The Mystery of Homochirality on Earth
Abstract
:1. Introduction
2. Sources of Abiotic Organic Material in the Universe and on Prebiotic Earth
3. Amino Acids, Peptides and Proteinoids
3.1. Amino Acids or Nucleotides?
3.2. Condensation of Amino Acids
3.3. Formation of Autocatalytic Peptide Oligomers
3.4. Homochirality in Abiotic Peptides
4. The Mystery of Homochirality
5. The Mystery Disappears
5.1. Chirality of Higher Structures
5.2. Statistics of Homochiral Molecules
5.3. A Digital Assay as a Model for Compartmentalization
6. Conclusions
- Homochiral polymers can be formed from racemic starting materials at the single-molecule level, which then may have multiplied by autocatalysis. Which enantiomer would have formed the first autocatalytic peptide would be left to chance. If oligomers of different lengths and structures are compared, it would not necessarily be the first molecule that would win the race, but the one that replicated the fastest.
- All polymers that can form at least secondary structures are asymmetric, regardless of their origin or which monomers they consist of. Even completely achiral monomers would constantly form asymmetric polymer molecules (conformations, folding chirality).
- Self-replicating molecules would have a very strong tendency to form products of a higher enantiomeric excess, if the “first” self-replicating molecule was not already completely homochiral and inherit these properties to the next generation of molecules, probably due to a better formation of secondary structures and a more efficient mechanism of self-replication.
- Partial compartmentalization, e.g., in pores of a rock might deliver a suitable environment for even slow autocatalytic processes without excessive dilution over time.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eriksson, T.; Björkman, S.; Höglund, P. Clinical pharmacology of thalidomide. Eur. J. Clin. Pharmacol. 2001, 57, 365–376. [Google Scholar] [CrossRef]
- Hancu, G.; Modroiu, A. Chiral Switch: Between Therapeutical Benefit and Marketing Strategy. Pharmaceuticals 2022, 15, 240. [Google Scholar] [CrossRef]
- Ariens, E.J. Stereochemistry, a Basis for Sophisticated Nonsense in Pharmacokinetics and Clinical-Pharmacology. Eur. J. Clin. Pharmacol. 1984, 26, 663–668. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, D.R.; Wang-Iverson, D.B.; Tymiak, A.A. Enantioselective chromatography in drug discovery. Drug Discov. Today 2005, 10, 571–577. [Google Scholar] [CrossRef]
- Gal, J. Molecular Chirality in Chemistry and Biology: Historical Milestones. Helv. Chim. Acta 2013, 96, 1617–1657. [Google Scholar] [CrossRef]
- Ariens, E.J. Chirality in Bioactive Agents and Its Pitfalls. Trends Pharmacol. Sci. 1986, 7, 200–205. [Google Scholar] [CrossRef]
- Baeriswyl, S.; Personne, H.; Di Bonaventura, I.; Köhler, T.; van Delden, C.; Stocker, A.; Javor, S.; Reymond, J.L. A mixed chirality α-helix in a stapled bicyclic and a linear antimicrobial peptide revealed by X-ray crystallography. RSC Chem. Biol. 2021, 2, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulos, E.; Küsel, A.; Sheldrick, G.M.; Diederichsen, U.; Usón, I. Solution and structure of an alternating D,L-peptide. Acta Crystallogr. Sect. D-Struct. Biol. 2004, 60, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- Landsteiner, K.; van der Scheer, J. Serological differentiation of steric isomers. J. Exp. Med. 1928, 48, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Landsteiner, K.; van der Scheer, J. Serological differentiation of steric isomers (antigens containing tartaric acids) Second paper. J. Exp. Med. 1929, 50, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Hofstetter, H.; Hofstetter, O. Antibodies as tailor-made chiral selectors for detection and separation of stereoisomers. TRAC-Trends Anal. Chem. 2005, 24, 869–879. [Google Scholar] [CrossRef]
- Pasteur, L. On the Relationships between the Crystalline Form, Chemical Composition and the Direction of Optical Rotation. Ann. Chim. Phys. 1848, 24, 442–459. [Google Scholar]
- Tobe, Y. The reexamination of Pasteur’s experiment in Japan. Mendeleev Commun. 2003, 13, 93–94. [Google Scholar] [CrossRef]
- Berzelius, J.J. Lehrbuch der Chemie; Arnoldische Buchhandlung: Dresden, Germany, 1827; Volume 3. [Google Scholar]
- Ponnamperuma, C.; Gabel, N.W. Current status of chemical studies on the origin of life. Space Life Sci. 1968, 1, 64–96. [Google Scholar] [CrossRef]
- Khare, B.N.; Sagan, C.; Ogino, H.; Nagy, B.; Er, C.; Schram, K.H.; Arakawa, E.T. Amino-Acids Derived from Titan Tholins. Icarus 1986, 68, 176–184. [Google Scholar] [CrossRef]
- Pizzarello, S. The chemistry of life’s origin: A carbonaceous meteorite perspective. Acc. Chem. Res. 2006, 39, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kvenvolden, K.A.; Lawless, J.G.; Ponnamperuma, C. Nonprotein amino acids in the murchison meteorite. Proc. Natl. Acad. Sci. USA 1971, 68, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Wolman, Y.; Haverland, W.J.; Miller, S.L. Nonprotein amino acids from spark discharges and their comparison with the murchison meteorite amino acids. Proc. Natl. Acad. Sci. USA 1972, 69, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Csh Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef] [PubMed]
- Strecker, A. Ueber einen neuen aus Aldehyd-Ammoniak und Blausäure entstehenden Körper. Justus Liebigs Ann. Der Chem. 1854, 91, 349–351. [Google Scholar] [CrossRef]
- Engrand, C.; Maurette, M. Carbonaceous micrometeorites from Antarctica. Meteorit. Planet. Sci. 1998, 33, 565–580. [Google Scholar] [CrossRef]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef]
- Miller, S.L.; Urey, H.C. Organic Compound Synthesis on the Primitive Earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef]
- Miller, S.L.; Schopf, J.W.; Lazcano, A. Oparin’s ‘‘origin of life’’: Sixty years later. J. Mol. Evol. 1997, 44, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Hennet, R.J.C.; Holm, N.G.; Engel, M.H. Abiotic Synthesis of Amino-Acids under Hydrothermal Conditions and the Origin of Life—A Perpetual Phenomenon. Naturwissenschaften 1992, 79, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Bada, J.L.; Miller, S.L.; Zhao, M.X. The Stability of Amino-Acids at Submarine Hydrothermal Vent Temperatures. Orig. Life Evol. B 1995, 25, 111–118. [Google Scholar] [CrossRef]
- Ménez, B.; Pisapia, C.; Andreani, M.; Jamme, F.; Vanbellingen, Q.P.; Brunelle, A.; Richard, L.; Dumas, P.; Réfrégiers, M. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018, 564, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; He, Y.Q.; Li, G.X.; Zhang, H.E.; Xiao, K.Q. A thermodynamic chemical reaction network drove autocatalytic prebiotic peptides formation. Geochim. Cosmochim. Acta 2022, 324, 102–116. [Google Scholar] [CrossRef]
- Fuchida, S.; Mizuno, Y.; Masuda, H.; Toki, T.; Makita, H. Concentrations and distributions of amino acids in black and white smoker fluids at temperatures over 200 °C. Org. Geochem. 2014, 66, 98–106. [Google Scholar] [CrossRef]
- Becker, S.; Feldmann, J.; Wiedemann, S.; Okamura, H.; Schneider, C.; Iwan, K.; Crisp, A.; Rossa, M.; Amatov, T.; Carell, T. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 2019, 366, 76–82. [Google Scholar] [CrossRef]
- Becker, S.; Thoma, I.; Deutsch, A.; Gehrke, T.; Mayer, P.; Zipse, H.; Carell, T. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science 2016, 352, 833–836. [Google Scholar] [CrossRef]
- Nam, I.; Nam, H.G.; Zare, R.N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc. Natl. Acad. Sci. USA 2018, 115, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Oba, Y.; Koga, T.; Takano, Y.; Ogawa, N.O.; Ohkouchi, N.; Sasaki, K.; Sato, H.; Glavin, D.P.; Dworkin, J.P.; Naraoka, H.; et al. Uracil in the carbonaceous asteroid (162173) Ryugu. Nat. Commun. 2023, 14, 1292. [Google Scholar] [CrossRef]
- Fox, S.W.; Bahn, P.R.; Dose, K.; Harada, K.; Hsu, L.; Ishima, Y.; Jungck, J.; Kendrick, J.; Krampitz, G.; Lacey, J.C.; et al. Experimental Retracement of the Origins of a Protocell—It Was Also a Protoneuron. J. Biol. Phys. 1994, 20, 17–36. [Google Scholar] [CrossRef]
- Melius, P. Structure of Thermal Polymers of Amino-Acids. Biosystems 1982, 15, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Denes, F.; Fox, S.W. Polycondensation of Alpha-Amino-Acids by Pyrosulfuric Acid. Biosystems 1976, 8, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.W.; Harada, K. Thermal Copolymerization of Amino Acids to a Product Resembling Protein. Science 1958, 128, 1214. [Google Scholar] [CrossRef]
- Fox, S.W.; Waehneldt, T.V. Thermal Synthesis of Neutral and Basic Proteinoids. Biochim. Biophys. Acta 1968, 160, 246–249. [Google Scholar] [CrossRef]
- Dose, K. Chemical and Catalytical Properties of Thermal Polymers of Amino-Acids (Proteinoids). Orig. Life Evol. Biosph. 1974, 5, 239–252. [Google Scholar] [CrossRef]
- Rohlfing, D.L. Thermal Polyamino Acids—Synthesis at Less Than 100 degrees C. Science 1976, 193, 68–70. [Google Scholar] [CrossRef]
- Sumie, Y.; Sato, K.; Kakegawa, T.; Furukawa, Y. Boron-assisted abiotic polypeptide synthesis. Commun. Chem. 2023, 6, 89. [Google Scholar] [CrossRef]
- Otake, T.; Taniguchi, T.; Furukawa, Y.; Kawamura, F.; Nakazawa, H.; Kakegawa, T. Stability of Amino Acids and Their Oligomerization Under High-Pressure Conditions: Implications for Prebiotic Chemistry. Astrobiology 2011, 11, 799–813. [Google Scholar] [CrossRef] [PubMed]
- Cleaves, H.J.; Aubrey, A.D.; Bada, J.L. An Evaluation of the Critical Parameters for Abiotic Peptide Synthesis in Submarine Hydrothermal Systems. Orig. Life Evol. Biosph. 2009, 39, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Commeyras, A.; Collet, H.; Boiteau, L.; Taillades, J.; Vandenabeele-Trambouze, O.; Cottet, H.; Biron, J.P.; Plasson, R.; Mion, L.; Lagrille, O.; et al. Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polym. Int. 2002, 51, 661–665. [Google Scholar] [CrossRef]
- Raos, N.; Bermanec, V. Catalysis in the Primordial World. Kem. Ind. 2017, 66, 641–654. [Google Scholar] [CrossRef]
- El Samrout, O.; Fabbiani, M.; Berlier, G.; Lambert, J.F.; Martra, G. Emergence of Order in Origin-of-Life Scenarios on Mineral Surfaces: Polyglycine Chains on Silica. Langmuir 2022, 38, 15516–15525. [Google Scholar] [CrossRef]
- Bissette, A.J.; Fletcher, S.P. Mechanisms of Autocatalysis. Angew. Chem.-Int. Ed. 2013, 52, 12800–12826. [Google Scholar] [CrossRef]
- Severin, K.; Lee, D.H.; Martinez, J.A.; Ghadiri, M.R. Peptide self-replication via template-directed ligation. Chem-Eur. J. 1997, 3, 1017–1024. [Google Scholar] [CrossRef]
- Lee, D.H.; Granja, J.R.; Martinez, J.A.; Severin, K.; Ghadiri, M.R. A self-replicating peptide. Nature 1996, 382, 525–528. [Google Scholar] [CrossRef]
- Islami, V.; Bittner, P.; Hentzen, N.; Zenobi, R.; Wennemers, H. Selective formation and self-sorting of collagen heterotrimers with aminoproline-aspartate salt bridges. J. Pept. Sci. 2022, 28, P177. [Google Scholar] [CrossRef]
- Islami, V.; Bittner, P.; Fiala, T.; Hentzen, N.B.; Zenobi, R.; Wennemers, H. Self-Sorting Collagen Heterotrimers. J. Am. Chem. Soc. 2024, 146, 1789–1793. [Google Scholar] [CrossRef]
- Bada, J.L. Kinetics of Racemization of Amino Acids as a Function of pH. J. Am. Chem. Soc. 1972, 94, 1371–1373. [Google Scholar] [CrossRef]
- Rout, S.K.; Rhyner, D.; Riek, R.; Greenwald, J. Prebiotically Plausible Autocatalytic Peptide Amyloids. Chem-Eur. J. 2022, 28, e202103841. [Google Scholar] [CrossRef]
- Toxvaerd, S. Origin of Homochirality: The Formation and Stability of Homochiral Peptides in Aqueous Prebiological Environment in the Earth’s Crust. Symmetry 2023, 15, 155. [Google Scholar] [CrossRef]
- Lee, H.S.; Lim, Y.B. Slow-Motion Self-Assembly: Access to Intermediates with Heterochiral Peptides to Gain Control over Alignment Media Development. Acs Nano 2020, 14, 3344–3352. [Google Scholar] [CrossRef]
- Blackmond, D.G. The Origin of Biological Homochirality. CSH Perspect. Biol. 2010, 2, a002147. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A. Chirality and Life. Orig. Life Evol. B 1995, 25, 175–190. [Google Scholar] [CrossRef]
- Gleiser, M.; Walker, S.I. Life’s chirality from prebiotic environments. Int. J. Astrobiol. 2012, 11, 287–296. [Google Scholar] [CrossRef]
- Crisma, M.; Moretto, A.; Formaggio, F.; Kaptein, B.; Broxterman, Q.B.; Toniolo, C. Meteoritic Cα-methylated α-amino acids and the homochirality of life: Searching for a link. Angew. Chem.-Int. Ed. 2004, 43, 6695–6699. [Google Scholar] [CrossRef] [PubMed]
- Breslow, R.; Cheng, Z.L. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl. Acad. Sci. USA 2009, 106, 9144–9146. [Google Scholar] [CrossRef]
- Hazen, R.M.; Filley, T.R.; Goodfriend, G.A. Selective adsorption of L- and D-amino acids on calcite: Implications for biochemical homochirality. Proc. Natl. Acad. Sci. USA 2001, 98, 5487–5490. [Google Scholar] [CrossRef]
- Meierhenrich, U.J. Amino Acids and the Asymmetry of Life. Eur. Rev. 2013, 21, 190–199. [Google Scholar] [CrossRef]
- Sallembien, Q.; Bouteiller, L.; Crassous, J.; Raynal, M. Possible chemical and physical scenarios towards biological homochirality. Chem. Soc. Rev. 2022, 51, 3436–3476. [Google Scholar] [CrossRef]
- Meierhenrich, U.J.; Nahon, L.; Alcaraz, C.; Bredehöft, J.H.; Hoffmann, S.V.; Barbier, B.; Brack, A. Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew. Chem.-Int. Ed. 2005, 44, 5630–5634. [Google Scholar] [CrossRef] [PubMed]
- Bocková, J.; Jones, N.C.; Topin, J.; Hoffmann, S.V.; Meinert, C. Uncovering the chiral bias of meteoritic isovaline through asymmetric photochemistry. Nat. Commun. 2023, 14, 3381. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Burton, A.S.; Elsila, J.E.; Aponte, J.C.; Dworkin, J.P. The Search for Chiral Asymmetry as a Potential Biosignature in our Solar System. Chem. Rev. 2020, 120, 4660–4689. [Google Scholar] [CrossRef]
- Noorduin, W.L.; Bode, A.A.C.; van der Meijden, M.; Meekes, H.; van Etteger, A.F.; van Enckevort, W.J.P.; Christianen, P.C.M.; Kaptein, B.; Kellogg, R.M.; Rasing, T.; et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 2009, 1, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Blackmond, D.G. Autocatalytic Models for the Origin of Biological Homochirality. Chem. Rev. 2020, 120, 4831–4847. [Google Scholar] [CrossRef] [PubMed]
- Kondepudi, D.K.; Kaufman, R.J.; Singh, N. Chiral Symmetry-Breaking in Sodium-Chlorate Crystallization. Science 1990, 250, 975–976. [Google Scholar] [CrossRef]
- Klussmann, M.; Izumi, T.; White, A.J.P.; Armstrong, A.; Blackmond, D.G. Emergence of solution-phase homochirality via crystal engineering of amino acids. J. Am. Chem. Soc. 2007, 129, 7657–7660. [Google Scholar] [CrossRef]
- Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J.L.; Palacios, J.C. Symmetry breaking by spontaneous crystallization is it the most plausible source of terrestrial handedness we have long been looking for? A reappraisal. Orig. Life Evol. Biosph. 2004, 34, 391–405. [Google Scholar] [CrossRef]
- Viedma, C. Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: Implications for the origin of biochirality. Astrobiology 2007, 7, 312–319. [Google Scholar] [CrossRef]
- Ozturk, S.F.; Liu, Z.W.; Sutherland, J.D.; Sasselov, D.D. Origin of biological homochirality by crystallization of an RNA precursor on a magnetic surface. Sci. Adv. 2023, 9, eadg8274. [Google Scholar] [CrossRef] [PubMed]
- Hawbaker, N.A.; Blackmond, D.G. Energy threshold for chiral symmetry breaking in molecular self-replication. Nat. Chem. 2019, 11, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Cintas, P.; Viedma, C. On the Physical Basis of Asymmetry and Homochirality. Chirality 2012, 24, 894–908. [Google Scholar] [CrossRef] [PubMed]
- Faglioni, F.; Passalacqua, A.; Lazzeretti, P. Parity violation energy of biomolecules—I: Polypeptides. Orig. Life Evol. Biosph. 2005, 35, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Kobayashi, K. Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry 2019, 11, 919. [Google Scholar] [CrossRef]
- Gehrold, A.C.; Bruhn, T.; Bringmann, G. Axial, Helical, and Planar Chirality in Directly Linked Basket-Handle Porphyrin Arrays. J. Org. Chem. 2016, 81, 1075–1088. [Google Scholar] [CrossRef]
- Dodziuk, H. Chirality and Stereogenicity—The Importance of Conformational Chirality in the Classification of Stereoisomers. Tetrahedron-Asymmetry 1992, 3, 43–50. [Google Scholar] [CrossRef]
- Liang, C.Z.; Mislow, K. Topological Chirality of Proteins. J. Am. Chem. Soc. 1994, 116, 3588–3592. [Google Scholar] [CrossRef]
- Gorris, H.H.; Soukka, T. What Digital Immunoassays Can Learn from Ambient Analyte Theory: A Perspective. Anal. Chem. 2022, 94, 6073–6083. [Google Scholar] [CrossRef]
- Wilson, D.H.; Rissin, D.M.; Kan, C.W.; Fournier, D.R.; Piech, T.; Campbell, T.G.; Meyer, R.E.; Fishburn, M.W.; Cabrera, C.; Patel, P.P.; et al. The Simoa HD-1 Analyzer: A Novel Fully Automated Digital Immunoassay Analyzer with Single-Molecule Sensitivity and Multiplexing. SLAS Technology 2016, 21, 533–547. [Google Scholar] [CrossRef]
- Zhang, Y.; Noji, H. Digital Bioassays: Theory, Applications, and Perspectives. Anal. Chem. 2017, 89, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.T.; Gu, H.C.; Xu, H. Recent progress in digital immunoassay: How to achieve ultrasensitive, multiplex and clinical accessible detection? Sens. Diagn. 2024, 3, 9–27. [Google Scholar] [CrossRef]
- Byrnes, S.A.; Huynh, T.; Chang, T.C.; Anderson, C.E.; McDermott, J.J.; Oncina, C.I.; Weigl, B.H.; Nichols, K.P. Wash-Free, Digital Immunoassay in Polydisperse Droplets. Anal. Chem. 2020, 92, 3535–3543. [Google Scholar] [CrossRef]
- Sun, J.J.; Hu, J.M.; Gou, T.; Ding, X.; Song, Q.; Wu, W.S.; Wang, G.P.; Yin, J.X.; Mu, Y. Power-free polydimethylsiloxane femtoliter-sized arrays for bead-based digital immunoassays. Biosens. Bioelectron. 2019, 139, 111339. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.J.; Zhao, J.; Cai, T.; Stephens, A.; Su, S.H.; Sandford, E.; Flora, C.; Singer, B.H.; Ghosh, M.; Choi, S.W.; et al. Machine learning-based cytokine microarray digital immunoassay analysis. Biosens. Bioelectron. 2021, 180, 113088. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weller, M.G. The Mystery of Homochirality on Earth. Life 2024, 14, 341. https://doi.org/10.3390/life14030341
Weller MG. The Mystery of Homochirality on Earth. Life. 2024; 14(3):341. https://doi.org/10.3390/life14030341
Chicago/Turabian StyleWeller, Michael G. 2024. "The Mystery of Homochirality on Earth" Life 14, no. 3: 341. https://doi.org/10.3390/life14030341