Identification of the Spatial Structure of Urban Polycentres Based on the Dual Perspective of Population Distribution and Population Mobility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Research Data
2.2.1. Night-Time Light Data
2.2.2. LandScan Data
2.2.3. Population Heat Distribution
2.2.4. Weibo Check-in Data
2.3. Research Methodology
2.3.1. Data Fusion
2.3.2. Local Autocorrelation
2.3.3. Geographically Weighted Regression
2.3.4. Accuracy Verification
3. Results
3.1. Multi-Source Big Data Fusion
3.2. Spatial Structure of Urban Polycentres Identified by Night-Time Lighting Data Fusion with LandScan Data
3.3. Spatial Structure of Urban Polycentres Identified by Fusing Heatmap Data with Night-Time Lighting Data
3.4. Comparative Analysis
3.5. Validation of Recognition Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, X.; Zhang, R.; Yuan, X.; Cao, Y.; Zhou, C. The role of planning policy in the evolution of the spatial structure of the Guangzhou metropolitan area in China. Cities 2023, 137, 104284. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J. Multi-scale analysis of the spatial structure of China’s major function zoning. J. Geogr. Sci. 2020, 30, 197–211. [Google Scholar] [CrossRef]
- Vanderhaegen, S.; Canters, F. Mapping urban form and function at city block level using spatial metrics. Landsc. Urban Plan. 2017, 167, 399–409. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y. Urban spatial growth and driving mechanisms under different urban morphologies: An empirical analysis of 287 Chinese cities. Landsc. Urban Plan. 2024, 248, 105096. [Google Scholar] [CrossRef]
- Schmidt, S.; Krehl, A.; Fina, S.; Siedentop, S. Does the monocentric model work in a polycentric urban system? An examination of German metropolitan regions. Urban Stud. 2020, 58, 1674–1690. [Google Scholar] [CrossRef]
- Agyemang, F.S.K.; Silva, E.; Poku-Boansi, M. Understanding the urban spatial structure of Sub-Saharan African cities using the case of urban development patterns of a Ghanaian city-region. Habitat Int. 2019, 85, 21–33. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Yuan, X.; Zhu, M. The coordination relationship between urban development and urban life satisfaction in Chinese cities—An empirical analysis based on multi-source data. Cities 2024, 150, 105016. [Google Scholar] [CrossRef]
- Xiao, W.; Liu, W.; Li, C. Can the urban spatial structure accelerate urban employment growth? Evidence from China. Growth Change 2022, 53, 1668–1693. [Google Scholar] [CrossRef]
- Anas, A.; Arnott, R.; Small, K. Urban Spatial Structure. J. Econ. Lit. 1998, 36, 1426–1464. [Google Scholar]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Garreau, J. Edge City: Life on the New Frontier; Knopf Doubleday Publishing Group: Broadway, NY, USA, 1991. [Google Scholar]
- McMillen, D.P.; McDonald, J.F. Suburban Subcenters and Employment Density in Metropolitan Chicago. J. Urban Econ. 1998, 43, 157–180. [Google Scholar] [CrossRef]
- Timberlake, M. The Polycentric Metropolis: Learning from Mega-City Regions in Europe. J. Am. Plan. Assoc. 2008, 74, 384–385. [Google Scholar] [CrossRef]
- Batten, D.F. Network Cities: Creative Urban Agglomerations for the 21st Century. Urban Stud. 1995, 32, 313–327. [Google Scholar] [CrossRef]
- Davoudi, S. EUROPEAN BRIEFING: Polycentricity in European spatial planning: From an analytical tool to a normative agenda. Eur. Plan. Stud. 2003, 11, 979–999. [Google Scholar] [CrossRef]
- Li, W.; Sun, B.; Zhao, J.; Zhang, T. Economic performance of spatial structure in Chinese prefecture regions: Evidence from night-time satellite imagery. Habitat Int. 2018, 76, 29–39. [Google Scholar] [CrossRef]
- Liu, X.; Derudder, B.; Wu, K. Measuring Polycentric Urban Development in China: An Intercity Transportation Network Perspective. Reg. Stud. 2016, 50, 1302–1315. [Google Scholar] [CrossRef]
- Wu, C.; Smith, D.; Wang, M. Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity under different scenarios. Comput. Environ. Urban Syst. 2021, 89, 101677. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Alidadi, M. Towards decentralization: Spatial changes of employment and population in Tehran Metropolitan Region, Iran. Appl. Geogr. 2017, 85, 51–61. [Google Scholar] [CrossRef]
- Alidadi, M.; Dadashpoor, H. Beyond monocentricity: Examining the spatial distribution of employment in Tehran metropolitan region, Iran. Int. J. Urban Sci. 2018, 22, 38–58. [Google Scholar] [CrossRef]
- Sohn, S.-H.; Kim, T.-H.; Lee, J.-S.; Kim, H.-K. Spatial Analysis of Urban Structure Changes in Korean Mega-Cities. J. Asian Archit. Build. Eng. 2010, 9, 201–206. [Google Scholar] [CrossRef]
- Connors, J.P.; Galletti, C.S.; Chow, W.T.L. Landscape configuration and urban heat island effects: Assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landsc. Ecol. 2013, 28, 271–283. [Google Scholar] [CrossRef]
- Wang, N.; Du, Y.; Liang, F.; Yi, J.; Qian, J.; Tu, W.; Huang, S.; Luo, P. Disentangling relations between dynamic urban structure and its efficiency in 287 cities across China. Sustain. Cities Soc. 2023, 99, 104879. [Google Scholar] [CrossRef]
- Klopfer, F. The thermal performance of urban form—An analysis on urban structure types in Berlin. Appl. Geogr. 2023, 152, 102890. [Google Scholar] [CrossRef]
- Lobsang, T.; Zhen, F.; Zhang, S.; Xi, G.; Yang, Y. Methodological Framework for Understanding Urban People Flow from a Complex Network Perspective. J. Urban Plan. Dev. 2021, 147, 04021020. [Google Scholar] [CrossRef]
- Liu, P.; Qin, Y.; Luo, Y.; Wang, X.; Guo, X. Structure of low-carbon economy spatial correlation network in urban agglomeration. J. Clean. Prod. 2023, 394, 136359. [Google Scholar] [CrossRef]
- McMillen, D.P. Identifying Sub-centres Using Contiguity Matrices. Urban Stud. 2003, 40, 57–69. [Google Scholar] [CrossRef]
- Adolphson, M. Estimating a Polycentric Urban Structure. Case Study: Urban Changes in the Stockholm Region 1991–2004. J. Urban Plan. Dev. 2009, 135, 19–30. [Google Scholar] [CrossRef]
- Xie, Z.; Yuan, M.; Zhang, F.; Chen, M.; Shan, J.; Sun, L.; Liu, X. Using Remote Sensing Data and Graph Theory to Identify Polycentric Urban Structure. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Yang, X.; Zou, X.; Li, M.; Wang, Z. The Decarbonization Effect of the Urban Polycentric Structure: Empirical Evidence from China. Land 2024, 13, 173. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, R. Polycentric or monocentric, which kind of spatial structure is better for promoting the green economy? Evidence from Chinese urban agglomerations. Environ. Sci. Pollut. Res. 2021, 28, 57706–57722. [Google Scholar] [CrossRef]
- Patala, S.; Albareda, L.; Halme, M. Polycentric Governance of Privately Owned Resources in Circular Economy Systems. J. Manag. Stud. 2022, 59, 1563–1596. [Google Scholar] [CrossRef]
- Meijers, E.; Hoogerbrugge, M.; Cardoso, R. Beyond Polycentricity: Does Stronger Integration Between Cities in Polycentric Urban Regions Improve Performance? Tijdschr. Voor Econ. En Soc. Geogr. 2018, 109, 1–21. [Google Scholar] [CrossRef]
- Bentlage, M.; Müller, C.; Thierstein, A. Becoming more polycentric: Public transport and location choices in the Munich Metropolitan Area. Urban Geogr. 2021, 42, 79–102. [Google Scholar] [CrossRef]
- López-Gay, A.; Salvati, L. Polycentric development and local fertility in metropolitan regions: An empirical analysis for Barcelona, Spain. Popul. Space Place 2021, 27, e2402. [Google Scholar] [CrossRef]
- Xie, X.; Hou, W.; Herold, H. Ex Post Impact Assessment of Master Plans—The Case of Shenzhen in Shaping a Polycentric Urban Structure. ISPRS Int. J. Geo-Inf. 2018, 7, 252. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Wang, E.; Song, J.; Zhang, M. Evolution of jobs-housing spatial relationship in Beijing Metropolitan Area: A job accessibility perspective. Chin. Geogr. Sci. 2015, 25, 375–388. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Miao, L. Impacts of social networks on floating population wages under different marketization levels: Empirical analysis of China’s 2016 national floating population dynamic monitoring data. Appl. Econ. 2021, 53, 2567–2583. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Ma, D.; Guo, R. How Different Are Population Movements between Weekdays and Weekends: A Complex-Network-Based Analysis on 36 Major Chinese Cities. Land 2021, 10, 1160. [Google Scholar] [CrossRef]
- He, X.; Cao, Y.; Zhou, C. Evaluation of Polycentric Spatial Structure in the Urban Agglomeration of the Pearl River Delta (PRD) Based on Multi-Source Big Data Fusion. Remote Sens. 2021, 13, 3639. [Google Scholar] [CrossRef]
- He, X.; Zhou, C.; Zhang, J.; Yuan, X. Using Wavelet Transforms to Fuse Nighttime Light Data and POI Big Data to Extract Urban Built-Up Areas. Remote Sens. 2020, 12, 3887. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Tan, X.; Yuan, X. Extraction of Urban Built-Up Area Based on Deep Learning and Multi-Sources Data Fusion—The Application of an Emerging Technology in Urban Planning. Land 2022, 11, 1212. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Zhu, Y. Identification and Evaluation of the Polycentric Urban Structure: An Empirical Analysis Based on Multi-Source Big Data Fusion. Remote Sens. 2022, 14, 2705. [Google Scholar] [CrossRef]
- Xie, L.; Feng, X.; Zhang, C.; Dong, Y.; Huang, J.; Liu, K. Identification of Urban Functional Areas Based on the Multimodal Deep Learning Fusion of High-Resolution Remote Sensing Images and Social Perception Data. Buildings 2022, 12, 556. [Google Scholar] [CrossRef]
- Priyashani, N.; Kankanamge, N.; Yigitcanlar, T. Multisource Open Geospatial Big Data Fusion: Application of the Method to Demarcate Urban Agglomeration Footprints. Land 2023, 12, 407. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Hodges, D.G.; Merrett, C.D. A hedonic analysis of the demand for and benefits of urban recreation parks. Land Use Policy 2009, 26, 975–983. [Google Scholar] [CrossRef]
- Jim, C.Y. Spatial differentiation and landscape-ecological assessment of heritage trees in urban Guangzhou (China). Landsc. Urban Plan. 2004, 69, 51–68. [Google Scholar] [CrossRef]
- Xu, J. From walking buffers to active places: An activity-based approach to measure human-scale urban form. Landsc. Urban Plan. 2019, 191, 103452. [Google Scholar] [CrossRef]
- Kaiser, R.A.; Polk, J.S.; Datta, T.; Keely, S.P.; Brinkman, N.E.; Parekh, R.R.; Agga, G.E. Occurrence and prevalence of antimicrobial resistance in urban karst groundwater systems based on targeted resistome analysis. Sci. Total Environ. 2023, 874, 162571. [Google Scholar] [CrossRef]
- Li, Y. Towards concentration and decentralization: The evolution of urban spatial structure of Chinese cities, 2001–2016. Comput. Environ. Urban Syst. 2020, 80, 101425. [Google Scholar] [CrossRef]
- Lan, F.; Gong, X.; Da, H.; Wen, H. How do population inflow and social infrastructure affect urban vitality? Evidence from 35 large- and medium-sized cities in China. Cities 2020, 100, 102454. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, M.; Ye, Y. Measuring urban nighttime vitality and its relationship with urban spatial structure: A data-driven approach. Environ. Plan. B Urban Anal. City Sci. 2022, 50, 130–145. [Google Scholar] [CrossRef]
- Mu, B.; Liu, C.; Tian, G.; Xu, Y.; Zhang, Y.; Mayer, A.L.; Lv, R.; He, R.; Kim, G. Conceptual Planning of Urban–Rural Green Space from a Multidimensional Perspective: A Case Study of Zhengzhou, China. Sustainability 2020, 12, 2863. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.n.; Liu, Y.; Ma, J.; Zhao, S. A new approach for urban-rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Pino, C.; Torrecillas, C.; Cáceres-Sánchez, N.; Pino-Mejías, J.-L. Using Getis-Ord Gi* Maps To Understand Bicycle Mobility During The Winter Season In Valencia, Spain. Dyna 2022, 97, 436–444. [Google Scholar] [CrossRef]
- Laffan, S.W. Using process models to improve spatial analysis. Int. J. Geogr. Inf. Sci. 2002, 16, 245–257. [Google Scholar] [CrossRef]
- Xie, Z.; Ye, X.; Zheng, Z.; Li, D.; Sun, L.; Li, R.; Benya, S. Modeling Polycentric Urbanization Using Multisource Big Geospatial Data. Remote Sens. 2019, 11, 310. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Zhao, X. Monocentric or Polycentric? The Urban Spatial Structure of Employment in Beijing. Sustainability 2015, 7, 11632–11656. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Liu, X. Spatial pattern of anthropogenic heat flux in monocentric and polycentric cities: The case of Chengdu and Chongqing. Sustain. Cities Soc. 2022, 78, 103628. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Y.; Guo, G.; Zheng, Z.; Wu, Z. Using nighttime light data to identify the structure of polycentric cities and evaluate urban centers. Sci. Total Environ. 2021, 780, 146586. [Google Scholar] [CrossRef]
- Ma, M.; Lang, Q.; Yang, H.; Shi, K.; Ge, W. Identification of Polycentric Cities in China Based on NPP-VIIRS Nighttime Light Data. Remote Sens. 2020, 12, 3248. [Google Scholar] [CrossRef]
- Lou, G.; Chen, Q.; He, K.; Zhou, Y.; Shi, Z. Using Nighttime Light Data and POI Big Data to Detect the Urban Centers of Hangzhou. Remote Sens. 2019, 11, 1821. [Google Scholar] [CrossRef]
- Ma, Q.; Gong, Z.; Kang, J.; Tao, R.; Dang, A. Measuring Functional Urban Shrinkage with Multi-Source Geospatial Big Data: A Case Study of the Beijing-Tianjin-Hebei Megaregion. Remote Sens. 2020, 12, 2513. [Google Scholar] [CrossRef]
- Li, D.; Lan, G.Z. The dynamics between urban planning and public policy: Lessons and experiences from the city of Beijing, China. Int. Rev. Adm. Sci. 2020, 88, 721–738. [Google Scholar] [CrossRef]
- Baffoe, G.; Roy, S. Colonial legacies and contemporary urban planning practices in Dhaka, Bangladesh. Plan. Perspect. 2023, 38, 173–196. [Google Scholar] [CrossRef]
- Lyles, W. Using social network analysis to examine planner involvement in environmentally oriented planning processes led by non-planning professions. J. Environ. Plan. Manag. 2015, 58, 1961–1987. [Google Scholar] [CrossRef]
- Wang, F.; Ren, J.; Liu, J.; Dong, M.; Yan, B.; Zhao, H. Spatial correlation network and population mobility effect of regional haze pollution: Empirical evidence from Pearl River Delta urban agglomeration in China. Environ. Dev. Sustain. 2021, 23, 15881–15896. [Google Scholar] [CrossRef]
- Ma, D.; Liu, B.; Huang, Q.; Zhang, Q. Evolution Characteristics and Causes—An Analysis of Urban Catering Cluster Spatial Structure. ISPRS Int. J. Geo-Inf. 2023, 12, 302. [Google Scholar] [CrossRef]
- Yi, C.; Nam, J.; Kim, J.; Lee, J.-S. Comparison of the distributions of centrality indices: Using spatial big data to understand urban spatial structure. Cities 2024, 150, 105046. [Google Scholar] [CrossRef]
- He, X.; Yuan, X.; Zhang, D.; Zhang, R.; Li, M.; Zhou, C. Delineation of Urban Agglomeration Boundary Based on Multisource Big Data Fusion—A Case Study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sens. 2021, 13, 1801. [Google Scholar] [CrossRef]
District | GDP (Ten Thousand RMB) | Population (Ten Thousand People) | Land Area (km2) | Built-Up Area (km2) |
---|---|---|---|---|
Jinshui | 19,320,380 | 162.4 | 243 | 85.79 |
Zhongyuan | 7,653,319 | 96.9 | 198 | 66.81 |
Guancheng | 6,782,355 | 82.5 | 199 | 78.59 |
Erqi | 7,856,087 | 106.5 | 155 | 71.98 |
Huiji | 3,062,251 | 56.1 | 222 | 73.6 |
Shangjie | 1,654,160 | 20.1 | 61 | 34.39 |
Xinzheng | 8,198,484 | 120.4 | 885 | 134.37 |
Xingyang | 5,587,621 | 73.4 | 943 | 83.11 |
Dataset | Format | Resolution | Date | Source Link |
---|---|---|---|---|
Night-time light data | Tiff | 500 m × 500 m | January 2022–December 2022 | https://eogdata.mines.edu/nighttime_light/monthly/v10/ (accessed on 1 March 2024) |
LandScan data | Tiff | 1 km × 1 km | January 2022–December 2022 | https://landscan.ornl.gov/ (accessed on 10 January 2024) |
Population heat distribution | Tiff | 30 m × 30 m | January 2022–December 2022 | https://huiyan.baidu.com/ (accessed on 5 February 2023) |
Weibo check-in data | Point | — | January 2022–December 2022 | https://github.com/WanZixin/SinaWeibo-LocationSignIn-spider (accessed on 20 December 2023) |
Recall | Precision | F1 | |
---|---|---|---|
NTL-LandScan | 0.6705 | 0.8416 | 0.7463 |
NTL-Heatmap | 0.7710 | 0.8837 | 0.8235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Li, M.; Zhang, X.; Guo, Y.; Li, Y.; Gao, Q.; Liu, S. Identification of the Spatial Structure of Urban Polycentres Based on the Dual Perspective of Population Distribution and Population Mobility. Land 2024, 13, 1159. https://doi.org/10.3390/land13081159
Zhang R, Li M, Zhang X, Guo Y, Li Y, Gao Q, Liu S. Identification of the Spatial Structure of Urban Polycentres Based on the Dual Perspective of Population Distribution and Population Mobility. Land. 2024; 13(8):1159. https://doi.org/10.3390/land13081159
Chicago/Turabian StyleZhang, Rongrong, Ming Li, Xiao Zhang, Yuanyuan Guo, Yonghe Li, Qi Gao, and Song Liu. 2024. "Identification of the Spatial Structure of Urban Polycentres Based on the Dual Perspective of Population Distribution and Population Mobility" Land 13, no. 8: 1159. https://doi.org/10.3390/land13081159