Rapid Processing of Wafer-Scale Anti-Reflecting 3D Hierarchical Structures on Silicon and Its Templation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Fabrication of Hierarchically Structured Si
2.2.2. Patterning PDMS
2.2.3. Physical and Optical Characterization
3. Results
3.1. Structural Analysis of Ag Nanoparticle Deposited Si Wafer
3.2. Structural Analysis and Optical Performance of Hierarchically Textured Si Substrate
3.3. Structural and Optical Analysis of the Patterned PDMS Layer Using Hierarchical Si Template
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cao, Y.; Liu, A.; Li, H.; Liu, Y.; Qiao, F.; Hu, Z.; Sang, Y. Fabrication of silicon wafer with ultra low reflectance by chemical etching method. Appl. Surf. Sci. 2011, 257, 7411–7414. [Google Scholar] [CrossRef]
- Xiu, Y.; Zhu, L.; Hess, D.W.; Wong, C. Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett. 2007, 7, 3388–3393. [Google Scholar] [CrossRef]
- Qi, D.; Lu, N.; Xu, H.; Yang, B.; Huang, C.; Xu, M.; Gao, L.; Wang, Z.; Chi, L. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces. Langmuir 2009, 25, 7769–7772. [Google Scholar] [CrossRef]
- Kuan, W.-F.; Chen, L.-J. The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures. Nanotechnology 2008, 20, 035605. [Google Scholar] [CrossRef]
- Xiu, Y.; Zhang, S.; Yelundur, V.; Rohatgi, A.; Hess, D.W.; Wong, C. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching. Langmuir 2008, 24, 10421–10426. [Google Scholar] [CrossRef]
- Tellier, C.; Brahim-Bounab, A. Anisotropic etching of silicon crystals in koh solution. J. Mater. Sci. 1994, 29, 6354–6378. [Google Scholar] [CrossRef]
- Barillaro, G.; Nannini, A.; Piotto, M. Electrochemical etching in hf solution for silicon micromachining. Sens. Actuators A Phys. 2002, 102, 195–201. [Google Scholar] [CrossRef]
- Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935. [Google Scholar] [CrossRef]
- Marty, F.; Rousseau, L.; Saadany, B.; Mercier, B.; Français, O.; Mita, Y.; Bourouina, T. Advanced etching of silicon based on deep reactive ion etching for silicon high aspect ratio microstructures and three-dimensional micro-and nanostructures. Microelectron. J. 2005, 36, 673–677. [Google Scholar] [CrossRef]
- Dutta, S.; Imran, M.; Kumar, P.; Pal, R.; Datta, P.; Chatterjee, R. Comparison of etch characteristics of koh, tmah and edp for bulk micromachining of silicon (110). Microsyst. Technol. 2011, 17, 1621. [Google Scholar] [CrossRef]
- Rao, A.N.; Swarnalatha, V.; Pal, P. Etching characteristics of si in 20 wt% koh with addition of hydroxylamine for the fabrication of bulk micromachined mems. Micro Nano Syst. Lett. 2017, 5, 23. [Google Scholar] [CrossRef]
- Seidel, H.; Csepregi, L.; Heuberger, A.; Baumgärtel, H. Anisotropic etching of crystalline silicon in alkaline solutions i. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 1990, 137, 3612–3626. [Google Scholar] [CrossRef]
- Gielis, S.; Van der Veen, M.; De Gendt, S.; Vereecken, P.M. Silver-assisted etching of silicon nanowires. ECS Trans. 2011, 33, 49–58. [Google Scholar]
- Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Ed. 2005, 44, 2737–2742. [Google Scholar] [CrossRef]
- Peng, K.Q.; Hu, J.J.; Yan, Y.J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S.T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394. [Google Scholar] [CrossRef]
- Yeo, C.I.; Song, Y.M.; Jang, S.J.; Lee, Y.T. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating ag ink. Opt. Express 2011, 19, A1109–A1116. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, D.Z.; Du, C.-H. Crystalline silicon solar cells with micro/nano texture. App. Surf. Sci. 2013, 266, 1–4. [Google Scholar] [CrossRef]
- Dudem, B.; Leem, J.W.; Yu, J.S. A multifunctional hierarchical nano/micro-structured silicon surface with omnidirectional antireflection and superhydrophilicity via an anodic aluminum oxide etch mask. RSC Adv. 2016, 6, 3764–3773. [Google Scholar] [CrossRef]
- Liu, Y.; Das, A.; Lin, Z.; Cooper, I.B.; Rohatgi, A.; Wong, C. Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells. Nano Energy 2014, 3, 127–133. [Google Scholar] [CrossRef]
- Gao, K.; Shen, H.; Liu, Y.; Tang, Q.; Jiang, Y.; Yang, W.; Li, Y.; Huang, C. Fabrication of black silicon by ni assisted chemical etching. Mater. Res. Express 2018, 5, 015020. [Google Scholar] [CrossRef]
- Lu, Y.-T.; Barron, A.R. Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. J. Mater. Chem. A 2014, 2, 12043–12052. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Yang, L.; Chen, W.; Du, X.; Kuznetsov, A. Micro-structured inverted pyramid texturization of si inspired by self-assembled cu nanoparticles. Nanoscale 2017, 9, 907–914. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Yang, L.; Wu, J.; Chen, Q.; Zhao, Y.; Wang, Y.; Du, X. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline si. Sci. Rep. 2018, 8, 3408. [Google Scholar] [CrossRef] [PubMed]
- Mavrokefalos, A.; Han, S.E.; Yerci, S.; Branham, M.S.; Chen, G. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 2012, 12, 2792–2796. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Chen, J.; Wu, C.; Liu, Z. Fabrication of inverted-pyramid silicon nanopore arrays with three-step wet etching. ECS J. Solid State Sci. Technol. 2013, 2, P419–P422. [Google Scholar] [CrossRef]
- Fan, Y.; Han, P.; Liang, P.; Xing, Y.; Ye, Z.; Hu, S. Differences in etching characteristics of tmah and koh on preparing inverted pyramids for silicon solar cells. Appl. Surf. Sci. 2013, 264, 761–766. [Google Scholar] [CrossRef]
- You, J.S.; Kim, D.; Huh, J.Y.; Park, H.J.; Pak, J.J.; Kang, C.S. Experiments on anisotropic etching of si in tmah. Sol. Energy Mater. Sol. Cells 2001, 66, 37–44. [Google Scholar] [CrossRef]
- Pranaitis, M.; Jaraminė, L.; Čyras, V.; Selskis, A.; Galdikas, A. Antireflective structures on silicon surface using catalytic nickel nanoparticles. J. Appl. Phys. 2013, 114, 163523. [Google Scholar] [CrossRef]
- Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in hf–H2O2. Electrochim. Acta 2008, 53, 5509–5516. [Google Scholar] [CrossRef]
- Thouti, E.; Chander, N.; Dutta, V.; Komarala, V.K. Optical properties of ag nanoparticle layers deposited on silicon substrates. J. Opt. 2013, 15, 035005. [Google Scholar] [CrossRef]
- Boutry, G.-A. Augustin fresnel: His time, life and work, 1788–1827. Sci. Prog. 1948, 36, 587–604. [Google Scholar]
- Shao, W.; Lu, P.; Li, W.; Xu, J.; Xu, L.; Chen, K. Simulation and experimental study on anti-reflection characteristics of nano-patterned si structures for si quantum dot-based light-emitting devices. Nanoscale Res. Lett. 2016, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Kempe, M. Overview of scientific issues involved in selection of polymers for pv applications. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011. [Google Scholar]
- Thompson, J.; Putzer, M.; Gonsior, N.; Miller, C. Silicone Encapsulation Enhances Durability, Efficiency, and Enables New pv Cell and Modules Technologies; Momentive: New York, NY, USA, 2014. [Google Scholar]
- American Chemistry Council. Introduction to Polyurethanes; American Chemistry Council: Washington, DC, USA, 2016; p. 1. [Google Scholar]
- Dudem, B.; Heo, J.H.; Leem, J.W.; Yu, J.S.; Im, S.H. Ch 3 nh 3 pbi 3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 2016, 4, 7573–7579. [Google Scholar] [CrossRef]
- Leem, J.W.; Kim, S.; Lee, S.H.; Rogers, J.A.; Kim, E.; Yu, J.S. Efficiency enhancement of organic solar cells using hydrophobic antireflective inverted moth-eye nanopatterned pdms films. Adv. Energy Mater. 2014, 4, 1301315. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, Y.-B.; Wu, S.-Z.; Liu, Y.-F.; Zhang, H.; Zhao, S.; Feng, J.; Chen, Q.-D.; Ma, D.-G.; Sun, H.-B. Simultaneous efficiency enhancement and self-cleaning effect of white organic light-emitting devices by flexible antireflective films. Opt. Lett. 2011, 36, 2635–2637. [Google Scholar] [CrossRef]
- Senn, T.; Kutz, O.; Weniger, C.; Li, J.; Schoengen, M.; Löchel, H.; Wolf, J.; Göttert, P.; Löchel, B. Integration of moth-eye structures into a poly (dimethylsiloxane) stamp for the replication of functionalized microlenses using uv-nanoimprint lithography. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2011, 29, 061601. [Google Scholar] [CrossRef]
- Galeotti, F.; Trespidi, F.; Timò, G.; Pasini, M. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns. ACS Appl. Mater. Interfaces 2014, 6, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, A.; Galeotti, F.; Moreau, J.; Giovanella, U.; Porzio, W.; Scavia, G.; Bertini, F. Unsoluble ordered polymeric pattern by breath figure approach. J. Mater. Chem. 2010, 20, 1483–1488. [Google Scholar] [CrossRef]
- Bindra, H.S.; Kumar, A.K.; Nayak, R. Optical properties of a biomimetically prepared hierarchical structured polydimethyl siloxane template for potential application in anti-reflection and photovoltaic encapsulation. Mater. Res. Express 2017, 4, 055501. [Google Scholar] [CrossRef]
- Rajput, D.; Bindra, H.S.; Saha, A.; Nayak, R. A simple low-cost approach of fabricating nanostructured polydimethylsiloxane layer for application in solar cell encapsulation. Adv. Sci. Eng. Med. 2016, 8, 533–537. [Google Scholar] [CrossRef]
- Kang, S.M.; Ahn, N.; Lee, J.-W.; Choi, M.; Park, N.-G. Water-repellent perovskite solar cell. J. Mater. Chem. A 2014, 2, 20017–20021. [Google Scholar] [CrossRef]
- Ghymn, Y.H.; Jung, K.; Shin, M.; Ko, H. A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices. Nanoscale 2015, 7, 18642–18650. [Google Scholar] [CrossRef] [PubMed]
Etching Technique | Appearance | Total Etch Time (s) | Bath Temperature (°C) | Average Reflectance (%) | Wavelength Range (nm) | Reference |
---|---|---|---|---|---|---|
Anisotropic wet chemical etching + Ag np assisted etching | Hierarchical structure (upright micro-pyramids with nanogrooves) | 1 h 30 min | RT | 4 | 450–2500 | [3] |
Ag np assisted etching | 1D nano-structures | 50 min | 50°C | 1.46 | 300–600 | [14] |
Ag ink assisted etching | Vertically standing disordered nano-structures | 13 min | Ag sintering at 170 °C Etching at RT | 1.6 | 300–1100 | [16] |
Wet chemical etching + Ag np assisted etching | Hierarchical structures (upright micro-pyramids with nano-grooves) | 53 min | RT | 3 | 300–900 | [17] |
Ni np assisted etching | Inverted micro-pyramid | 1 h | RT | 2.5 | 400–900 | [20] |
Cu np assisted etching | Inverted micro-pyramid | 8 h | RT | 1 | 300–1000 | [21] |
Cu np assisted etching | Inverted micro-pyramid | 15 min | 50°C | 5 | 300–1000 | [22,23] |
Wet chemical etching + Ni np assisted etching | Hierarchical structure (upright micro-pyramids with nano-grooves) | 73 min | RT | 5 | 300–1100 | [28] |
Ag np assisted etching | Hierarchical structures | 65 s | RT | 2.7 | 300–1400 | [Current work] |
Surface Morphology of Patterned PDMS | Master Template Used and Fabrication Technique | Average Reflectance (%) | Average Transmittance (%) | Reference |
---|---|---|---|---|
Micro pyramidal patterned PDMS | Wet anisotropic etching using KOH on Si | 4.7% (300–800 nm) | 95% (300–800 nm) | [36] |
Nanoscaled inverted moth-eye textured PDMS | Photolithography followed by RIE on Si | 5.5% (350–800 nm) | 94.2% (350–800 nm) | [37] |
Nanopillar arrayed PDMS membrane | Pre-textured nanohole SU-8 template | - | 94.5% (400–800 nm) | [38] |
Nanoscaled moth eye featured PDMS stamp | UV-nanoimprint lithography followed by thermoforming process on polystyrene foil | - | 90% (350–850 nm) | [39] |
Randomly arranged nanoscale moth Eye patterned PDMS | Self-assembly of PFOTHP on glass substrate | - | 94% (400–900 nm) | [40] |
Hierarchical structure PDMS membrane | Biomimicking using rose petal | 3% (400–1400 nm) | 96% (400–1400 nm) | [42] |
Hierarchical micro pyramid structured PDMS | Mechanical cutting to pattern inverted micro pyramid on PET film | 5.2% (350–800 nm) | 80% (350–800 nm) | [44] |
Quantum dot filled nanotextured moth-eye patterned PDMS | Polystyrene beads assisted O2 plasma etching on Si | 8–10% (300–800 nm) | - | [45] |
Micro-structured PDMS membrane | Metal assisted wet chemical etching | 2.8% (350–1400 nm) | 90% (350–1400 nm) | Present work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bindra, H.S.; R., J.; Kumeria, T.; Nayak, R. Rapid Processing of Wafer-Scale Anti-Reflecting 3D Hierarchical Structures on Silicon and Its Templation. Materials 2018, 11, 2586. https://doi.org/10.3390/ma11122586
Bindra HS, R. J, Kumeria T, Nayak R. Rapid Processing of Wafer-Scale Anti-Reflecting 3D Hierarchical Structures on Silicon and Its Templation. Materials. 2018; 11(12):2586. https://doi.org/10.3390/ma11122586
Chicago/Turabian StyleBindra, Harsimran Singh, Jaikrishna R., Tushar Kumeria, and Ranu Nayak. 2018. "Rapid Processing of Wafer-Scale Anti-Reflecting 3D Hierarchical Structures on Silicon and Its Templation" Materials 11, no. 12: 2586. https://doi.org/10.3390/ma11122586
APA StyleBindra, H. S., R., J., Kumeria, T., & Nayak, R. (2018). Rapid Processing of Wafer-Scale Anti-Reflecting 3D Hierarchical Structures on Silicon and Its Templation. Materials, 11(12), 2586. https://doi.org/10.3390/ma11122586