Association Between Sociodemographic Variables, Healthy Habits, and Stress with Risk Scales for Liver Disease Associated with Metabolic Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- Aged between 18 and 69 years.
- Employed in one of the participating companies.
- Provided consent to participate in the research.
- Authorized the use of their data for epidemiological purposes.
- Not habitual alcohol consumers.
- Age under 18 years or over 69 years.
- No employment contract with a participating company.
- Did not provide informed consent to participate in the study.
- Did not authorize the use of their data for epidemiological purposes.
- Habitual alcohol consumers.
2.2. Determination of Variables
- Clinical History: Sociodemographic data (age, sex, and occupation) and health-related aspects such as tobacco use, physical activity, adherence to the Mediterranean diet, and stress levels were collected.
- Physical and Clinical Measurements: Height, weight, waist and hip circumference, as well as systolic and diastolic blood pressure, were recorded.
- Laboratory Tests: Parameters such as lipid profile, liver function, and blood glucose levels were analyzed.
2.2.1. Anthropometric Determinations
2.2.2. Clinical Determinations
2.2.3. Analytical Determinations
2.2.4. Risk Scales
- Fatty liver index (FLI) [20]:
- Hepatic steatosis index (HSI) [21]:
- Lipid accumulation product (LAP) [22]:
- ○
- Men: (waist circumference (cm) − 65) × triglycerides (mMol).
- ○
- Women: (waist circumference (cm) − 58) × triglycerides (mMol).
2.3. Operational Definitions
- Occupational Category: Classified according to the Spanish Society of Epidemiology, based on the National Occupations Classification 2011. Manual workers (blue collar) included operators and technicians, while non-manual workers (white collar) consisted of executives and university professionals [23].
- Tobacco Use: Defined as smoking at least one cigarette daily within the past 30 days or having quit less than one year prior.
- Adherence to the Mediterranean Diet: Assessed using the PREDIMED questionnaire, with high adherence defined as a score of 9 or higher [24]. (Questionnaire at the end of the article)
- Physical Activity: Measured using the International Physical Activity Questionnaire (IPAQ), which accounts for the frequency, duration, and intensity of exercise [25]. (Questionnaire at the end of the article)
- Stress: Evaluated using Cohen’s Perceived Stress Scale (PSS), an internationally validated tool [26].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Study Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, T.; Zhang, J.; Xie, W.; Ni, Y.; Fang, X.; Liu, M.; Peng, X.; Wang, J.; Dai, Y.; Zhou, Y. Dietary Quality and Relationships with Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) among United States Adults, Results from NHANES 2017–2018. Nutrients 2022, 14, 4505. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marušić, M.; Paić, M.; Knobloch, M.; Pršo, A.-M.L. NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6613827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, S.; Wang, L.; Evans, P.C.; Xu, S. NAFLD and NASH: Etiology, targets and emerging therapies. Drug Discov. Today 2024, 29, 103910. [Google Scholar] [CrossRef] [PubMed]
- Parola, M.; Pinzani, M. Liver fibrosis in NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic strategies. Mol. Asp. Med. 2024, 95, 101231. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Song, S.J.; Lai, J.C.-T.; Wong, G.L.-H.; Wong, V.W.-S.; Yip, T.C.-F. Can we use old NAFLD data under the new MASLD definition? J. Hepatol. 2024, 80, e54–e56. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; A King, J.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.V.; Cortez-Pinto, H. NAFLD, MAFLD and obesity: Brothers in arms? Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. Race and Ethnicity in Non-Alcoholic Fatty Liver Disease (NAFLD): A Narrative Review. Nutrients 2022, 14, 4556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Y.; Su, Y.; Duan, C.; Wang, S.; He, W.; Zhang, Y.; An, X.; He, M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res. Rev. 2023, 84, 101833. [Google Scholar] [CrossRef] [PubMed]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wijarnpreecha, K.; Aby, E.S.; Ahmed, A.; Kim, D. Evaluation and management of extrahepatic manifestations of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 221–235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): A Comprehensive Review from NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Selvaraj, E.A.; Mózes, F.E.; Jayaswal, A.N.A.; Zafarmand, M.H.; Vali, Y.; Lee, J.A.; Levick, C.K.; Young, L.A.J.; Palaniyappan, N.; Liu, C.-H.; et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: A systematic review and meta-analysis. J. Hepatol. 2021, 75, 770–785. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, V.; Loomba, R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol. Metab. 2021, 50, 101167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sastre-Alzamora, T.; Tomás-Gil, P.; Paublini, H.; Pallarés, L.; Ramírez-Manent, J.I.; López-González, A.A. Relationship between different scales of overweight and obesity and heart age values in 139634 spanish workers. AJHS 2023, 38, 137–144. [Google Scholar] [CrossRef]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí Lliteras, P.; López González, A.A. Relationship between nonalcoholic fatty liver disease and liver fibrosis risk scales and various cardiometabolic risk scales in 219.477 Spanish workers. AJHS 2023, 38, 138–145. [Google Scholar] [CrossRef]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí Lliteras, P.; López González, A.A. Relationship between values of 7 NAFLD scales and different RCV scales in 219,477 Spanish workers. AJHS 2023, 38, 52–59. [Google Scholar] [CrossRef]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí Lliteras, P.; López González, A.A. Relationship between nonalcoholic fatty liver disease and liver fibrosis risk scales with overweight and obesity scales in 219,477 spanish workers. AJHS 2023, 38, 92–100. [Google Scholar]
- Ramírez-Manent, J.I.; Tomás-Gil, P.; Coll-Villalonga, J.L.; Marti-Lliteras, P.; López-González, A.A.; Paublini, H. Relationship between atherogenic dyslipidemia and lipid triad with scales that assess non alcoholic liver disease in 418,343 spanish workers. AJHS 2023, 38, 66–73. [Google Scholar] [CrossRef]
- Sastre Alzamora, T.; Tomás-Gil, P.; Martí-Lliteras, P.; Pallarés Ferreres, L.; Ramírez-Manent, J.I.; López-González, A.A. Estimation of heart age in 139.634 spanish workers: Influence of sociodemographic variables and healthy habits and determination of cut-off points. AJHS 2023, 38, 24–30. [Google Scholar] [CrossRef]
- PREDIMED Questionnaire. Available online: http://predimed.es/uploads/8/0/5/1/8051451/p14_medas.pdf (accessed on 17 December 2024).
- Toivonen, E.; Lee, E.; Leppänen, M.H.; Laitinen, T.; Kähönen, M.; Lakka, T.A.; Haapala, E.A. The associations of depressive symptoms and perceived stress with arterial health in adolescents. Physiol. Rep. 2024, 12, e15986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alqahtani, S.A.; Schattenberg, J.M. NAFLD in the Elderly. Clin. Interv. Aging 2021, 16, 1633–1649. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shaunak, M.; Byrne, C.D.; Davis, N.; Afolabi, P.; Faust, S.N.; Davies, J.H. Non-alcoholic fatty liver disease and childhood obesity. Arch. Dis. Child. 2021, 106, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sahuquillo Martínez, A.; Solera Albero, J.; Rodríguez Montes, J.A.; Celada Rodríguez, A.; Tarraga Marcos, M.L.; Tárraga López, P.J. Esteatosis hepática no alcohólica y factores de riesgo cardiovascular en atención primaria. Rev. Colomb. Gastroenterol. 2016, 31, 368–375. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of Liver Disease: 2023 Update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Volaco, A.; Cavalcanti, A.M.; Filho, R.P.; Precoma, D.B. Socioeconomic Status: The Missing Link Between Obesity and Diabetes Mellitus? Curr. Diabetes Rev. 2018, 14, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Saki, N.; Hashemi, S.J.; Hosseini, S.A.; Rahimi, Z.; Rahim, F.; Cheraghian, B. Socioeconomic status and metabolic syndrome in Southwest Iran: Results from Hoveyzeh Cohort Study (HCS). BMC Endocr. Disord. 2022, 22, 332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nardocci, M.; Leclerc, B.-S.; Louzada, M.-L.; Monteiro, C.A.; Batal, M.; Moubarac, J.-C. Consumption of ultra-processed foods and obesity in Canada. Can. J. Public Health 2019, 110, 4–14, Erratum in Can. J. Public Health 2019, 110, 15–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shea, S.; Lionis, C.; Kite, C.; Lagojda, L.; Uthman, O.A.; Dallaway, A.; Atkinson, L.; Chaggar, S.S.; Randeva, H.S.; Kyrou, I. Non-alcoholic fatty liver disease and coexisting depression, anxiety and/or stress in adults: A systematic review and meta-analysis. Front. Endocrinol. 2024, 15, 1357664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, J.; Lee, I.; Park, D.-H.; Kwak, H.-B.; Min, K. Relationships between Socioeconomic Status, Handgrip Strength, and Non-Alcoholic Fatty Liver Disease in Middle-Aged Adults. Int. J. Environ. Res. Public Health 2021, 18, 1892. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Orkin, S.; Brokamp, C.; Yodoshi, T.; Trout, A.T.; Liu, C.; Meryum, S.; Taylor, S.; Wolfe, C.; Sheridan, R.; Seth, A.; et al. Community Socioeconomic Deprivation and Nonalcoholic Fatty Liver Disease Severity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 364–370. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moradinazar, M.; Pasdar, Y.; Najafi, F.; Shahsavari, S.; Shakiba, E.; Hamzeh, B.; Fakhri, N. Association between dyslipidemia and blood lipids concentration with smoking habits in the Kurdish population of Iran. BMC Public Health 2020, 20, 673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, M.; Kim, J.; Lee, I. Interactive associations of smoking and physical activity with metabolic syndrome in adult men in Korea. Front. Public Health 2023, 11, 1281530. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balogun, O.; Wang, J.Y.; Shaikh, E.S.; Liu, K.; Stoyanova, S.; Memel, Z.N.; Schultz, H.; Mun, L.; Bertman, J.; Rogen, C.A.; et al. Effect of combined tobacco use and type 2 diabetes mellitus on prevalent fibrosis in patients with MASLD. Hepatol. Commun. 2023, 7, e0300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braillon, A. Hepatocellular Carcinoma in Women: Could Tobacco Matter More than Sex? Am. J. Gastroenterol. 2021, 116, 617. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Li, Q.; Pan, T.; Chen, Y. Association Between Secondhand Smoke Exposure and Nonalcoholic Fatty Liver Disease in the General U.S. Adult Nonsmoker Population. Nicotine Tob. Res. 2024, 26, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; Mascaró, C.M.; Ugarriza, L.; Casares, M.; Llompart, I.; Abete, I.; Zulet, M.; Martínez, J.A.; Tur, J.A.; Bouzas, C. Adherence to Mediterranean Diet and NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 3186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Sigüenza, R.; Pina, M.; Laserna, C.; Antolín, B.; Burgueño, B.; Durà, M.; Izaola, O.; Primo, D.; de Luis, D.A. Insulin resistance is related with liver fibrosis in type 2 diabetic patients with non-alcoholic fatty liver disease proven biopsy and Mediterranean diet pattern as a protective factor. Endocrine 2020, 68, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, W.; Zeng, L.-Q.; Bai, H.; Li, J.; Zhou, J.; Zhou, G.-Y.; Fang, C.-W.; Wang, F.; Qin, X.-J. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy. Redox Biol. 2020, 36, 101635. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vilar-Gomez, E.; Nephew, L.D.; Vuppalanchi, R.; Gawrieh, S.; Mladenovic, A.; Pike, F.; Samala, N.; Chalasani, N. High-quality diet, physical activity, and college education are associated with low risk of NAFLD among the US population. Hepatology 2022, 75, 1491–1506. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Konyn, P.; Cholankeril, G.; Ahmed, A. Physical Activity Is Associated With Nonalcoholic Fatty Liver Disease and Significant Fibrosis Measured by FibroScan. Clin. Gastroenterol. Hepatol. 2022, 20, e1438–e1455. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Zhao, D.; Ryu, S.; Guallar, E.; Cho, J.; Lazo, M.; Shin, H.; Chang, Y.; Sung, E. Perceived stress and non-alcoholic fatty liver disease in apparently healthy men and women. Sci. Rep. 2020, 10, 38, Erratum in Sci. Rep. 2020, 10, 21978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Men n = 7556 | Women n = 9152 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | |
Age (years) | 44.7 (8.6) | 43.4 (8.6) | <0.001 |
Height (cm) | 173.7 (6.7) | 161.8 (5.9) | <0.001 |
Weight (kg) | 81.6 (13.5) | 64.9 (11.9) | <0.001 |
Waist circumference (cm) | 94.3 (10.9) | 86.47 (14.3) | <0.001 |
Hip circumference (cm) | 103.3 (9.9) | 101.7 (11.5) | <0.001 |
Systolic blood pressure (mmHg) | 133.9 (18.4) | 120.98 (16.4) | <0.001 |
Diastolic blood pressure (mmHg) | 81.0 (12.3) | 74.9 (10.8) | <0.001 |
Total cholesterol (mg/dL) | 205.1 (40.1) | 195.9 (35.3) | <0.001 |
HDL-cholesterol (mg/dL) | 51.0 (11.3) | 60.3 (12.8) | <0.001 |
LDL-cholesterol (mg/dL) | 129.6 (51.3) | 118.6 (31.3) | <0.001 |
Triglycerides (mg/dL) | 127.9 (86.8) | 85.7 (52.0) | <0.001 |
Glucose (mg/dL) | 93.6 (21.0) | 88.6 (15.7) | <0.001 |
AST (U/L) | 27.9 (15.8) | 17.9 (10.8) | <0.001 |
ALT (U/L) | 25.6 (14.2) | 18.1 (7.7) | <0.001 |
GGT (U/L) | 30.9 (29.8) | 19.3 (14.4) | <0.001 |
% | % | p-value | |
<30 years | 4.8 | 7.0 | <0.001 |
30–39 years | 22.9 | 23.2 | |
40–49 years | 39.7 | 45.9 | |
50–69 years | 32.6 | 23.9 | |
Blue collar | 7.57 | 21.2 | <0.001 |
White collar | 92.4 | 78.8 | |
Non-smokers | 71.7 | 74.5 | <0.001 |
Smokers | 28.3 | 25.5 | |
No physical activity | 51.5 | 50.1 | <0.001 |
Physical activity | 48.5 | 49.9 | |
No Mediterranean diet | 53.9 | 52.3 | <0.001 |
Mediterranean diet | 46.1 | 47.7 | |
No stress | 86.1 | 87.6 | <0.001 |
Stress | 13.9 | 12.4 |
FLI | HSI | LAP | |||||
---|---|---|---|---|---|---|---|
Men | n | Mean (SD) | p-Value | Mean (SD) | p-Value | Mean (SD) | p-Value |
<30 years | 364 | 25.8 (21.3) | <0.001 | 33.9 (6.9) | <0.001 | 22.8 (20.9) | <0.001 |
30–39 years | 1728 | 34.8 (25.9) | 37.2 (7.1) | 31.5 (27.4) | |||
40–49 years | 3000 | 42.8 (25.4) | 38.1 (7.0) | 37.0 (30.8) | |||
50–69 years | 2464 | 44.7 (24.8) | 38.8 (7.2) | 37.8 (30.5) | |||
Blue collar | 572 | 35.8 (24.4) | <0.001 | 35.6 (7.0) | <0.001 | 31.5 (28.6) | <0.001 |
White collar | 6984 | 39.9 (26.6) | 38.9 (7.3) | 34.3 (30.1) | |||
Non-smokers | 5420 | 36.3 (23.9) | <0.001 | 36.6 (7.2) | <0.001 | 32.1 (29.1) | <0.001 |
Smokers | 2136 | 38.8 (25.1) | 38.8 (7.4) | 34.0 (28.8) | |||
No physical activity | 3888 | 30.8 (24.1) | <0.001 | 33.3 (7.7) | <0.001 | 31.3 (27.8) | <0.001 |
Physical activity | 3668 | 42.3 (23.8) | 41.9 (7.9) | 38.2 (25.6) | |||
No Mediterranean diet | 4072 | 31.5 (25.1) | <0.001 | 34.6 (7.9) | <0.001 | 32.6 (28.0) | <0.001 |
Mediterranean diet | 3484 | 40.3 (24.0) | 40.5 (8.0) | 37.5 (27.9) | |||
No stress | 6504 | 35.6 (24.0) | <0.001 | 34.8 (7.7) | <0.001 | 32.0 (27.9) | <0.001 |
Stress | 1052 | 39.9 (25.6) | 40.3 (8.0) | 38.9 (28.3) | |||
Women | n | Mean (SD) | p-value | Mean (SD) | p-value | Mean (SD) | p-value |
<30 years | 640 | 13.6 (18.8) | <0.001 | 33.2 (6.6) | <0.001 | 14.7 (14.9) | <0.001 |
30–39 years | 2124 | 17.5 (21.9) | 36.2 (7.2) | 17.2 (16.8) | |||
40–49 years | 4196 | 20.6 (22.9) | 37.2 (6.8) | 18.9 (17.3) | |||
50–69 years | 2192 | 26.3 (23.3) | 38.1 (6.9) | 20.3 (20.1) | |||
Blue collar | 1940 | 16.9 (20.3) | <0.001 | 31.3 (6.9) | <0.001 | 16.4 (15.3) | <0.001 |
White collar | 7212 | 22.8 (19.9) | 37.6 (7.3) | 19.2 (18.3) | |||
Non-smokers | 6820 | 17.9 (20.1) | <0.001 | 32.6 (7.0) | <0.001 | 16.9 (15.8) | <0.001 |
Smokers | 2332 | 21.5 (18.6) | 36.1 (7.3) | 18.6 (16.1) | |||
No physical activity | 4584 | 16.3 (19.6) | <0.001 | 30.7 (7.3) | <0.001 | 14.6 (14.8) | <0.001 |
Physical activity | 4568 | 23.6 (20.1) | 41.0 (8.1) | 20.2 (15.5) | |||
No Mediterranean diet | 4786 | 17.3 (20.0) | <0.001 | 32.2 (7.5) | <0.001 | 15.3 (15.0) | <0.001 |
Mediterranean diet | 4366 | 22.2 (21.1) | 40.2 (7.7) | 19.1 (14.8) | |||
No stress | 7926 | 17.6 (20.5) | <0.001 | 33.5 (7.6) | <0.001 | 16.3 (14.6) | <0.001 |
Stress | 1226 | 21.9 (21.0) | 39.5 (7.4) | 18.6 (14.4) |
FLI High | HSI High | LAP High | |||||
---|---|---|---|---|---|---|---|
Men | n | % | p-Value | % | p-Value | % | p-Value |
<30 years | 364 | 11.9 | <0.001 | 32.1 | <0.001 | 23.9 | <0.001 |
30–39 years | 1728 | 20.8 | 40.8 | 35.6 | |||
40–49 years | 3000 | 28.5 | 50.6 | 44.8 | |||
50–69 years | 2464 | 31.3 | 55.8 | 48.9 | |||
Blue collar | 572 | 21.5 | <0.001 | 48.5 | <0.001 | 38.3 | <0.001 |
White collar | 6984 | 25.8 | 52.3 | 41.6 | |||
Non-smokers | 5420 | 24.9 | <0.001 | 48.1 | <0.001 | 40.7 | <0.001 |
Smokers | 2136 | 25.6 | 49.9 | 41.5 | |||
No physical activity | 3888 | 20.6 | <0.001 | 38.1 | <0.001 | 33.5 | <0.001 |
Physical activity | 3668 | 29.9 | 51.9 | 46.3 | |||
No Mediterranean diet | 4072 | 21.3 | <0.001 | 40.1 | <0.001 | 35.3 | <0.001 |
Mediterranean diet | 3484 | 28.5 | 49.2 | 45.6 | |||
No stress | 6504 | 23.3 | <0.001 | 43.3 | <0.001 | 35.6 | <0.001 |
Stress | 1052 | 27.9 | 52.5 | 44.6 | |||
Women | n | % | p-value | % | p-value | % | p-value |
<30 years | 640 | 6.1 | <0.001 | 30.5 | <0.001 | 19.6 | <0.001 |
30–39 years | 2124 | 8.2 | 40.1 | 23.3 | |||
40–49 years | 4196 | 8.8 | 46.8 | 28.9 | |||
50–69 years | 2192 | 12.1 | 58.3 | 38.8 | |||
Blue collar | 1940 | 4.5 | <0.001 | 32.2 | <0.001 | 18.9 | <0.001 |
White collar | 7212 | 9.1 | 45.6 | 29.9 | |||
Non-smokers | 6820 | 8.3 | <0.001 | 43.5 | <0.001 | 26.9 | <0.001 |
Smokers | 2332 | 8.9 | 45.0 | 29.5 | |||
No physical activity | 4584 | 5.3 | <0.001 | 35.6 | <0.001 | 20.3 | <0.001 |
Physical activity | 4568 | 10.9 | 47.5 | 38.5 | |||
No Mediterranean diet | 4786 | 6.1 | <0.001 | 37.6 | <0.001 | 22.6 | <0.001 |
Mediterranean diet | 4366 | 9.5 | 46.1 | 35.9 | |||
No stress | 7926 | 6.6 | <0.001 | 38.6 | <0.001 | 26.6 | <0.001 |
Stress | 1226 | 10.8 | 49.9 | 38.4 |
FLI High | HSI High | LAP High | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Women | 1 | 1 | 1 | |||
Men | 2.89 (2.60–3.19) | <0.001 | 1.65 (1.55–1.76) | <0.001 | 1.91 (1.71–2.12) | <0.001 |
<30 years | 1 | 1 | 1 | |||
30–39 years | 1.23 (1.19–1.27) | <0.001 | 1.32 (1.24–1.40) | <0.001 | 1.33 (1.28–1.39) | <0.001 |
40–49 years | 1.74 (1.62–1.87) | <0.001 | 1.85 (1.60–2.11) | <0.001 | 1.77 (1.60–1.95) | <0.001 |
50–69 years | 2.60 (2.29–2.92) | <0.001 | 2.92 (2.59–3.26) | <0.001 | 2.48 (2.10–2.86) | <0.001 |
White collar | 1 | 1 | 1 | |||
Blue collar | 1.48 (1.33–1.64) | <0.001 | 1.39 (1.30.1.49) | <0.001 | 1.44 (1.30–1.58) | <0.001 |
Non-smokers | 1 | 1 | 1 | |||
Smokers | 1.35 (1.28–1.43) | <0.001 | 1.29 (1.23–1.35) | <0.001 | 1.30 (1.20–1.41) | <0.001 |
Physical activity | 1 | 1 | 1 | |||
No physical activity | 2.60 (2.33–2.88) | <0.001 | 2.12 (1.88–2.37) | <0.001 | 2.33 (2.01–2.65) | <0.001 |
Mediterranean diet | 1 | 1 | 1 | |||
No Mediterranean diet | 1.89 (1.70–2.09) | <0.001 | 1.76 (1.60–1.93) | <0.001 | 1.80 (1.59–2.02) | <0.001 |
No stress | 1 | 1 | 1 | |||
Stress | 1.69 (1.51–1.87) | <0.001 | 1.52 (1.41–1.63) | <0.001 | 1.92 (1.66–2.19) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-González, Á.A.; Martínez-Almoyna Rifá, E.; Oliveira, H.P.; Sánchez, C.M.; Tárraga López, P.J.; Ramírez-Manent, J.I. Association Between Sociodemographic Variables, Healthy Habits, and Stress with Risk Scales for Liver Disease Associated with Metabolic Dysfunction. Life 2025, 15, 116. https://doi.org/10.3390/life15010116
López-González ÁA, Martínez-Almoyna Rifá E, Oliveira HP, Sánchez CM, Tárraga López PJ, Ramírez-Manent JI. Association Between Sociodemographic Variables, Healthy Habits, and Stress with Risk Scales for Liver Disease Associated with Metabolic Dysfunction. Life. 2025; 15(1):116. https://doi.org/10.3390/life15010116
Chicago/Turabian StyleLópez-González, Ángel Arturo, Emilio Martínez-Almoyna Rifá, Hernán Paublini Oliveira, Cristina Martorell Sánchez, Pedro Juan Tárraga López, and José Ignacio Ramírez-Manent. 2025. "Association Between Sociodemographic Variables, Healthy Habits, and Stress with Risk Scales for Liver Disease Associated with Metabolic Dysfunction" Life 15, no. 1: 116. https://doi.org/10.3390/life15010116
APA StyleLópez-González, Á. A., Martínez-Almoyna Rifá, E., Oliveira, H. P., Sánchez, C. M., Tárraga López, P. J., & Ramírez-Manent, J. I. (2025). Association Between Sociodemographic Variables, Healthy Habits, and Stress with Risk Scales for Liver Disease Associated with Metabolic Dysfunction. Life, 15(1), 116. https://doi.org/10.3390/life15010116