Spatiotemporal Relationship Between Landscape Pattern and Ecosystem Service Connectivity in Wetland Environment: Evidence from Yellow River Delta, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Study Area
2.3. Data Source
2.4. Ecosystem Service Assessment
2.5. Landscape Pattern Metrics Calculation
2.6. Spatial Autocorrelation Analysis
2.7. Spearman Correlation Analysis
2.8. Ecosystem Services Bundles Identification
3. Results
3.1. Wetland Landscape Patterns and Metrics from 2000 to 2020
3.2. Spatiotemporal Changes of Wetland ESs from 2000 to 2020
3.3. Spatial Autocorrelation-Based Connectivity Analysis of Wetland ESs
3.4. Spatial Relationship Between Landscape Metrics and ESC
3.5. Bundle-Based Identification of Potential Connectivity Between Wetland ESs
4. Discussion
4.1. Mechanistic Analysis of ESC
4.2. Relationship Between Landscape Metrics and ESC
4.3. Limitations and Future Outlook
5. Conclusions
- (1)
- The water yield, water purification, and habitat quality of wetlands showed high connectivity in the Yellow River Delta, while carbon storage and soil retention had low connectivity. The concern is that the overall ecosystem service connectivity has decreased to different degrees along with the restoration of wetlands from 2000 to 2020, which may be related to the expansion of reservoir pits.
- (2)
- The connectivity of water yield, water purification, and habitat quality was characterized by similar spatially localized aggregation, where the H-H cluster was dominated by tidal flats and marshes. Ecosystem service connectivity was more dependent on hydrologic conditions within wetland environments.
- (3)
- Ecosystem service connectivity and landscape metrics showed significant correlation and spatial heterogeneity, where LPI, CONNECT, COHESION, MESH, and AI presented a positive correlation with ecosystem service connectivity to varying degrees. In contrast, spatial H-H clustering was mainly distributed in the tidal flats, especially in the nature reserves.
- (4)
- Potential connectivity may occur for carbon storage, soil retention, and water purification in Bundle 1, which was distributed in paddy fields and marshes, while water yield and habitat quality in Bundle 2, in the tidal flats, showed stronger connectivity. Our findings may assist decision-makers in developing effective ecosystem management strategies and provide a reference for future research on ecosystem service connectivity. The research on ecosystem service connectivity is still at an early stage, and future studies should focus on the mechanisms, methods, and drivers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Methods of Accounting for Ecosystem Services
- (1)
- Water yield (WY)
- (2)
- Carbon storage (CS)
- (3)
- Soil retention (SR)
- (4)
- Water purification (WP)
- (5)
- Habitat quality (HQ)
Appendix A.2. Methods of Spatial Autocorrelation Analysis
- (1)
- The formula for the univariate spatial autocorrelation analysis is as follows:
- (2)
- The formula for univariate spatial autocorrelation analysis is as follows:
References
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 978-1-59726-040-4. [Google Scholar]
- Ouyang, Z.; Song, C.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.; Ruckelshaus, M.; Shi, F.; Xiao, Y.; et al. Using Gross Ecosystem Product (GEP) to Value Nature in Decision Making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, W.; Li, Z.; Wende, W.; Xiao, S. A Framework for Integrating Ecosystem Service Provision and Connectivity in Ecological Spatial Networks: A Case Study of the Shanghai Metropolitan Area. Sustain. Cities Soc. 2024, 100, 105018. [Google Scholar] [CrossRef]
- Field, R.D.; Parrott, L. Mapping the Functional Connectivity of Ecosystem Services Supply across a Regional Landscape. eLife 2022, 11, e69395. [Google Scholar] [CrossRef] [PubMed]
- Pashanejad, E.; Kharrazi, A.; Araujo-Gutierrez, Z.M.F.; Robinson, B.E.; Fath, B.D.; Parrott, L. A Functional Connectivity Approach for Exploring Interactions of Multiple Ecosystem Services in the Context of Agricultural Landscapes in the Canadian Prairies. Ecosyst. Serv. 2024, 68, 101639. [Google Scholar] [CrossRef]
- Chen, Y.; Vardon, M. Accounting for Water-Related Ecosystem Services to Provide Information for Water Policy and Management: An Australian Case Study. Ecosyst. Serv. 2024, 69, 101658. [Google Scholar] [CrossRef]
- Aguilera, M.A.; Tapia, J.; Gallardo, C.; Núñez, P.; Varas-Belemmi, K. Loss of Coastal Ecosystem Spatial Connectivity and Services by Urbanization: Natural-to-Urban Integration for Bay Management. J. Environ. Manag. 2020, 276, 111297. [Google Scholar] [CrossRef]
- Bai, Y.; Chen, Y.; Alatalo, J.M.; Yang, Z.; Jiang, B. Scale Effects on the Relationships between Land Characteristics and Ecosystem Services- a Case Study in Taihu Lake Basin, China. Sci. Total Environ. 2020, 716, 137083. [Google Scholar] [CrossRef]
- Farley, J.; Voinov, A. Economics, Socio-Ecological Resilience and Ecosystem Services. J. Environ. Manag. 2016, 183, 389–398. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Wu, W.; Yu, L. Effects of Landscape Pattern Change on Ecosystem Services and Its Interactions in Karst Cities: A Case Study of Guiyang City in China. Ecol. Indic. 2022, 145, 109646. [Google Scholar] [CrossRef]
- Burgos-Ayala, A.; Jiménez-Aceituno, A.; Meacham, M.; Rozas-Vásquez, D.; Mancilla García, M.; Rocha, J.; Rincón-Ruíz, A. Mapping Ecosystem Services in Colombia: Analysis of Synergies, Trade-Offs and Bundles in Environmental Management. Ecosyst. Serv. 2024, 66, 101608. [Google Scholar] [CrossRef]
- Karimi, J.D.; Corstanje, R.; Harris, J.A. Understanding the Importance of Landscape Configuration on Ecosystem Service Bundles at a High Resolution in Urban Landscapes in the UK. Landsc. Ecol. 2021, 36, 2007–2024. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards Systematic Analyses of Ecosystem Service Trade-Offs and Synergies: Main Concepts, Methods and the Road Ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.; Prishchepov, A.V. Spatial-Temporal Heterogeneity of Ecosystem Service Interactions and Their Social-Ecological Drivers: Implications for Spatial Planning and Management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Li, W.; Kang, J.; Wang, Y. Identifying the Impacts of Landscape Structure on Ecosystem Services Trade-Offs among Ecosystem Services Bundles in the Mountains of Southwest China. Ecol. Eng. 2024, 209, 107419. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Chan, K.M.A.; Newlands, N.K.; Ramankutty, N. Spatial Correlations Don’t Predict Changes in Agricultural Ecosystem Services: A Canada-Wide Case Study. Front. Sustain. Food Syst. 2020, 4, e539892. [Google Scholar] [CrossRef]
- Balbi, M.; Petit, E.J.; Croci, S.; Nabucet, J.; Georges, R.; Madec, L.; Ernoult, A. Title: Ecological Relevance of Least Cost Path Analysis: An Easy Implementation Method for Landscape Urban Planning. J. Environ. Manag. 2019, 244, 61–68. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Feng, Y.; Sun, Y.; Liu, N.; Yan, S. The Spatio-Temporal Evolution of Spatial Structure and Supply-Demand Relationships of the Ecological Network in the Yellow River Delta Region of China. J. Clean. Prod. 2024, 471, 143388. [Google Scholar] [CrossRef]
- Borrett, S.R.; Scharler, U.M. Walk Partitions of Flow in Ecological Network Analysis: Review and Synthesis of Methods and Indicators. Ecol. Indic. 2019, 106, 105451. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, S.; Pei, X.; Wang, Y. Identifying Critical Landscape Patterns for Simultaneous Provision of Multiple Ecosystem Services—A Case Study in the Central District of Wuhu City, China. Ecol. Indic. 2024, 158, 111380. [Google Scholar] [CrossRef]
- Lamy, T.; Liss, K.N.; Gonzalez, A.; Bennett, E.M. Landscape Structure Affects the Provision of Multiple Ecosystem Services. Environ. Res. Lett. 2016, 11, 124017. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing Landscape Fragmentation’s Effects on Ecosystem Services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, K.; Xie, B.; Xiao, J. Impact of Landscape Pattern Change on Water-Related Ecosystem Services: Comprehensive Analysis Based on Heterogeneity Perspective. Ecol. Indic. 2021, 133, 108372. [Google Scholar] [CrossRef]
- Huang, J.; Xia, Z.; Liu, L. Impacts of Landscape Configurations on Ecosystem Services and Their Trade-Offs across Different Landscape Compositions. Ecosyst. Serv. 2024, 70, 101666. [Google Scholar] [CrossRef]
- Li, Y.; Geng, H.; Luo, G.; Wu, L.; Wang, J.; Wu, Q. Multiscale Characteristics of Ecosystem Service Value Trade-Offs/Synergies and Their Response to Landscape Pattern Evolution in a Typical Karst Basin in Southern China. Ecol. Inform. 2024, 81, 102584. [Google Scholar] [CrossRef]
- Ning, Z.; Li, D.; Chen, C.; Xie, C.; Chen, G.; Xie, T.; Wang, Q.; Bai, J.; Cui, B. The Importance of Structural and Functional Characteristics of Tidal Channels to Smooth Cordgrass Invasion in the Yellow River Delta, China: Implications for Coastal Wetland Management. J. Environ. Manag. 2023, 342, 118297. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, S.; Cao, Q.; Wang, H.; Li, Y. The Spatiotemporal Dynamics of Ecosystem Services Bundles and the Social-Economic-Ecological Drivers in the Yellow River Delta Region. Ecol. Indic. 2022, 135, 108573. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Zhang, W.; Song, Z.; Ding, Z.; Zhang, X. Comprehensive Evaluation of the Eco-Environmental Vulnerability in the Yellow River Delta Wetland. Ecol. Indic. 2021, 125, 107514. [Google Scholar] [CrossRef]
- Yu, B.; Zang, Y.; Wu, C.; Zhao, Z. Spatiotemporal Dynamics of Wetlands and Their Future Multi-Scenario Simulation in the Yellow River Delta, China. J. Environ. Manag. 2024, 353, 120193. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Gao, Y.; Zhang, G.; Lu, Q.; Jia, J. Heavy Metal Contamination in Soils from Freshwater Wetlands to Salt Marshes in the Yellow River Estuary, China. Sci. Total Environ. 2021, 774, 145072. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic Landscapes and the Driving Forces in the Yellow River Delta Wetland Region in the Past Four Decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal Characteristics, Patterns, and Causes of Land-Use Changes in China since the Late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Natural Capital Project. InVEST 0.0.; Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences, 2024. Available online: https://naturalcapitalproject.stanford.edu/ (accessed on 14 June 2024).
- Mehvar, S.; Filatova, T.; Sarker, M.H.; Dastgheib, A.; Ranasinghe, R. Climate Change-Driven Losses in Ecosystem Services of Coastal Wetlands: A Case Study in the West Coast of Bangladesh. Ocean Coast. Manag. 2019, 169, 273–283. [Google Scholar] [CrossRef]
- Xia, H.; Liu, L.; Bai, J.; Kong, W.; Lin, K.; Guo, F. Wetland Ecosystem Service Dynamics in the Yellow River Estuary under Natural and Anthropogenic Stress in the Past 35 Years. Wetlands 2020, 40, 2741–2754. [Google Scholar] [CrossRef]
- Xu, X.; Chen, M.; Yang, G.; Jiang, B.; Zhang, J. Wetland Ecosystem Services Research: A Critical Review. Glob. Ecol. Conserv. 2020, 22, e01027. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Yue, C.; Ma, S.; Hou, L.; Wang, L.-J. Impact of Wetland Change on Ecosystem Services in Different Urbanization Stages: A Case Study in the Hang-Jia-Hu Region, China. Ecol. Indic. 2023, 153, 110382. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Liao, Q.; Xiao, M. Linking Landscape Dynamics to the Relationship between Water Purification and Soil Retention. Ecosyst. Serv. 2023, 59, 101498. [Google Scholar] [CrossRef]
- Kim, J.; Song, Y. Integrating Ecosystem Services and Ecological Connectivity to Prioritize Spatial Conservation on Jeju Island, South Korea. Landsc. Urban Plan. 2023, 239, 104865. [Google Scholar] [CrossRef]
- Liang, F.; Zhu, R.; Lin, S.-H. Exploring Spatial Relationship between Landscape Configuration and Ecosystem Services: A Case Study of Xiamen–Zhangzhou–Quanzhou in China. Ecol. Model. 2023, 486, 110527. [Google Scholar] [CrossRef]
- Lookingbill, T.R.; Minor, E.S.; Mullis, C.S.; Nunez-Mir, G.C.; Johnson, P. Connectivity in the Urban Landscape (2015–2020): Who? Where? What? When? Why? And How? Curr. Landsc. Ecol. Rep. 2022, 7, 1–14. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking Landscape Connectivity and Ecosystem Service Provision: Current Knowledge and Research Gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Spanowicz, A.G.; Jaeger, J.A.G. Measuring Landscape Connectivity: On the Importance of within-Patch Connectivity. Landsc. Ecol. 2019, 34, 2261–2278. [Google Scholar] [CrossRef]
- Field, R.D.; Parrott, L. Multi-Ecosystem Services Networks: A New Perspective for Assessing Landscape Connectivity and Resilience. Ecol. Complex. 2017, 32, 31–41. [Google Scholar] [CrossRef]
- Guan, X.; Xu, Y.; Meng, Y.; Xu, W.; Yan, D. Quantifying Multi-Dimensional Services of Water Ecosystems and Breakpoint-Based Spatial Radiation of Typical Regulating Services Considering the Hierarchical Clustering-Based Classification. J. Environ. Manag. 2024, 351, 119852. [Google Scholar] [CrossRef]
- Li, L.; Tang, H.; Lei, J.; Song, X. Spatial Autocorrelation in Land Use Type and Ecosystem Service Value in Hainan Tropical Rain Forest National Park. Ecol. Indic. 2022, 137, 108727. [Google Scholar] [CrossRef]
- Shao, Y.; Xiao, Y.; Sang, W. Land Use Trade-Offs and Synergies Based on Temporal and Spatial Patterns of Ecosystem Services in South China. Ecol. Indic. 2022, 143, 109335. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of Urbanization and Landscape Pattern on Habitat Quality Using OLS and GWR Models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Ai, M.; Chen, X.; Yu, Q. Spatial Correlation Analysis between Human Disturbance Intensity (HDI) and Ecosystem Services Value (ESV) in the Chengdu-Chongqing Urban Agglomeration. Ecol. Indic. 2024, 158, 111555. [Google Scholar] [CrossRef]
- Yang, W.; Chen, J.; Ding, T.; Yan, X.; Gong, W. Supply-Demand Security Assessment of Water-Energy-Food Systems: A Perspective on Intra-City Coupling and Inter-City Linkages of Ecosystem Services. Sustain. Cities Soc. 2024, 117, 105964. [Google Scholar] [CrossRef]
- Xu, J.; Wang, S.; Xiao, Y.; Xie, G.; Wang, Y.; Zhang, C.; Li, P.; Lei, G. Mapping the Spatiotemporal Heterogeneity of Ecosystem Service Relationships and Bundles in Ningxia, China. J. Clean. Prod. 2021, 294, 126216. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liu, L.; Liang, Z.; Wang, Y.; Wang, H.; Wu, S. Uncovering the Relationships between Ecosystem Services and Social-Ecological Drivers at Different Spatial Scales in the Beijing-Tianjin-Hebei Region. J. Clean. Prod. 2021, 290, 125193. [Google Scholar] [CrossRef]
- Koellner, T.; Bonn, A.; Arnhold, S.; Bagstad, K.J.; Fridman, D.; Guerra, C.A.; Kastner, T.; Kissinger, M.; Kleemann, J.; Kuhlicke, C.; et al. Guidance for Assessing Interregional Ecosystem Service Flows. Ecol. Indic. 2019, 105, 92–106. [Google Scholar] [CrossRef]
- Su, D.; Cao, Y.; Dong, X.; Wu, Q.; Fang, X.; Cao, Y. Evaluation of Ecosystem Services Budget Based on Ecosystem Services Flow: A Case Study of Hangzhou Bay Area. Appl. Geogr. 2024, 162, 103150. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem Services: Multiple Classification Systems Are Needed. Biol. Conserv. 2008, 141, 350–352. [Google Scholar] [CrossRef]
- Li, K.; Hou, Y.; Andersen, P.S.; Xin, R.; Rong, Y.; Skov-Petersen, H. An Ecological Perspective for Understanding Regional Integration Based on Ecosystem Service Budgets, Bundles, and Flows: A Case Study of the Jinan Metropolitan Area in China. J. Environ. Manag. 2022, 305, 114371. [Google Scholar] [CrossRef]
- Vrebos, D.; Staes, J.; Vandenbroucke, T.; D׳Haeyer, T.; Johnston, R.; Muhumuza, M.; Kasabeke, C.; Meire, P. Mapping Ecosystem Service Flows with Land Cover Scoring Maps for Data-Scarce Regions. Ecosyst. Serv. 2015, 13, 28–40. [Google Scholar] [CrossRef]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Mach, M.E.; Martone, R.G.; Chan, K.M.A. Human Impacts and Ecosystem Services: Insufficient Research for Trade-off Evaluation. Ecosyst. Serv. 2015, 16, 112–120. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Wei, X.; Song, Y.; Wu, S.; Wang, H.; Chen, X.; Qiao, Y.; Liang, T. Evaluating and Simulating the Impact of Afforestation Policy on Land Use and Ecosystem Services Trade-Offs in Linyi, China. Ecol. Indic. 2024, 160, 111898. [Google Scholar] [CrossRef]
- Wang, H.; Liu, L.; Yin, L.; Shen, J.; Li, S. Exploring the Complex Relationships and Drivers of Ecosystem Services across Different Geomorphological Types in the Beijing-Tianjin-Hebei Region, China (2000–2018). Ecol. Indic. 2021, 121, 107116. [Google Scholar] [CrossRef]
- Gao, X.; Liang, J.; Zhu, Z.; Li, W.; Lu, L.; Li, X.; Li, S.; Tang, N.; Li, X. Drought-Induced Changes in Hydrological and Phenological Interactions Modulate Waterbird Habitats Dynamics. J. Hydrol. 2023, 626, 130228. [Google Scholar] [CrossRef]
- Singha, P.; Pal, S. Modelling Wetland Eco-Hydrological State and Its Role on Ecosystem Service Potentiality. Ecohydrol. Hydrobiol. 2024, in press. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying Landscape Pattern and Ecosystem Service Value Changes: A Case Study at the County Level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. [Google Scholar] [CrossRef]
- Fan, F.; Li, W.; Feng, Z.; Yang, Y. Combining Landscape Patterns and Ecosystem Services to Disclose Ecosystem Changes in Tropical Cropland-Forest Shifting Zones: Inspiration from Mainland Southeast Asia. J. Clean. Prod. 2024, 434, 140058. [Google Scholar] [CrossRef]
- Ran, P.; Hu, S.; Frazier, A.E.; Yang, S.; Song, X.; Qu, S. The Dynamic Relationships between Landscape Structure and Ecosystem Services: An Empirical Analysis from the Wuhan Metropolitan Area, China. J. Environ. Manag. 2023, 325, 116575. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Importance of Landscape Heterogeneity in Sustaining Hydrologic Ecosystem Services in an Agricultural Watershed. Ecosphere 2015, 6, art229. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, Storms and Soil Pores: Incorporating Key Ecohydrological Processes into Budyko’s Hydrological Model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Liu, Y.; Xi, M.; Zhang, X.; Yu, Z.; Kong, F. Carbon Storage Distribution Characteristics of Wetlands in China and Its Influencing Factors. Chin. J. Appl. Ecol. 2019, 30, 2481–2489. [Google Scholar]
- Sun, S.; Song, Z.; Chen, B.; Wang, Y.; Ran, X.; Fang, Y.; Van Zwieten, L.; Hartley, I.P.; Wang, Y.; Li, Q.; et al. Current and Future Potential Soil Organic Carbon Stocks of Vegetated Coastal Ecosystems and Their Controls in the Bohai Rim Region, China. CATENA 2023, 225, 107023. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Wang, X.; Zhang, W.; Huang, Y.; Wang, L.; Gao, Y. Soil Organic Carbon Content and Stock in Wetlands with Different Hydrologic Conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 2020, 20, 537–547. [Google Scholar] [CrossRef]
- Ren, Q.; He, C.; Huang, Q.; Shi, P.; Zhang, D.; Guneralp, B. Impacts of Urban Expansion on Natural Habitats in Global Drylands. Nat. Sustain. 2022, 5, 869–878. [Google Scholar] [CrossRef]
Data Type | Spatial Scale | Sources | Year |
---|---|---|---|
Land use and land cover change (LUCC) | 30 m | Resource and Environment Science and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/ (accessed on 27 May 2024)) | 2000–2020 |
Digital elevation model (DEM) | 30 m | Geospatial Data Cloud (http://www.gscloud.cn/ (accessed on 27 May 2024)) | -- |
Meteorological data | 1 km | National Earth System Science Data Center (https://www.geodata.cn (accessed on 29 May 2024)) | 2000–2020 |
Soil data | 1 km | Harmonized World Soil Database (HWSD) v1.2 (https://www.fao.org/ (accessed on 15 June 2024)) | -- |
Road network | -- | OpenStreetMap (www.openstreetmap.org/ (accessed on 20 June 2024)) | 2000–2020 |
Nature reserves | -- | Dongying Natural Resources Department | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, C.; Wu, S.; Cheng, W.; Chen, M.; Ren, Y.; Chang, X.; Zhang, L. Spatiotemporal Relationship Between Landscape Pattern and Ecosystem Service Connectivity in Wetland Environment: Evidence from Yellow River Delta, China. Land 2025, 14, 273. https://doi.org/10.3390/land14020273
Hao C, Wu S, Cheng W, Chen M, Ren Y, Chang X, Zhang L. Spatiotemporal Relationship Between Landscape Pattern and Ecosystem Service Connectivity in Wetland Environment: Evidence from Yellow River Delta, China. Land. 2025; 14(2):273. https://doi.org/10.3390/land14020273
Chicago/Turabian StyleHao, Chaozhi, Shuyao Wu, Wenjie Cheng, Mengna Chen, Yaofa Ren, Xiaoqing Chang, and Linbo Zhang. 2025. "Spatiotemporal Relationship Between Landscape Pattern and Ecosystem Service Connectivity in Wetland Environment: Evidence from Yellow River Delta, China" Land 14, no. 2: 273. https://doi.org/10.3390/land14020273
APA StyleHao, C., Wu, S., Cheng, W., Chen, M., Ren, Y., Chang, X., & Zhang, L. (2025). Spatiotemporal Relationship Between Landscape Pattern and Ecosystem Service Connectivity in Wetland Environment: Evidence from Yellow River Delta, China. Land, 14(2), 273. https://doi.org/10.3390/land14020273