. 2012, 18, 387–391. [Google Scholar] [CrossRef]
Classes | Pasture | Bare Ground | Total | |
Reference | ||||
Pasture | 40 | 0 | 40 | |
Bare ground | 2 | 8 | 10 | |
Total | 42 | 8 | 50 | |
User Accuracy (%) | Producer Accuracy (%) | Overall Accuracy (%) | Kappa F-Acore | |
Pasture | 100 | 95 | ||
Bare ground | 80 | 100 | ||
Overall, kappa, and F-score | 96 | 0.86 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akumu, C.E.; Amadi, E.O.; Dennis, S. Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding. Land 2021, 10, 321. https://doi.org/10.3390/land10030321
Akumu CE, Amadi EO, Dennis S. Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding. Land. 2021; 10(3):321. https://doi.org/10.3390/land10030321
Chicago/Turabian StyleAkumu, Clement E., Eze O. Amadi, and Samuel Dennis. 2021. "Application of Drone and WorldView-4 Satellite Data in Mapping and Monitoring Grazing Land Cover and Pasture Quality: Pre- and Post-Flooding" Land 10, no. 3: 321. https://doi.org/10.3390/land10030321