Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Geological Setting
2.2. Landslide Inventory Mapping
2.3. Conditioning Factors
2.4. Machine Learning Models
2.4.1. Convolutional Neural Network
2.4.2. Random Forest
2.4.3. Categorical Boosting
2.4.4. CNN-Based Hybrid Modeling
2.4.5. Stacking Ensemble
- (1)
- Training Base Models
- (2)
- Training Meta-Learner
2.5. Multicollinearity and Feature Selection
2.6. Hyperparameter Optimization
2.7. Model Validation
3. Results
3.1. Evaluation of Influencing Variables
3.2. Landslide Susceptibility Assessment
3.3. Validation and Model Comparison
3.4. Analysis of Key Factors in Predictive Models
3.5. Factors Impacting Landslide Susceptibility
4. Discussion
4.1. Assessing Performance of Models
4.2. Analysis of Factors Contributing to Landslides
4.3. Landslide Prevention and Policy Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ullah, M.; Tang, B.; Huangfu, W.; Yang, D.; Wei, Y.; Qiu, H. Machine Learning-Driven Landslide Susceptibility Mapping in the Himalayan China–Pakistan Economic Corridor Region. Land 2024, 13, 1011. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, H.; Zhu, Y.; Liu, Y.; Yang, D.; Ma, S.; Zhang, J.; Wang, Y.; Wang, L.; Tang, B. Efficient Identification and Monitoring of Landslides by Time-Series InSAR Combining Single- and Multi-Look Phases. Remote Sens. 2022, 14, 1026. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Q.; Zhang, J.; Luo, P.; Zhu, W. Risk Assessment of Geological Landslide Hazards Using D-InSAR and Remote Sensing. Remote Sens. 2024, 16, 345. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, J.; Guo, L.; Deng, Z.; Li, J.; Zheng, H. Locomotion of Slope Geohazards Responding to Climate Change in the Qinghai-Tibetan Plateau and Its Adjacent Regions. Sustainability 2021, 13, 10488. [Google Scholar] [CrossRef]
- Zhu, Y.; Qiu, H.; Liu, Z.; Ye, B.; Tang, B.; Li, Y.; Kamp, U. Rainfall and Water Level Fluctuations Dominated the Landslide Deformation at Baihetan Reservoir, China. J. Hydrol. 2024, 642, 131871. [Google Scholar] [CrossRef]
- Liu, W.; Bai, R.; Sun, X.; Yang, F.; Zhai, W.; Su, X. Rainfall- and Irrigation-Induced Landslide Mechanisms in Loess Slopes: An Experimental Investigation in Lanzhou, China. Atmosphere 2024, 15, 162. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Koskeridou, E.; Soukis, K.; Rozos, D. Physical and Anthropogenic Factors Related to Landslide Activity in the Northern Peloponnese, Greece. Land 2018, 7, 85. [Google Scholar] [CrossRef]
- Qiu, H.; Cui, P.; Regmi, A.D.; Hu, S.; Zhang, Y.; He, Y. Landslide distribution and size versus relative relief (Shaanxi Province, China). Bull. Eng. Geol. Environ. 2018, 77, 1331–1342. [Google Scholar] [CrossRef]
- Hussain, A.; Schmidt, S.; Nüsser, M. Dynamics of Mountain Urbanisation: Evidence from the Trans-Himalayan Town of Kargil, Ladakh, India. Land 2023, 12, 920. [Google Scholar] [CrossRef]
- Wang, L.; Qiu, H.; Zhou, W.; Zhu, Y.; Liu, Z.; Ma, S.; Yang, D.; Tang, B. The Post-Failure Spatiotemporal Deformation of Certain Translational Landslides May Follow the Pre-Failure Pattern. Remote Sens. 2022, 14, 2333. [Google Scholar] [CrossRef]
- Awais, M.; Samin, T.; Gulzar, M.A.; Hwang, J. The Sustainable Development of the China Pakistan Economic Corridor: Synergy among Economic, Social, and Environmental Sustainability. Sustainability 2019, 11, 7044. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Zhou, Y.; Daud, H. Deep Learning and Machine Learning Models for Landslide Susceptibility Mapping with Remote Sensing Data. Remote Sens. 2023, 15, 4703. [Google Scholar] [CrossRef]
- Abbas, F.; Zhang, F.; Abbas, F.; Ismail, M.; Iqbal, J.; Hussain, D.; Khan, G.; Alrefaei, A.F.; Albeshr, M.F. Landslide Susceptibility Mapping: Analysis of Different Feature Selection Techniques with Artificial Neural Network Tuned by Bayesian and Metaheuristic Algorithms. Remote Sens. 2023, 15, 4330. [Google Scholar] [CrossRef]
- Rehman, M.U.; Zhang, Y.; Meng, X.; Su, X.; Catani, F.; Rehman, G.; Yue, D.; Khalid, Z.; Ahmad, S.; Ahmad, I. Analysis of Landslide Movements Using Interferometric Synthetic Aperture Radar: A Case Study in Hunza-Nagar Valley, Pakistan. Remote Sens. 2020, 12, 2054. [Google Scholar] [CrossRef]
- Arrogante-Funes, P.; Bruzón, A.G.; Arrogante-Funes, F.; Ramos-Bernal, R.N.; Vázquez-Jiménez, R. Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment. Int. J. Environ. Res. Public Health 2021, 18, 11987. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Tsangaratos, P.; Ilia, I.; Wang, X. Combining Evolutionary Algorithms and Machine Learning Models in Landslide Susceptibility Assessments. Remote Sens. 2020, 12, 3854. [Google Scholar] [CrossRef]
- Wei, Y.; Qiu, H.; Liu, Z.; Huangfu, W.; Zhu, Y.; Liu, Y.; Yang, D.; Kamp, U. Refined and Dynamic Susceptibility Assessment of Landslides Using InSAR and Machine Learning Models. Geosci. Front. 2024, 15, 101890. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, W.; Liu, W.; Huang, H.; Huang, J.; Lou, K.; Liu, G.; Jiang, K. Exploration and Comparison of the Effect of Conventional and Advanced Modeling Algorithms on Landslide Susceptibility Prediction: A Case Study from Yadong Country, Tibet. Appl. Sci. 2023, 13, 7276. [Google Scholar] [CrossRef]
- Seydi, S.T.; Kanani-Sadat, Y.; Hasanlou, M.; Sahraei, R.; Chanussot, J.; Amani, M. Comparison of Machine Learning Algorithms for Flood Susceptibility Mapping. Remote Sens. 2023, 15, 192. [Google Scholar] [CrossRef]
- Yousefi, Z.; Alesheikh, A.A.; Jafari, A.; Torktatari, S.; Sharif, M. Stacking Ensemble Technique Using Optimized Machine Learning Models with Boruta–XGBoost Feature Selection for Landslide Susceptibility Mapping: A Case of Kermanshah Province, Iran. Information 2024, 15, 689. [Google Scholar] [CrossRef]
- Qin, Y.; Zhao, Z.; Zhou, D.; Chang, K.; Mou, Q.; Yang, Y.; Hu, Y. Landslide Susceptibility Assessment in Yulong County Using Contribution Degree Clustering Method and Stacking Ensemble Coupled Model Based on Certainty Factor. Remote Sens. 2024, 16, 3582. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Lee, C.-W.; Lee, S.; Lee, M.-J. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sens. 2018, 10, 1545. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, Z.; Tian, M.; Qiu, Q.; Chen, J.; Tao, L.; Zhao, Y. Integrating Knowledge Graph and Machine Learning Methods for Landslide Susceptibility Assessment. Remote Sens. 2024, 16, 2399. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kerle, N. Random Forests and Evidential Belief Function-Based Landslide Susceptibility Assessment in Western Mazandaran Province, Iran. Environ. Earth Sci. 2016, 75, 185. [Google Scholar] [CrossRef]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A Comparative Study of Different Machine Learning Methods for Landslide Susceptibility Assessment: A Case Study of Uttarakhand Area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Mutlu, B.; Nefeslioglu, H.A.; Sezer, E.A.; Akcayol, M.A.; Gokceoglu, C. An Experimental Research on the Use of Recurrent Neural Networks in Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inf. 2019, 8, 578. [Google Scholar] [CrossRef]
- Chen, T.; Zhong, Z.; Niu, R. Landslide Spatial Susceptibility Mapping by Using Deep Belief Network. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; IEEE: Xi’an, China, 2018; pp. 1–5. [Google Scholar]
- Yang, Z.; Wei, L.; Liu, Y.; He, N.; Zhang, J.; Xu, H. Discussion on the Relationship between Debris Flow Provenance Particle Characteristics, Gully Slope, and Debris Flow Types along the Karakoram Highway. Sustainability 2023, 15, 5998. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Qi, Y.; Ye, W.; Cao, G.; Wang, Y. Changes in the Hydrological Characteristics of the Attabad Landslide-Dammed Lake on the Karakoram Highway. Water 2024, 16, 714. [Google Scholar] [CrossRef]
- Pusok, A.E.; Stegman, D.R. The Convergence History of India-Eurasia Records Multiple Subduction Dynamics Processes. Sci. Adv. 2020, 6, eaaz8681. [Google Scholar] [CrossRef] [PubMed]
- Searle, M.; Khan, M.A.; Fraser, J.; Gough, S.; Jan, M.Q. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 1999, 18, 929–949. [Google Scholar] [CrossRef]
- Zafar, T.; Leng, C.B.; Mahar, M.A.; Alam, M.; Zhang, X.C.; Chen, W.T.; Rehman, S.U. Petrogenesis, Platinum-Group Element Geochemistry and Geodynamic Evolution of the Cretaceous Chilas Gabbros, Kohistan Island Arc, NE Pakistan. Lithos 2020, 372, 105691. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Zheng, Y.; Shoaib, M.; Shah, S.U.; Ali, N.; Afzal, Z. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique. Sensors 2022, 22, 3119. [Google Scholar] [CrossRef]
- Shah, N.A.; Shafique, M.; Ishfaq, M.; Faisal, K.; Van der Meijde, M. Integrated approach for landslide risk assessment using geoinformation tools and field data in Hindukush mountain ranges, Northern Pakistan. Sustainability 2023, 15, 3102. [Google Scholar] [CrossRef]
- Kulsoom, I.; Hua, W.; Hussain, S.; Chen, Q.; Khan, G.; Shihao, D. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: A case study of Gilgit-Baltistan, Pakistan. Sci. Rep. 2023, 13, 3344. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Meng, X.; Rehman, M.U.; Khalid, Z.; Yue, D. Updating Inventory, Deformation, and Development Characteristics of Landslides in Hunza Valley, NW Karakoram, Pakistan by SBAS-InSAR. Remote Sens. 2022, 14, 4907. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, C.; Xi, J.; Lu, Z.; Ji, S.; Chen, L. Deep Learning Method of Landslide Inventory Map with Imbalanced Samples in Optical Remote Sensing. Remote Sens. 2022, 14, 5517. [Google Scholar] [CrossRef]
- Fernández, T.; Pérez-García, J.L.; Gómez-López, J.M.; Cardenal, J.; Moya, F.; Delgado, J. Multitemporal Landslide Inventory and Activity Analysis by Means of Aerial Photogrammetry and LiDAR Techniques in an Area of Southern Spain. Remote Sens. 2021, 13, 2110. [Google Scholar] [CrossRef]
- Fayaz, A.; Latif, M.; Khan, K. Landslide Evaluation and Stabilization Between Gilgit ans Thakot Along the Karakoram Highway; Geological Survey of Pakistan: Islamabad, Pakistan, 1985. [Google Scholar]
- Khan, K.; Fayaz, A.; Latif, M.; Wazir, A. Rock and Debris Slides Between Khunjrab Pass and Gilgit Along the Karakoram Highway; Geological Survey of Pakistan: Islamabad, Pakistan, 1986. [Google Scholar]
- Khan, K.; Fayaz, A.; Hussain, M.; Latif, M. Landslides Problems and Their Mitigation Along the Karakoram Highway; Geological Survey of Pakistan: Islamabad, Pakistan, 2003. [Google Scholar]
- Hewitt, K. Catastrophic landslides and their effects on the Upper Indus streams, Karakoram Himalaya, northern Pakistan. Geomorphology 1998, 26, 47–80. [Google Scholar] [CrossRef]
- Yu, H.; Pei, W.; Zhang, J.; Chen, G. Landslide Susceptibility Mapping and Driving Mechanisms in a Vulnerable Region Based on Multiple Machine Learning Models. Remote Sens. 2023, 15, 1886. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine Learning and Fractal Theory Models for Landslide Susceptibility Mapping: Case Study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Khabiri, S.; Crawford, M.M.; Koch, H.J.; Haneberg, W.C.; Zhu, Y. An Assessment of Negative Samples and Model Structures in Landslide Susceptibility Characterization Based on Bayesian Network Models. Remote Sens. 2023, 15, 3200. [Google Scholar] [CrossRef]
- Huangfu, W.; Qiu, H.; Cui, P. Quick and Automatic Detection of Co-Seismic Landslides with Multi-Feature Deep Learning Model. Sci. China Earth Sci. 2024, 67, 2311–2325. [Google Scholar] [CrossRef]
- Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide Susceptibility Evaluation and Hazard Zonation Techniques—A Review. Geoenviron. Disasters 2020, 7, 18. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Selecting Optimal Conditioning Factors in Shallow Translational Landslide Susceptibility Mapping Using Genetic Algorithm. Eng. Geol. 2015, 192, 101–112. [Google Scholar] [CrossRef]
- Ercanoglu, M.; Gokceoglu, C. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environ. Geol. 2002, 41, 720–730. [Google Scholar] [CrossRef]
- Kıncal, C.; Akgun, A.; Koca, M.Y. Landslide susceptibility assessment in the İzmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environ. Earth Sci. 2009, 59, 745–756. [Google Scholar] [CrossRef]
- Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; Melesse, A.M. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Kornejady, A.; Kerle, N.; Shabani, F. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. Catena 2020, 187, 104364. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, J.; Lu, Y.; Li, X.; Song, Z. Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China. Sustainability 2024, 16, 6803. [Google Scholar] [CrossRef]
- Nakileza, B.R.; Nedala, S. Topographic Influence on Landslides Characteristics and Implication for Risk Management in Upper Manafwa Catchment, Mt Elgon Uganda. Geoenviron. Disasters 2020, 7, 27. [Google Scholar] [CrossRef]
- Mersha, T.; Meten, M. GIS-Based Landslide Susceptibility Mapping and Assessment Using Bivariate Statistical Methods in Simada Area, Northwestern Ethiopia. Geoenviron. Disasters 2020, 7, 20. [Google Scholar] [CrossRef]
- Nikoobakht, S.; Azarafza, M.; Akgün, H.; Derakhshani, R. Landslide Susceptibility Assessment by Using Convolutional Neural Network. Appl. Sci. 2022, 12, 5992. [Google Scholar] [CrossRef]
- Taalab, K.; Cheng, T.; Zhang, Y. Mapping Landslide Susceptibility and Types Using Random Forest. Big Earth Data 2018, 2, 159–178. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, M.; Zhan, J.; Zhuang, J.; Sun, Y.; Yu, Q.; Yu, Z. Refined Landslide Susceptibility Mapping by Integrating the SHAP-CatBoost Model and InSAR Observations: A Case Study of Lishui, Southern China. Appl. Sci. 2023, 13, 12817. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Aslam, B.; Zafar, A.; Khalil, U. Development of Integrated Deep Learning and Machine Learning Algorithm for the Assessment of Landslide Hazard Potential. Soft Comput. 2021, 25, 13493–13512. [Google Scholar] [CrossRef]
- Ting, K.M.; Witten, L.H. Issues in Stacked Generalization. J. Artif. Intell. Res. 1999, 10, 271–289. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Mei, H.; Xiao, D.; Li, Y.; Li, M. Landslide Susceptibility Mapping Using the Stacking Ensemble Machine Learning Method in Lushui, Southwest China. Appl. Sci. 2020, 10, 4016. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Pradhan, B. Enhancing Landslide Susceptibility Mapping Incorporating Landslide Typology via Stacking Ensemble Machine Learning in Three Gorges Reservoir, China. Geosci. Front. 2024, 15, 101802. [Google Scholar] [CrossRef]
- Selamat, S.N.; Majid, N.A.; Taha, M.R.; Osman, A. Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land 2022, 11, 833. [Google Scholar] [CrossRef]
- Yu, L.; Cao, Y.; Zhou, C.; Wang, Y.; Huo, Z. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines: A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Appl. Sci. 2019, 9, 4756. [Google Scholar] [CrossRef]
- Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide Susceptibility Mapping Using Hybrid Random Forest with GeoDetector and RFE for Factor Optimization. Geosci. 2021, 12, 101211. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Chen, W. Spatial Prediction of Landslide Susceptibility Based on GIS and Discriminant Functions. ISPRS Int. J. Geo-Inf. 2020, 9, 144. [Google Scholar] [CrossRef]
- Shahabi, H.; Rahimzad, M.; Tavakkoli Piralilou, S.; Ghorbanzadeh, O.; Homayouni, S.; Blaschke, T.; Lim, S.; Ghamisi, P. Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery. Remote Sens. 2021, 13, 4698. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Rahman, M.S.; Ahmed, N.; Ahmed, B.; Rabbi, M.F.; Rahman, R.M. Improving Spatial Agreement in Machine Learning-Based Landslide Susceptibility Mapping. Remote Sens. 2020, 12, 3347. [Google Scholar] [CrossRef]
- Yavuz Ozalp, A.; Akinci, H.; Zeybek, M. Comparative Analysis of Tree-Based Ensemble Learning Algorithms for Landslide Susceptibility Mapping: A Case Study in Rize, Turkey. Water 2023, 15, 2661. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Is the ROC Curve a Reliable Tool to Compare the Validity of Landslide Susceptibility Maps? Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, Y.; Lv, Z.; Li, S.; Liu, S.; Nandi, A.K. Landslide Inventory Mapping from Bitemporal Images Using Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2019, 16, 982–986. [Google Scholar] [CrossRef]
- Kalantar, B.; Ueda, N.; Saeidi, V.; Ahmadi, K.; Halin, A.A.; Shabani, F. Landslide Susceptibility Mapping: Machine and Ensemble Learning Based on Remote Sensing Big Data. Remote Sens. 2020, 12, 1737. [Google Scholar] [CrossRef]
- McNemar, Q. Note on the Sampling Error of the Difference between Correlated Proportions or Percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef]
- Audebert, N.; Saux, B.; Lefèvre, S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. arXiv 2019, arXiv:1904.10674. [Google Scholar] [CrossRef]
- Kasahara, N.; Gonda, Y.; Huvaj, N. Quantitative land-use and landslide assessment: A case study in Rize, Türkiye. Water 2022, 14, 1811. [Google Scholar] [CrossRef]
- Ye, P.; Yu, B.; Chen, W.; Liu, K.; Ye, L. Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China. Nat. Hazards 2022, 113, 965–995. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Teke, A. Predictive performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost). Arab. J. Sci. Eng. 2022, 47, 7367–7385. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, S.J. Landslide susceptibility assessment of South Korea using stacking ensemble machine learning. Geoenviron. Disasters 2024, 11, 7. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, M.; Liu, K. Comparisons of Convolutional Neural Network and Other Machine Learning Methods in Landslide Susceptibility Assessment: A Case Study in Pingwu. Remote Sens. 2023, 15, 798. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Mao, H. Influence of human activity on landslide susceptibility development in the Three Gorges area. Nat. Hazards 2020, 104, 2115–2151. [Google Scholar] [CrossRef]
- Shahi, Y.B.; Kadel, S.; Dangi, H.; Adhikari, G.; KC, D.; Paudyal, K.R. Geological Exploration, Landslide Characterization and Susceptibility Mapping at the Boundary between Two Crystalline Bodies in Jajarkot, Nepal. Geotechnics 2022, 2, 1059–1083. [Google Scholar] [CrossRef]
- Bachri, S.; Shrestha, R.P.; Yulianto, F.; Sumarmi, S.; Utomo, K.S.B.; Aldianto, Y.E. Mapping Landform and Landslide Susceptibility Using Remote Sensing, GIS and Field Observation in the Southern Cross Road, Malang Regency, East Java, Indonesia. Geosciences 2021, 11, 4. [Google Scholar] [CrossRef]
- Wu, X.; Qi, X.; Peng, B.; Wang, J. Optimized Landslide Susceptibility Mapping and Modelling Using the SBAS-InSAR Coupling Model. Remote Sens. 2024, 16, 2873. [Google Scholar] [CrossRef]
- Balocchi, F.; Ferré, T.P.A.; Meixner, T.; Arumí, J.L. How Soil Freezes and Thaws at a Snow-Dominated Forest Site in the U.S.—A Synthetic Approach Using the Soil and Cold Regions Model (SCRM). Soil Syst. 2022, 6, 52. [Google Scholar] [CrossRef]
- Marino, P.; Comegna, L.; Damiano, E.; Olivares, L.; Greco, R. Monitoring the Hydrological Balance of a Landslide-Prone Slope Covered by Pyroclastic Deposits over Limestone Fractured Bedrock. Water 2020, 12, 3309. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Z.Y.; Xu, C. Slope Unit-Based Landslide Susceptibility Mapping Using Certainty Factor, Support Vector Machine, Random Forest, CF-SVM and CF-RF Models. Front. Earth Sci. 2021, 9, 589630. [Google Scholar] [CrossRef]
- Hussain, M.A.; Chen, Z.; Wang, R.; Shoaib, M. PS-InSAR-Based Validated Landslide Susceptibility Mapping along Karakorum Highway, Pakistan. Remote Sens. 2021, 13, 4129. [Google Scholar] [CrossRef]
- Ali, N.; Chen, J.; Fu, X.; Ali, R.; Hussain, M.A.; Daud, H.; Hussain, J.; Altalbe, A. Integrating Machine Learning Ensembles for Landslide Susceptibility Mapping in Northern Pakistan. Remote Sens. 2024, 16, 988. [Google Scholar] [CrossRef]
- Shah, S.S.; Rana, I.A.; Ali, A. Multi-Hazard Risk Perception: An Empirical Study of the Remote Gilgit City, Hindukush-Karakorum-Himalayan (HKH) Region, Pakistan. Int. J. Disaster Risk Reduct. 2023, 96, 103996. [Google Scholar] [CrossRef]
- Que, T.; Wu, Y.; Hu, S.; Cai, J.; Jiang, N.; Xing, H. Factors Influencing Public Participation in Community Disaster Mitigation Activities: A Comparison of Model and Nonmodel Disaster Mitigation Communities. Int. J. Environ. Res. Public Health 2022, 19, 12278. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | Factors | Source | Spatial Detail |
---|---|---|---|
1 | Slope | DEM | 12.5 m |
2 | Aspect | DEM | 12.5 m |
3 | Curvature | DEM | 12.5 m |
4 | Landcover | USGS Global Land Cover (https://www.usgs.gov/centers/eros/science) (accessed on 7 July 2024) | 12.5 m (resampled) |
5 | Lithology | National Library of Australia (http://nla.gov.au/nla.obj-233602228) (accessed on 7 July 2024) | 12.5 m (resampled) |
6 | Proximity to fault | National Library of Australia (http://nla.gov.au/nla.obj-233602228) (accessed on 7 July 2024) | 12.5 m (resampled) |
7 | Proximity to road | Natural Earth Data (https://www.naturalearthdata.com/downloads/10m-cultural-vectors/) (accessed on 7 July 2024) | 12.5 m (resampled) |
8 | Topographic Wetness Index (TWI) | DEM | 12.5 m |
9 | Normalized Difference Vegetation Index (NDVI) | (https://apps.sentinel-hub.com/eo-browser/) (accessed on 7 July 2024) | 12.5 m (resampled) |
10 | Elevation | DEM | 12.5 m |
11 | Rainfall | Climate Hazards Group InfraRed Precipitation with Station data | 12.5 m (resampled) |
12 | Proximity to stream | Natural Earth Data (https://www.naturalearthdata.com/downloads/10m-cultural-vectors/) (accessed on 7 July 2024) | 12.5 m (resampled) |
Model | Hyperparameter Values |
---|---|
CNN | Learning rate = 0.01, epochs = 100, batch size = 500 |
RF | Number of trees = 800, mtry = 5, max depth = 10, min samples leaf = 5 |
CatBoost | Number of trees = 500, learning rate = 0.01, depth = 6, min samples leaf = 5 |
Variable | VIF | TOL |
---|---|---|
Rainfall | 3.98 | 0.25 |
Lithology | 3.63 | 0.28 |
Elevation | 3.02 | 0.33 |
NDVI | 2.11 | 0.48 |
Slope | 1.59 | 0.63 |
TWI | 1.54 | 0.65 |
Proximity to Road | 1.52 | 0.67 |
Proximity to Stream | 1.51 | 0.68 |
Landcover | 1.41 | 0.71 |
Proximity to fault | 1.08 | 0.92 |
Curvature | 1.04 | 0.96 |
Aspect | 1.03 | 0.98 |
RF | |||
---|---|---|---|
Susceptibility Level | Pixel Count | Area Ratio (%) | Landslide Ratio (%) |
Very Low | 3,487,332 | 41.67 | 2.8 |
Low | 2,314,819 | 27.66 | 14.95 |
Moderate | 1,194,213 | 14.27 | 15.89 |
High | 945,971 | 11.3 | 35.51 |
Very High | 426,181 | 5.09 | 30.84 |
CatBoost | |||
Susceptibility level | Pixel count | Area ratio (%) | Landslide ratio (%) |
Very Low | 1,300,925 | 15.55 | 1.87 |
Low | 4,984,946 | 59.57 | 21.5 |
Moderate | 1,318,324 | 15.75 | 24.3 |
High | 331,589 | 3.96 | 16.82 |
Very High | 432,732 | 5.17 | 35.51 |
CNN | |||
Susceptibility level | Pixel count | Area ratio (%) | Landslide ratio (%) |
Very Low | 1,633,416 | 19.52 | 0.93 |
Low | 3,021,970 | 36.11 | 9.35 |
Moderate | 1,979,029 | 23.65 | 18.69 |
High | 1,274,154 | 15.23 | 30.84 |
Very High | 459,947 | 5.5 | 40.19 |
CNN–RF | |||
Susceptibility level | Pixel count | Area ratio (%) | Landslide ratio (%) |
Very Low | 1,712,661 | 20.47 | 2.47 |
Low | 2,500,588 | 29.88 | 9.88 |
Moderate | 2,107,671 | 25.19 | 17.28 |
High | 1,325,556 | 15.84 | 43.21 |
Very High | 722,040 | 8.63 | 59.26 |
CNN–CatBoost | |||
Susceptibility level | Pixel count | Area ratio (%) | Landslide ratio (%) |
Very Low | 2,130,078 | 25.45 | 1.87 |
Low | 2,565,896 | 30.66 | 6.54 |
Moderate | 1,878,321 | 22.45 | 20.56 |
High | 1,124,562 | 13.44 | 29.91 |
Very High | 669,659 | 8 | 41.12 |
SE | |||
Susceptibility level | Pixel count | Area ratio (%) | Landslide ratio (%) |
Very Low | 1,300,925 | 15.55 | 1.87 |
Low | 2,198,087 | 26.27 | 4.67 |
Moderate | 2,189,121 | 26.16 | 14.95 |
High | 1,485,091 | 17.75 | 22.43 |
Very High | 1,195,292 | 14.28 | 56.07 |
Model | AUC Score | F-Score | TSS Metric |
---|---|---|---|
CNN | 0.84 | 0.58 | 0.63 |
RF | 0.85 | 0.63 | 0.69 |
CatBoost | 0.87 | 0.71 | 0.74 |
CNN–RF | 0.89 | 0.73 | 0.80 |
CNN–CatBoost | 0.90 | 0.83 | 0.85 |
Stacking Ensemble | 0.91 | 0.87 | 0.89 |
Pairwise Comparison | p-Values | Statistical Significance | |
---|---|---|---|
CNN vs. CNN–CatBoost | 7.8 | 0.02 | Yes |
CNN vs. CNN–RF | 12.5 | 0.0005 | Yes |
CNN vs. CatBoost | 10.1 | 0.001 | Yes |
CNN vs. RF | 4.2 | 0.04 | Yes |
CNN vs. SE | 15.3 | 0.0001 | Yes |
CNN–CatBoost vs. SE | 19.2 | 0.00002 | Yes |
CNN–RF vs. CNN–CatBoost | 21.1 | 0.00001 | Yes |
CNN–RF vs. SE | 17.6 | 0.00005 | Yes |
CatBoost vs. CNN–CatBoost | 8.4 | 0.007 | Yes |
CatBoost vs. CNN–RF | 9 | 0.005 | Yes |
CatBoost vs. SE | 13.3 | 0.0002 | Yes |
RF vs. CNN–CatBoost | 14.4 | 0.0001 | Yes |
RF vs. CNN–RF | 5.5 | 0.04 | Yes |
RF vs. CatBoost | 6.1 | 0.03 | Yes |
RF vs. SE | 11.7 | 0.002 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, M.; Qiu, H.; Huangfu, W.; Yang, D.; Wei, Y.; Tang, B. Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway. Land 2025, 14, 172. https://doi.org/10.3390/land14010172
Ullah M, Qiu H, Huangfu W, Yang D, Wei Y, Tang B. Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway. Land. 2025; 14(1):172. https://doi.org/10.3390/land14010172
Chicago/Turabian StyleUllah, Mohib, Haijun Qiu, Wenchao Huangfu, Dongdong Yang, Yingdong Wei, and Bingzhe Tang. 2025. "Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway" Land 14, no. 1: 172. https://doi.org/10.3390/land14010172
APA StyleUllah, M., Qiu, H., Huangfu, W., Yang, D., Wei, Y., & Tang, B. (2025). Integrated Machine Learning Approaches for Landslide Susceptibility Mapping Along the Pakistan–China Karakoram Highway. Land, 14(1), 172. https://doi.org/10.3390/land14010172