In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO4)2 during Heating by High Temperature Raman and 27Al NMR Spectroscopies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Material Characterization
2.3. Computational Simulation
3. Results and Discussion
3.1. Crystallinity and Molecular Structure of Crystalline KAl(MoO4)2
3.2. Structural Transformation of KAl(MoO4)2 Samples During Heating and Melting
3.2.1. Structure Evolution of Crystalline KAl(MoO4)2 with Temperature
3.2.2. Structure of As-quenched KAl(MoO4)2 and Its Evolution with Temperature
3.3. Chemical Environment and Coordination of Al in KAl(MoO4)2 Samples Prepared Under Different Conditions
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hermanowicz, K.; Hanuza, J.; Maczka, M.; Deren, P.J.; Mugenski, E.; Drulis, H.; Sokolska, I.; Sokolnicki, J. Optical properties of chromium(III) in MIIn(MoO4)2 hosts, where MI = Li, Na, K, Rb, Cs. J. Phys. Condens. Matter 2001, 13, 5807–5816. [Google Scholar] [CrossRef]
- Hermanowicz, K.; Mączka, M.; Dereń, P.J.; Hanuza, J.; Stręk, W.; Drulis, H. Optical properties of chromium(III) in trigonal KAl(MoO4)2 and monoclinic NaAl(MoO4)2 hosts. J. Lumin. 2000, 92, 151–159. [Google Scholar] [CrossRef]
- Kaminskii, A.A.; Sarkisov, S.E.; Bohm, J.; Reiche, P.; Schultze, D.; Uecker, R. Growth, spectroscopic and laser properties of crystals in the K5Bi1−xNdx(MoO4)4 system. Phys. Status Solidi A 1977, 43, 71–79. [Google Scholar] [CrossRef]
- Nikolov, I.; Mateos, X.; Güell, F.; Massons, J.; Nikolov, V.; Peshev, P.; Dı́az, F. Optical properties of Cr3+:NaAl(WO4)2 crystals, a new candidate for broadband laser applications. Opt. Mater. 2004, 25, 53–58. [Google Scholar] [CrossRef]
- Hermanowicz, K. Temperature-dependent ESR studies on the Cr3+ ion-doped KAl(MoO4)2 crystal. J. Alloys Compd. 2002, 341, 179–182. [Google Scholar] [CrossRef]
- Hanuza, J.; Maczka, M.; Hermanowicz, K.; Andruszkiewicz, M.; Pietraszko, A.; Strek, W.; Dereń, P. The Structure and Spectroscopic Properties of Al2−xCrx(WO4)3 Crystals in Orthorhombic and Monoclinic Phases. J. Solid State Chem. 1993, 105, 49–69. [Google Scholar] [CrossRef]
- Andrusenko, I.; Krysiak, Y.; Mugnaioli, E.; Gorelik, T.E.; Nihtianova, D.; Kolb, U. Structural insights into M2O-Al2O3-WO3 (M = Na, K) system by electron diffraction tomography. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2015, 71, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Maczka, M.; Hermanowicz, K.; Tomaszewski, P.E.; Hanuza, J. Lattice dynamics and phase transitions in KAl(MoO4)2, RbAl(MoO4)2 and CsAl(MoO4)2 layered crystals. J. Phys. Condens. Matter 2004, 16, 3319–3328. [Google Scholar] [CrossRef]
- Zapart, W. The successive phase transitions in BbIn(MoO4)2 studied by EPR of admixture ions. Ferroelectrics 1990, 105, 291–296. [Google Scholar] [CrossRef]
- Voronko, Y.K.; Sobol, A.A.; Shukshin, V.E. Raman spectroscopy study of the phase transformations of LiB3O5 and Li2B4O7 during heating and melting. Inorg. Mater. 2013, 49, 923–929. [Google Scholar] [CrossRef]
- Voronko, Y.K.; Sobol, A.A.; Shukshin, V.E. Raman scattering study of molten alkali-metal molybdates ricn in MoO3. Inorg. Mater. 2014, 50, 844–849. [Google Scholar] [CrossRef]
- Voronko, Y.K.; Sobol, A.A.; Shukshin, V.E. Raman scattering study of molten alkali-metal molybdates and tungstates rich in basic oxides. Inorg. Mater. 2014, 50, 837–843. [Google Scholar] [CrossRef]
- Wang, M.; You, J.; Sobol, A.A.; Wang, J.; Wu, J.; Lv, X. Temperature-dependent Raman spectroscopic studies of microstructure present in dipotassium molybdate crystals and their melts. J. Raman Spectrosc. 2016, 47, 1259–1265. [Google Scholar] [CrossRef]
- Wang, J.; You, J.L.; Sobol, A.A.; Lu, L.M.; Wang, M.; Wu, J.; Lv, X.M.; Wan, S.M. In-situ high temperature Raman spectroscopic study on the structural evolution of Na2W2O7 from the crystalline to molten states. J. Raman Spectrosc. 2017, 48, 298–304. [Google Scholar] [CrossRef]
- Voron’ko, Y.K.; Sobol, A.A. Influence of cations on the vibrational spectra and structure of [WO4] complexes in molten tungstates. Inorg. Mater. 2005, 41, 420–428. [Google Scholar] [CrossRef]
- Voron’ko, Y.K.; Sobol, A.A.; Ushakov, S.N.; Tsymbal, L.I. Raman spectra and phase transformations of the MLn(WO4)2 (M = Na, K; Ln = La, Gd, Y, Yb) tungstates. Inorg. Mater. 2000, 36, 947–953. [Google Scholar] [CrossRef]
- Okuno, M.; Zotov, N.; Schmücker, M.; Schneider, H. Structure of SiO2-Al2O3 glasses: Combined X-ray diffraction, IR and Raman studies. J. Non-Cryst. Solids 2005, 351, 1032–1038. [Google Scholar] [CrossRef]
- You, J.L.; Jiang, G.C.; Hou, H.Y.; Chen, H.; Wu, Y.Q.; Xu, K.D. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicates. J. Raman Spectrosc. 2005, 36, 237–249. [Google Scholar] [CrossRef]
- Gao, J.X.; Wen, G.H.; Huang, T.; Sun, Q.H.; Tang, P.; Liu, Q. Raman Spectroscopic Study of the Structure of CaO-SiO2-Al2O3-Based Flux. Spectrosc. Spectr. Anal. 2016, 36, 3190–3196. [Google Scholar]
- Edén, M. Chapter Four—27Al NMR Studies of Aluminosilicate Glasses. In Annual Reports on NMR Spectroscopy; Graham, A.W., Ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 86, pp. 237–331. [Google Scholar]
- Poe, B.T.; McMillan, P.F.; Angell, C.A.; Sato, R.K. Al and Si coordination in SiO2-Al2O3 glasses and liquids: A study by NMR and IR spectroscopy and MD simulations. Chem. Geol. 1992, 96, 333–349. [Google Scholar] [CrossRef]
- Coutures, J.P.; Massiot, D.; Bessada, C.; Echegut, P.; Rifflet, J.C.; Taulelle, F. Etude par RNA 27Al d’almuminates liquides dans le domaine 1600–2100 °C. C. R. Acad. Sci. 1990, 310, 1041–1045. (In French) [Google Scholar]
- Calas, G.; Henderson, G.S.; Stebbins, J.F. Glasses and Melts: Linking Geochemistry and Materials Science. Elements 2006, 2, 265–268. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Zhang, D.; Wan, S.; Zhang, Q.; Sun, D.; Yin, S. Structural investigation of Li2O-B2O3-MoO3 glasses and high-temperature solutions: Toward understanding the mechanism of flux-induced growth of lithium triborate crystal. CrystEngComm 2013, 15, 356–364. [Google Scholar] [CrossRef]
- Kiczenski, T.J.; Du, L.-S.; Stebbins, J. The effect of fictive temperature on the structure of E-glass: A high resolution, multinuclear NMR study. J. Non-Cryst. Solids 2005, 351, 3571–3578. [Google Scholar] [CrossRef]
- Dubinsky, E.V.; Stebbins, J.F. Quench rate and temperature effects on framework ordering in aluminosilicate melts. Am. Mineral. 2006, 91, 753–761. [Google Scholar] [CrossRef]
- Jaworski, A.; Stevensson, B.; Pahari, B.; Okhotnikov, K.; Edén, M. Local structures and Al/Si ordering in lanthanum aluminosilicate glasses explored by advanced 27Al NMR experiments and molecular dynamics simulations. Phys. Chem. Chem. Phys. 2012, 14, 15866–15878. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Stebbins, J.F. Sc2(WO4)3 and Sc2(MoO4)3 and Their Solid Solutions: 45Sc, 17O, and 27Al MAS NMR Results at Ambient and High Temperature. Chem. Mater. 2009, 21, 309–315. [Google Scholar] [CrossRef]
- Nevmyvako, R.D.; Zhuravlev, N.A.; Denisova, T.A.; Kadyrova, Y.M.; Mikhalev, K.N.; Khaikina, E.G.; Solodovnikov, S.F. NMR in Li2M3Al(MoO4)4 triple molybdates (M = Rb, Cs). Bull. Russ. Acad. Sci. Phys. 2014, 78, 264–266. [Google Scholar] [CrossRef]
- Seleznev, V.N.; Medvedeva, N.I.; Denisova, T.A.; Nevmyvako, R.D.; Buzlukov, A.L.; Kadyrova, Y.M.; Solodovnikov, S.F. Electronic structure and quadrupole interactions in triple molybdates Li2M3Al(MoO4)4, M = Cs, Rb. J. Struct. Chem. 2016, 57, 275–280. [Google Scholar] [CrossRef]
- Morin, E.I.; Stebbins, J.F. Separating the effects of composition and fictive temperature on Al and B coordination in Ca, La, Y aluminosilicate, aluminoborosilicate and aluminoborate glasses. J. Non-Cryst. Solids 2016, 432, 384–392. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, L.; Eckert, H. Medium-Range Order in Sol-Gel Prepared Al2O3-SiO2 Glasses: New Results from Solid-State NMR. J. Phys. Chem. C 2014, 118, 4906–4917. [Google Scholar] [CrossRef]
- Eden, M. NMR studies of oxide-based glasses. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2012, 108, 177–221. [Google Scholar] [CrossRef]
- Wang, X.; Kang, S.; Fan, S.; Wang, S.; Yu, C.; Chen, D.; Hu, L. Influence of La/Al ratio on the structure and spectroscopy of Tm3+ doped Al2O3-La2O3-SiO2 glasses. J. Alloys Compd. 2017, 690, 583–588. [Google Scholar] [CrossRef]
- Turcu, F.R.V.; Samoson, A.; Maier, M.; Trandafir, D.L.; Simon, S. High Fraction of Penta-Coordinated Aluminum and Gallium in Lanthanum-Aluminum-Gallium Borates. J. Am. Ceram. Soc. 2016, 99, 2795–2800. [Google Scholar] [CrossRef]
- Sarou-Kanian, V.; Gleizes, A.N.; Florian, P.; Samélor, D.; Massiot, D.; Vahlas, C. Temperature-Dependent 4-, 5- and 6-Fold Coordination of Aluminum in MOCVD-Grown Amorphous Alumina Films: A Very High Field 27Al-NMR study. J. Phys. Chem. C 2013, 117, 21965–21971. [Google Scholar] [CrossRef]
- Le Losq, C.; Neuville, D.R.; Florian, P.; Henderson, G.S.; Massiot, D. The role of Al3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochim. Cosmochim. Acta 2014, 126, 495–517. [Google Scholar] [CrossRef]
- Gambuzzi, E.; Pedone, A.; Menziani, M.C.; Angeli, F.; Caurant, D.; Charpentier, T. Probing silicon and aluminium chemical environments in silicate and aluminosilicate glasses by solid state NMR spectroscopy and accurate first-principles calculations. Geochim. Cosmochim. Acta 2014, 125, 170–185. [Google Scholar] [CrossRef]
- Martel, L.; Allix, M.; Millot, F.; Sarou-Kanian, V.; Véron, E.; Ory, S.; Massiot, D.; Deschamps, M. Controlling the Size of Nanodomains in Calcium Aluminosilicate Glasses. J. Phys. Chem. C 2011, 115, 18935–18945. [Google Scholar] [CrossRef]
- Lee, S.K.; Lee, S.B.; Park, S.Y.; Yi, Y.S.; Ahn, C.W. Structure of Amorphous Aluminum Oxide. Phys. Rev. Lett. 2009, 103, 095501. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kim, H.-I.; Kim, E.J.; Mun, K.Y.; Ryu, S. Extent of Disorder in Magnesium Aluminosilicate Glasses: Insights from 27Al and 17O NMR. J. Phys. Chem. C 2016, 120, 737–749. [Google Scholar] [CrossRef]
- Osipov, A.A.; Eremyashev, V.E.; Mazur, A.S.; Tolstoi, P.M.; Osipova, L.M. Coordination state of aluminum and boron in barium aluminoborate glass. Glass Phys. Chem. 2016, 42, 230–237. [Google Scholar] [CrossRef]
- El Hayek, R.; Ferey, F.; Florian, P.; Pisch, A.; Neuville, D.R. Structure and properties of lime alumino-borate glasses. Chem. Geol. 2016, in press. [Google Scholar] [CrossRef]
- Du, L.S.; Stebbins, J.F. Network connectivity in aluminoborosilicate glasses: A high-resolution 11B, 27Al and 17O NMR study. J. Non-Cryst. Solids 2005, 351, 3508–3520. [Google Scholar] [CrossRef]
- LaComb, M.; Rice, D.; Stebbins, J.F. Network oxygen sites in calcium aluminoborosilicate glasses: Results from 17O{27Al} and 17O{11B} double resonance NMR. J. Non-Cryst. Solids 2016, 447, 248–254. [Google Scholar] [CrossRef]
- Morin, E.I.; Wu, J.; Stebbins, J.F. Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: The roles of fictive temperature and boron content. Appl. Phys. A 2014, 116, 479–490. [Google Scholar] [CrossRef]
- El-Damrawi, G.; Hassan, A.M.; Ramadan, R.; El-Jadal, S. Nuclear Magnetic Resonance and FTIR Structural Studies on Borosilicate Glasses Containing Iron Oxide. New J. Glass Ceram. 2016, 6, 47–56. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, S.K. High-resolution solid-state NMR study of the effect of composition on network connectivity and structural disorder in multi-component glasses in the diopside and jadeite join: Implications for structure of andesitic melts. Geochim. Cosmochim. Acta 2014, 147, 26–42. [Google Scholar] [CrossRef]
- Lemesle, T.; Méar, F.O.; Campayo, L.; Pinet, O.; Revel, B.; Montagne, L. Immobilization of radioactive iodine in silver aluminophosphate glasses. J. Hazard. Mater. 2014, 264, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Brow, R.K.; Kirkpatrick, R.J.; Turner, G.L. Nature of Alumina in Phosphate Glass: II, Structure of Sodium Alurninophosphate Glass. J. Am. Ceram. Soc. 1993, 76, 919–928. [Google Scholar] [CrossRef]
- Tricot, G.; Doumert, B.; Revel, B.; Bria, M.; Trebosc, J.; Vezin, H. Non-homogeneous distribution of Al3+ in doped phosphate glasses revealed by 27Al/31P solid state NMR. Solid State Nucl. Magn. Reson. 2017, in press. [Google Scholar] [CrossRef] [PubMed]
- Brow, R.K.; Kirkpatrick, R.J.; Turner, G.L. Local Structure of xAl2O3·(1−x)NaPO3 Glasses: An NMR and XPS Study. J. Am. Ceram. Soc. 1990, 73, 2293–2300. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Lu, L. Influence of crystallization temperature on ionic conductivity of lithium aluminum germanium phosphate glass-ceramic. J. Power Sources 2015, 290, 123–129. [Google Scholar] [CrossRef]
- Liu, Z.; Venkatachalam, S.; Kirchhain, H.; van Wüllen, L. Study of the glass-to-crystal transformation of the NASICON-type solid electrolyte Li1+xAlxGe2−x(PO4)3. Solid State Ion. 2016, 295, 32–40. [Google Scholar] [CrossRef]
- Benoît, G.; Véronique, J.; Arnaud, A.; Alain, G. Luminescence properties of tungstates and molybdates phosphors: Lllustration on ALn(MO4)2 compounds (A = alikaline cation, Ln = lanthanides, M = W, Mo). Solid State Sci. 2011, 13, 460–467. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Chimitova, O.D.; Adichtchev, S.V.; Bazarov, J.G.; Gavrilova, T.A.; Molokeev, M.S.; Surovtsev, N.V.; Bazarova, Z.G. Synthesis, structural and vibrational properties of microcrystalline β-RbSm(MoO4)2. Mater. Lett. 2013, 106, 26–29. [Google Scholar] [CrossRef]
- Chimitova, O.D.; Atuchin, V.V.; Bazarov, B.G.; Molokeev, M.S.; Bazarova, Z.G. The formation and structural parameters of new double molybdates RbLn(MoO4)2 (Ln = Pr, Nd, Sm, Eu). Proc. SPIE 8711 2013. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Zi, W.; Gan, S.; Ji, G.; Zou, H.; Xu, X. Synthesis and luminescent properties of high brightness MRE(MoO4)2:Eu3+ (M = Li, Na, K; RE = Gd, Y, Lu) red phosphors for white LEDs. Solid State Sci. 2014, 29, 58–65. [Google Scholar] [CrossRef]
- Tang, X.L.; Wan, S.M.; Zhang, B.; Lv, X.S.; Sun, Y.L.; You, J.L. First-principles investigation of the influence of M (Mg, Ca and Ba) cations on Ba2M(B3O6)2 crystal Raman spectra. Mater. Chem. Phys. 2015, 149–150, 270–274. [Google Scholar] [CrossRef]
- Milman, V.; Refson, K.; Clark, S.J.; Pickard, C.J.; Yates, J.R.; Gao, S.-P.; Hasnip, P.J.; Probert, M.I.J.; Perlov, A.; Segall, M.D. Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. J. Mol. Struct. THEOCHEM 2010, 954, 22–35. [Google Scholar] [CrossRef]
- Segall, M.D.; Philip, J.D.L.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892–7895. [Google Scholar] [CrossRef]
- Han, O.H.; Lin, C.Y.; Haller, G.L. Hydration effects of Al2(MoO4)3 and AlPO4 phases in hydrotreating catalysts studied by solid state nuclear magnetic resonance spectroscopy. Catal. Lett. 1992, 14, 1–9. [Google Scholar] [CrossRef]
- Kunath-Fandrei, G.; Bastow, T.J.; Jaeger, C.; Smith, M.E. Quadrupole and chemical shift interactions of 27Al in aluminium molybdate from satellite transition magic angle spinning NMR. Chem. Phys. Lett. 1995, 234, 431–436. [Google Scholar] [CrossRef]
- Haddix, G.W.; Narayana, M.; Tang, S.C.; Wu, Y. Double-rotation NMR, magic angle spinning NMR, and X-ray diffraction study of the structure of aluminum molybdate. J. Phys. Chem. 1993, 97, 4624–4627. [Google Scholar] [CrossRef]
- Seifert, F.A.; Mysen, B.O.; Virgo, D. Structural similarity of glasses and melts relevant to petrological processes. Geochim. Cosmochim. Acta 1981, 45, 1879–1884. [Google Scholar] [CrossRef]
- Denisov, Y.V.; Rylev, A.P.; Mavrin, B.N.; Kirilenko, I.A. Opalescence during low-temperature structural transitions in inorganic glasses. JETP Let. 1992, 55, 115–119. [Google Scholar]
- Pan, F.; Yu, X.; Mo, X.; You, J.; Wang, C.; Chen, H.; Jiang, G. Raman Active Vibrations of Aluminosilicates. J. Chin. Ceram. Soc. 2007, 35, 1110–1114. [Google Scholar]
- Liu, Q.; You, J.L.; Wang, Y.Y.; Wang, C.Y.; Wang, J.; Liu, X.W. Study on Microstructure of Jadeite Melt and Its Glass. Spectrosc. Spect. Anal. 2013, 33, 2705–2710. [Google Scholar]
- Xue, X.; Stebbins, J.F. 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses. Phys. Chem. Miner. 1993, 20, 297–307. [Google Scholar] [CrossRef]
- Phillips, B.L.; Kirkpatrick, R.J.; Hovis, G.L. 27Al, 29Si, and 23Na MAS NMR study of an Al, Si ordered alkali feldspar solid solution series. Phys. Chem. Miner. 1988, 16, 262–275. [Google Scholar] [CrossRef]
Compound Family | δi (ppm) | References | ||
---|---|---|---|---|
AlVI | AlV | AlIV | ||
(Al0.1Sc0.9)2(WO4)3 | −9.5, −6.2, 14.6 | [28] | ||
Li2(Rb/Cs)3Al(MoO4)4 | 60.9~62.6 | [29,30] | ||
(La/Y)3+-Al2O3-B2O3-SiO2 glass | 0 | 35 | 60 | [31] |
Tm3+: Al2O3-La2O3-SiO2 glass | 0 | 30 | 50 | [32,33,34] |
amorphous La2O3-Al2O3-Ga2O3-5B2O3 | −1.4~12.9 | 31.8~35.6 | 54.5~82.5 | [35] |
amorphous Al2O3 | 5~7 | 36~41 | 55 | [36] |
Al2O3-SiO2 glass | 3~6 | 32~37 | 59~68 | [32] |
Na2O-Al2O3-SiO2 glass | 19.1 | 30 | 60.4 | [37] |
CaO-Al2O3-SiO2 glass | 14.7 | 20~25.1 | 57.3~63.6 | [38,39] |
MgO-Al2O3-SiO2 glass | 0 | ~30 | ~50 | [40,41] |
(Ba/Ca)O-Al2O3-B2O3 glass | 8~9 | 30, 39~50 | 50~60, 72~81 | [42,43] |
CaO-Al2O3-B2O3-SiO2 glass | 0 | 30~35 | 50~60 | [44,45,46] |
Na2O-Al2O3-SiO2-Fe2O3-B2O3 glass | 59.6 | [47] | ||
CaO-MgO-Na2O-Al2O3-SiO2 glass | ~(−22 ± 1.5) | ~(53 ± 1) | [48] | |
AgPO3-5Al2O3 glass | −13 | 41 | [49] | |
Na2O-Al2O3-P2O5 glass | −10~−15 | 14~15 | 40~45 | [50,51,52] |
Li1+xAlxGe2-x(PO4)3 glass | −14 | 10 | 40 | [53,54] |
Atoms | Fractional Coordinates of Atoms | ||
---|---|---|---|
u | v | w | |
O1 | 0.333333 | 0.666667 | 0.491085 |
O2 | 0.666667 | 0.333333 | −0.491085 |
O3 | 0.148782 | 0.297564 | 0.152414 |
O4 | −0.297564 | −0.148782 | 0.152414 |
O5 | 0.148782 | −0.148782 | 0.152414 |
O6 | 0.297564 | 0.148782 | −0.152414 |
O7 | −0.148782 | −0.297564 | −0.152414 |
O8 | −0.148782 | 0.148782 | −0.152414 |
Al | 0.000000 | 0.000000 | 0.000000 |
K | 0.000000 | 0.000000 | 0.500000 |
Mo1 | 0.333333 | 0.666667 | 0.232928 |
Mo2 | 0.666667 | 0.333333 | −0.232928 |
Experimental | Calculated | Symmetry | Assignment | Reference [8] | |
---|---|---|---|---|---|
Calculated | Assignment | ||||
1003 | 1002 | A1g | vs(Al–O–Mo) | 982 | vs(MoO42−) 1 |
931 | 909 | A1g | v(Mo–O) | 927 | vas(MoO42−) |
801 | 857 | Eg | vas(Al–O–Mo) | 802 | vas(MoO42−) |
397 | 358 | A1g | δ(Al–O–Mo) | 595 | δas(MoO42−) 1 |
375 | 330 | Eg | 497 | δas(MoO42−) | |
350 | 310 | Eg | 336 | δs(MoO42−) | |
175 | 166 | Eg | δ(Mo–O) | 176 | Translations of (MoO42−) |
155 | A1g | δ(Al–O–Mo) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; You, J.; Sobol, A.; Lu, L.; Wang, J.; Xie, Y. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO4)2 during Heating by High Temperature Raman and 27Al NMR Spectroscopies. Materials 2017, 10, 310. https://doi.org/10.3390/ma10030310
Wang M, You J, Sobol A, Lu L, Wang J, Xie Y. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO4)2 during Heating by High Temperature Raman and 27Al NMR Spectroscopies. Materials. 2017; 10(3):310. https://doi.org/10.3390/ma10030310
Chicago/Turabian StyleWang, Min, Jinglin You, Alexander Sobol, Liming Lu, Jian Wang, and Yingfang Xie. 2017. "In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO4)2 during Heating by High Temperature Raman and 27Al NMR Spectroscopies" Materials 10, no. 3: 310. https://doi.org/10.3390/ma10030310