Materials for the Spine: Anatomy, Problems, and Solutions
Abstract
:1. Human Spinal Anatomy
1.1. Cervical Spine
1.2. Thoracic Spine
1.3. Lumbar Spine
1.4. Sacrum
1.5. Coccyx
2. Intervertebral Discs
2.1. Classification of Intervertebral Discs
2.1.1. Cervical Discs
2.1.2. Thoracic Discs
2.1.3. Lumbar Discs
2.2. Intervertebral Disc Physiology
2.2.1. Annulus Fibrosus
(1) Composition
(2) Structure
(3) Mechanical Properties
2.2.2. Nucleus Pulposus
(1) Composition
(2) Structure
(3) Mechanical Properties
2.2.3. Vertebral Endplates
(1) Composition
(2) Structure
(3) Mechanical Properties
2.2.4. Blood Vessels and Nerve Supply
3. Spinal Degeneration and Lower Back Pain
3.1. Degenerative Disc Disease
3.2. Osteoarthritis
3.3. Bulging Disc
3.4. Disc Herniation (Prolapse/Rupture)
4. Current Treatment Techniques
4.1. Nonsurgical Treatments
4.1.1. Physical Therapy
4.1.2. Epidural Steroid Injections
4.1.3. Medications
4.2. Surgical Treatments
4.2.1. Radiofrequency Ablation
4.2.2. Spinal Fusion Surgery
4.2.3. Total Disc Replacement
4.2.4. Repair of Annulus Fibrosus
5. Tissue Engineering and Regeneration Strategies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vertebral Column. In Encyclopaedia Britannica; Britannica, T.E.o.E. (Ed.) Encyclopaedia Britannica, Inc.: Chicago, IL, USA, 2014. [Google Scholar]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Agur, A.M.R.; Dalley, A.F. Grant’s Atlas of Anatomy, 12th ed.; Lipincott Williams & Wilkins: Pennsylvania, PA, USA, 2009; p. 841. [Google Scholar]
- Vertebral Column. Available online: https://www.kenhub.com/en/start/c/vertebral-column (accessed on 14 April 2016).
- Bogduk, N.; Mercer, S. Biomechanics of the cervical spine. I: Normal kinematics. Clin. Biomech. 2000, 15, 633–648. [Google Scholar] [CrossRef]
- Swartz, E.E.; Floyd, R.T.; Cendoma, M. Cervical spine functional anatomy and the biomechanics of injury due to compressive loading. J. Athl. Train. 2005, 40, 155–161. [Google Scholar] [PubMed]
- Panjabi, M.M.; Crisco, J.J.; Vasavada, A.; Oda, T.; Cholewicki, J.; Nibu, K.; Shin, E. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine 2001, 26, 2692–2700. [Google Scholar] [CrossRef]
- Caridi, J.M.; Pumberger, M.; Hughes, A.P. Cervical radiculopathy: A review. HSS J. 2011, 7, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.T.; Johnson, J.I.; Karim, A.S. Cervical disc herniation presenting with neck pain and contralateral symptoms: A case report. J. Med. Case Rep. 2012, 6, 166. [Google Scholar] [CrossRef] [PubMed]
- Edmondston, S.J.; Singer, K.P. Thoracic spine: Anatomical and biomechanical considerations for manual therapy. Man. Ther. 1997, 2, 132–143. [Google Scholar] [CrossRef]
- Son, E.S.; Lee, S.H.; Park, S.Y.; Kim, K.T.; Kang, C.H.; Cho, S.W. Surgical treatment of t1-2 disc herniation with t1 radiculopathy: A case report with review of the literature. Asian Spine J. 2012, 6, 199–202. [Google Scholar] [CrossRef]
- Goh, S.; Tan, C.; Price, R.I.; Edmondston, S.J.; Song, S.; Davis, S.; Singer, K.P. Influence of age and gender on thoracic vertebral body shape and disc degeneration: An MR investigation of 169 cases. J. Anat. 2000, 197 Pt 4, 647–657. [Google Scholar] [CrossRef]
- Cervero, F.; Tattersall, J.E. Somatic and visceral sensory integration in the thoracic spinal cord. Prog. Brain Res. 1986, 67, 189–205. [Google Scholar]
- Boszczyk, B.M.; Boszczyk, A.A.; Putz, R. Comparative and functional anatomy of the mammalian lumbar spine. Anat. Rec. 2001, 264, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Troup, J.D.; Hood, C.A.; Chapman, A.E. Measurements of the sagittal mobility of the lumbar spine and hips. Ann. Phys. Med. 1968, 9, 308–321. [Google Scholar] [CrossRef]
- Haughton, V.M.; Rogers, B.; Meyerand, M.E.; Resnick, D.K. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 2002, 23, 1110–1116. [Google Scholar]
- Granhed, H.; Jonson, R.; Hansson, T. The loads on the lumbar spine during extreme weight lifting. Spine 1987, 12, 146–149. [Google Scholar] [CrossRef]
- Tan, S.H.; Teo, E.C.; Chua, H.C. Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur. Spine J. 2004, 13, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Crawford, R.P.; Cann, C.E.; Keaveny, T.M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 2003, 33, 744–750. [Google Scholar] [CrossRef]
- Shah, J.S.; Hampson, W.G.; Jayson, M.I. The distribution of surface strain in the cadaveric lumbar spine. J. Bone Jt. Surg. 1978, 60, 246–251. [Google Scholar] [CrossRef]
- Bogduk, N. The innervation of the lumbar spine. Spine 1983, 8, 286–293. [Google Scholar] [CrossRef]
- Luoma, K.; Riihimaki, H.; Luukkonen, R.; Raininko, R.; Viikari-Juntura, E.; Lamminen, A. Low back pain in relation to lumbar disc degeneration. Spine 2000, 25, 487–492. [Google Scholar] [CrossRef]
- Nygaard, O.P.; Mellgren, S.I. The function of sensory nerve fibers in lumbar radiculopathy—Use of quantitative sensory testing in the exploration of different populations of nerve fibers and dermatomes. Spine 1998, 23, 348–352. [Google Scholar] [CrossRef]
- Takahashi, I.; Kikuchi, S.; Sato, K.; Sato, N. Mechanical load of the lumbar spine during forward bending motion of the trunk—A biomechanical study. Spine 2006, 31, 18–23. [Google Scholar] [CrossRef]
- Bogduk, N. Clinical and Radiological Anatomy of the Lumbar Spine, 5th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2012. [Google Scholar]
- Koes, B.W.; van Tulder, M.W.; Peul, W.C. Diagnosis and treatment of sciatica. BMJ 2007, 334, 1313–1317. [Google Scholar] [CrossRef] [Green Version]
- Lirette, L.S.; Chaiban, G.; Tolba, R.; Eissa, H. Coccydynia: An overview of the anatomy, etiology, and treatment of coccyx pain. Ochsner J. 2014, 14, 84–87. [Google Scholar]
- Humzah, M.D.; Soames, R.W. Human intervertebral disc: Structure and function. Anat. Rec. 1988, 220, 337–356. [Google Scholar] [CrossRef]
- Pooni, J.S.; Hukins, D.W.; Harris, P.F.; Hilton, R.C.; Davies, K.E. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg. Radiol. Anat. 1986, 8, 175–182. [Google Scholar] [CrossRef]
- Mahendra, K.A.; Rajani, J.A.; Shailendra, J.S.; Narsinh, H.G. Morphometric study of the cervical intervertebral disc. Int. J. Anat. Phys. Biochem. 2015, 2, 22–26. [Google Scholar]
- Kunkel, M.E.; Herkommer, A.; Reinehr, M.; Bockers, T.M.; Wilke, H.J. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: An anatomical and radiographic study of the human thoracic spine. J. Anat. 2011, 219, 375–387. [Google Scholar] [CrossRef]
- Shao, Z.; Rompe, G.; Schiltenwolf, M. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine 2002, 27, 263–268. [Google Scholar] [CrossRef]
- Twomey, L.; Taylor, J. Age changes in lumbar intervertebral discs. Acta Orthop. Scand. 1985, 56, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Davis, H. Increasing Rates of Cervical and Lumbar Spine Surgery in the United-States, 1979–1990. Spine 1994, 19, 1117–1124. [Google Scholar] [CrossRef]
- Williams, M.P.; Cherryman, G.R.; Husband, J.E. Significance of thoracic disc herniation demonstrated by MR imaging. J. Comput. Assist. Tomogr. 1989, 13, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Roughley, P.J. What is intervertebral disc degeneration, and what causes it? Spine 2006, 31, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Raj, P.P. Intervertebral disc: Anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008, 8, 18–44. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A. Intervertebral Disc Tissues. In Mechanical Properties of Aging Soft Tissues; Derby, B., Akhtar, R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 7–35. [Google Scholar]
- Galante, J.O. Tensile properties of the human lumbar annulus fibrosus. Acta Orthop. Scand. 1967, 38 (Suppl. 100), 1–91. [Google Scholar] [CrossRef]
- Guerin, H.L.; Elliott, D.M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 2007, 25, 508–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.J.; Fazzalari, N.L. The elastic fibre network of the human lumbar anulus fibrosus: Architecture, mechanical function and potential role in the progression of intervertebral disc degeneration. Eur. Spine J. 2009, 18, 439–448. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. CSH Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Eyre, D.R.; Muir, H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem. J. 1976, 157, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Kielty, C.M.; Grant, M.E. The Collagen Family: Structure, Assembly, and Organization in the Extracellular Matrix. In Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects, 2nd ed.; Royce, P.M., Steinmann, B., Eds.; Wiley-Liss: Hoboken, NJ, USA, 2003; pp. 159–221. [Google Scholar]
- Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Yanagishita, M. Function of proteoglycans in the extracellular matrix. Pathol. Int. 1993, 43, 283–293. [Google Scholar] [CrossRef]
- Marchand, F.; Ahmed, A.M. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990, 15, 402–410. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J.; Smith, S.M.; Appleyard, R.C.; Little, C.B. Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur. Spine J. 2008, 17, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Hickey, D.S.; Hukins, D.W.L. Relation between the Structure of the Annulus Fibrosus and the Function and Failure of the Intervertebral-Disk. Spine 1980, 5, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Green, T.P.; Adams, M.A.; Dolan, P. Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur. Spine J. 1993, 2, 209–214. [Google Scholar] [CrossRef]
- Yu, J.; Tirlapur, U.; Fairbank, J.; Handford, P.; Roberts, S.; Winlove, C.P.; Cui, Z.; Urban, J. Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J. Anat. 2007, 210, 460–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerurkar, N.L.; Elliott, D.M.; Mauck, R.L. Mechanical design criteria for intervertebral disc tissue engineering. J. Biomech. 2010, 43, 1017–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, G.D.; Sen, S.; Elliott, D.M. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech. Model. Mechan. 2012, 11, 493–503. [Google Scholar] [CrossRef]
- Ambard, D.; Cherblanc, F. Mechanical behavior of annulus fibrosus: A microstructural model of fibers reorientation. Ann. Biomed. Eng. 2009, 37, 2256–2265. [Google Scholar] [CrossRef] [PubMed]
- Best, B.A.; Guilak, F.; Setton, L.A.; Zhu, W.B.; Saednejad, F.; Ratcliffe, A.; Weidenbaum, M.; Mow, V.C. Compressive Mechanical-Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical-Composition. Spine 1994, 19, 212–221. [Google Scholar] [CrossRef]
- Perie, D.S.; MacLean, J.J.; Owen, J.P.; Iatridis, J.C. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann. Biomed. Eng. 2006, 34, 769–777. [Google Scholar] [CrossRef]
- Iatridis, J.C.; Setton, L.A.; Weidenbaum, M.; Mow, V.C. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 1997, 15, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Trout, J.J.; Buckwalter, J.A.; Moore, K.C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat. Rec. 1982, 204, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, M.I. Microfibrils: A cornerstone of extracellular matrix and a key to understand Marfan syndrome. Ital. J. Anat. Embryol. 2009, 114, 201–224. [Google Scholar]
- Akkiraju, H.; Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J. Dev. Biol. 2015, 3, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Muir, H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 1995, 17, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Calve, J.; Galland, M. The intervertebral nucleus pulposus—Its anatomy, its physiology, its pathology. J. Bone Jt. Surg. 1930, 12, 555–578. [Google Scholar]
- Keyes, D.C.; Compere, E.L. The normal and pathological physiology of the nucleus pulposus of the intervertebral disc—An anatomical, clinical, and experimental study. J. Bone Jt. Surg. 1932, 14, 897–938. [Google Scholar]
- Lotz, J.C.; Fields, A.J.; Liebenberg, E.C. The Role of the Vertebral End Plate in Low Back Pain. Glob. Spine J. 2013, 3, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.J. The vertebral endplate: Disc degeneration, disc regeneration. Eur. Spine J. 2006, 15, S333–S337. [Google Scholar] [CrossRef]
- Mwale, F.; Roughley, P.; Antoniou, J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: A requisite for tissue engineering of intervertebral disc. Eur. Cell Mater. 2004, 8, 58–63. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.J.; Rhodes, R.K. Preparation and characterization of the different types of collagen. Methods Enzym. 1982, 82 Pt A, 33–64. [Google Scholar]
- Kuhn, K.; Schmid, T.M.; Linsenmayer, T.F.; Rest, M.; Mayne, R. Structure and Function of Collagen Types, 1st ed.; Mayne, R., Burgeson, R.E., Eds.; Academic Press: New York, NY, USA, 1987; pp. 1–281. [Google Scholar]
- Grant, J.P.; Oxland, T.R.; Dvorak, M.F. Mapping the structural properties of the lumbosacral vertebral endplates. Spine 2001, 26, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.G.; Rodriguez-Soto, A.E.; Burghardt, A.J.; Berven, S.; Majumdar, S.; Lotz, J.C. Morphology of the human vertebral endplate. J. Orthop. Res. 2012, 30, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Herkowitz, H.N.; Spine, I.S.S.L. The Lumbar Spine; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004; pp. 1–943. [Google Scholar]
- Nekkanty, S.; Yerramshetty, J.; Kim, D.G.; Zauel, R.; Johnson, E.; Cody, D.D.; Yeni, Y.N. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies. Bone 2010, 47, 783–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudert, M.; Tillmann, B. Lymph and Blood-Supply of the Human Intervertebral Disc—Cadaver Study of Correlations to Discitis. Acta Orthop. Scand. 1993, 64, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Nerlich, A.G.; Schaaf, R.; Walchli, B.; Boos, N. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur. Spine J. 2007, 16, 547–555. [Google Scholar] [CrossRef]
- Bogduk, N.; Tynan, W.; Wilson, A.S. The Nerve Supply to the Human Lumbar Intervertebral Disks. J. Anat. 1981, 132, 39–56. [Google Scholar]
- Edgar, M.A. The nerve supply of the lumbar intervertebral disc. J. Bone Jt. Surg. Br. 2007, 89, 1135–1139. [Google Scholar] [CrossRef]
- Freemont, A.J.; Peacock, T.E.; Goupille, P.; Hoyland, J.A.; OBrien, J.; Jayson, M.I.V. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997, 350, 178–181. [Google Scholar] [CrossRef]
- Urban, J.P.G.; Roberts, S. Degeneration of the intervertebral disc. Arthritis Res. 2003, 5, 120–130. [Google Scholar] [CrossRef]
- Gaskin, D.J.; Richard, P. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Crow, W.T.; Willis, D.R. Estimating cost of care for patients with acute low back pain: A retrospective review of patient records. J. Am. Osteopath. Assoc. 2009, 109, 229–233. [Google Scholar] [PubMed]
- Roberts, S.; Evans, H.; Trivedi, J.; Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. 2), 10–14. [Google Scholar]
- Battie, M.C.; Videman, T.; Levalahti, E.; Gill, K.; Kaprio, J. Genetic and environmental effects on disc degeneration by phenotype and spinal level: A multivariate twin study. Spine 2008, 33, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J.A. Aging and degeneration of the human intervertebral disc. Spine 1995, 20, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Song, Y.; Sham, P.; Cheung, K.M. Genetics of disc degeneration. Eur. Spine J. 2006, 15 (Suppl. 3), S317–S325. [Google Scholar] [CrossRef]
- Inoue, N.; Espinoza Orias, A.A. Biomechanics of intervertebral disk degeneration. Orthop. Clin. North. Am. 2011, 42, 487–499. [Google Scholar] [CrossRef]
- Pfirrmann, C.W.A.; Metzdorf, A.; Zanetti, M.; Hodler, J.; Boos, N. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine 2001, 26, 1873–1878. [Google Scholar] [CrossRef] [Green Version]
- Radek, M.; Pacholczyk-Sienicka, B.; Jankowski, S.; Albrecht, L.; Grodzka, M.; Depta, A.; Radek, A. Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn. Reson. Imaging 2016, 34, 376–380. [Google Scholar] [CrossRef]
- Sinusas, K. Osteoarthritis: Diagnosis and treatment. Am. Fam. Physician 2012, 85, 49–56. [Google Scholar]
- Maetzel, A.; Li, L.C.; Pencharz, J.; Tomlinson, G.; Bombardier, C.; The Community Hypertension and Arthritis Project Study Team. The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: A comparative study. Ann. Rheum. Dis. 2004, 63, 395–401. [Google Scholar] [CrossRef]
- Goode, A.P.; Carey, T.S.; Jordan, J.M. Low Back Pain and Lumbar Spine Osteoarthritis: How Are They Related? Curr. Rheumatol. Rep. 2013, 15, 305. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, R.B.; Adams, M.A.; Hutton, W.C. Disc space narrowing and the lumbar facet joints. J. Bone Jt. Surg. Br. 1984, 66, 706–710. [Google Scholar] [CrossRef]
- Fujiwara, A.; Tamai, K.; An, H.S.; Kurihashi, A.; Lim, T.H.; Yoshida, H.; Saotome, K. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 2000, 13, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, A.; Lim, T.H.; An, H.S.; Tanaka, N.; Jeon, C.H.; Andersson, G.B.J.; Haughton, V.M. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 2000, 25, 3036–3044. [Google Scholar] [CrossRef] [PubMed]
- Horkoff, M.; Maloon, S. Dysphagia secondary to esophageal compression by cervical osteophytes: A case report. BCMJ 2014, 56, 442–444. [Google Scholar]
- Milette, P.C.; Fontaine, S.; Lepanto, L.; Cardinal, E.; Breton, G. Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity. Magnetic resonance imaging with discographic correlations. Spine 1999, 24, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Rim, D.C. Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade. Korean J. Spine 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Adams, M.A.; Hutton, W.C. Gradual disc prolapse. Spine 1985, 10, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Kortelainen, P.; Puranen, J.; Koivisto, E.; Lahde, S. Symptoms and Signs of Sciatica and Their Relation to the Localization of the Lumbar-Disk Herniation. Spine 1985, 10, 88–92. [Google Scholar] [CrossRef]
- Frymoyer, J.W. Back Pain and Sciatica. N. Engl. J. Med. 1988, 318, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Taher, F.; Essig, D.; Lebl, D.R.; Hughes, A.P.; Sama, A.A.; Cammisa, F.P.; Girardi, F.P. Lumbar Degenerative Disc Disease: Current and Future Concepts of Diagnosis and Management. Adv. Orthop. 2012, 2012, 970752. [Google Scholar] [CrossRef] [PubMed]
- Physical Therapist’s Guide to Degenerative Disc Disease. Available online: http://www.moveforwardpt.com/symptomsconditionsdetail.aspx?cid=514086b4-1272-4584-8742-ec6d2aa8f8cb (accessed on 8 March 2017).
- Nwuga, V.C. Ultrasound in treatment of back pain resulting from prolapsed intervertebral disc. Arch. Phys. Med. Rehabil. 1983, 64, 88–89. [Google Scholar] [PubMed]
- Adams, M.A.; Stefanakis, M.; Dolan, P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implications for physical therapies for discogenic back pain. Clin. Biomech. 2010, 25, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Will Steroid Injections Help My Degenerative Disc Disease? Available online: http://www.arksurgicalhospital.com/will-steroid-injections-help-my-degenerative-disc-disease/ (accessed on 8 March 2017).
- Buttermann, G.R. The effect of spinal steroid injections for degenerative disc disease. Spine J. 2004, 4, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Huffman, L.H. Medications for acute and chronic low back pain: A review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann. Int. Med. 2007, 147, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Drugs, Medications, and Spinal Injections for Degenerative Disc Disease. Available online: https://www.spineuniverse.com/conditions/degenerative-disc/drugs-medications-spinal-injections-degenerative-disc-disease (accessed on 8 March 2017).
- Sluijter, M.E.; Cosman, E.R. Method and Apparatus for Heating an Intervertebral Disc for Relief of Back Pain. U.S. Patent 5433739A, 18 July 1995. [Google Scholar]
- Sluijter, M.E.; Cosman, E.R. Thermal Denervation of an Intervertebral Disc for Relief of Back Pain. U.S. Patent 5571147A, 5 November 1996. [Google Scholar]
- Sulaiman, S.B.; Keong, T.K.; Cheng, C.H.; Saim, A.B.; Idrus, R.B. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 2013, 137, 1093–1101. [Google Scholar]
- Spivak, J.M.; Hasharoni, A. Use of hydroxyapatite in spine surgery. Eur. Spine J. 2001, 10 (Suppl. 2), S197–S204. [Google Scholar] [CrossRef]
- Nouh, M.R. Spinal fusion-hardware construct: Basic concepts and imaging review. World J. Radiol. 2012, 4, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Confusion about Spinal Fusion. Available online: https://www.spineuniverse.com/treatments/surgery/lumbar/confusion-about-spinal-fusion (accessed on 22 March 2017).
- Multilevel Spinal Fusion for Low Back Pain. Available online: https://www.spine-health.com/treatment/spinal-fusion/multilevel-spinal-fusion-low-back-pain (accessed on 21 March 2017).
- Quirno, M.; Goldstein, J.A.; Bendo, J.A.; Kim, Y.; Spivak, J.M. The Incidence of Potential Candidates for Total Disc Replacement among Lumbar and Cervical Fusion Patient Populations. Asian Spine J. 2011, 5, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Nachemson, A.; Mirza, S.K. Spinal-fusion surgery—The case for restraint. N. Engl. J. Med. 2004, 350, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Reeks, J.; Liang, H. Materials and Their Failure Mechanisms in Total Disc Replacement. Lubricants 2015, 3, 346–364. [Google Scholar] [CrossRef]
- Serhan, H.; Mhatre, D.; Defossez, H.; Bono, C.M. Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. Int. J. Spine Surg. 2011, 5, 75–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guterl, C.C.; See, E.Y.; Blanquer, S.B.; Pandit, A.; Ferguson, S.J.; Benneker, L.M.; Grijpma, D.W.; Sakai, D.; Eglin, D.; Alini, M.; et al. Challenges and strategies in the repair of ruptured annulus fibrosus. Eur. Cell Mater. 2013, 25, 1–21. [Google Scholar] [CrossRef]
- Bron, J.L.; Helder, M.N.; Meisel, H.J.; Van Royen, B.J.; Smit, T.H. Repair, regenerative and supportive therapies of the annulus fibrosus: Achievements and challenges. Eur. Spine J. 2009, 18, 301–313. [Google Scholar] [CrossRef]
- Vadala, G.; Mozetic, P.; Rainer, A.; Centola, M.; Loppini, M.; Trombetta, M.; Denaro, V. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur. Spine J. 2012, 21 (Suppl. 1), S20–S26. [Google Scholar] [CrossRef]
- Cruz, M.A.; Hom, W.W.; DiStefano, T.J.; Merrill, R.; Torre, O.M.; Lin, H.A.; Hecht, A.C.; Illien-Junger, S.; Iatridis, J.C. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng. Part A 2018, 24, 187–198. [Google Scholar] [CrossRef]
- Alini, M.; Roughley, P.J.; Antoniou, J.; Stoll, T.; Aebi, M. A biological approach to treating disc degeneration: Not for today, but maybe for tomorrow. Eur. Spine J. 2002, 11 (Suppl. 2), S215–S220. [Google Scholar]
- Sudo, H.; Minami, A. Caspase 3 as a therapeutic target for regulation of intervertebral disc degeneration in rabbits. Arthritis Rheum. 2011, 63, 1648–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, D.; Mochida, J.; Iwashina, T.; Hiyama, A.; Omi, H.; Imai, M.; Nakai, T.; Ando, K.; Hotta, T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials 2006, 27, 335–345. [Google Scholar] [CrossRef] [PubMed]
- D’Este, M.; Eglin, D.; Alini, M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater. 2018, 78, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bowles, R.D.; Setton, L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017, 129, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Iu, J.; Massicotte, E.; Li, S.Q.; Hurtig, M.B.; Toyserkani, E.; Santerre, J.P.; Kandel, R.A. In Vitro Generated Intervertebral Discs: Toward Engineering Tissue Integration. Tissue Eng. Part A 2017, 23, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Yang, X.L.; Wang, L.; Zhang, W.; Yu, W.B.; Wang, N.X.; Peng, B.A.; Zheng, W.F.; Yang, G.; Jiang, X.Y. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale 2017, 9, 13095–13103. [Google Scholar] [CrossRef]
- Bhunia, B.K.; Kaplan, D.L.; Mandal, B.B. Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proc. Natl. Acad. Sci. USA 2018, 115, 477–482. [Google Scholar] [CrossRef]
- Ghorbani, M.; Ai, J.; Nourani, M.R.; Azami, M.; Beni, B.H.; Asadpour, S.; Bordbar, S. Injectable natural polymer compound for tissue engineering of intervertebral disc: In vitro study. Mater. Sci. Eng. C Mater. 2017, 80, 502–508. [Google Scholar] [CrossRef]
- Gan, Y.; Li, P.; Wang, L.; Mo, X.; Song, L.; Xu, Y.; Zhao, C.; Ouyang, B.; Tu, B.; Luo, L.; et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials 2017, 136, 12–28. [Google Scholar] [CrossRef]
- Halloran, D.O.; Grad, S.; Stoddart, M.; Dockery, P.; Alini, M.; Pandit, A.S. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials 2008, 29, 438–447. [Google Scholar] [CrossRef]
- Park, S.-H.; Cho, H.; Gil, E.S.; Mandal, B.B.; Min, B.-H.; Kaplan, D.L. Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration. Tissue Eng. Part A 2011, 17, 2999–3009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, D.R.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L.; Pandit, A.; Biggs, M.J. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed. Nanotechol. 2018, 14, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, C.; Li, J.; Zhou, P.; Chen, M.; Yang, H.; Li, B. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 2015, 3, 15012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirvu, T.; Blanquer, S.B.G.; Benneker, L.M.; Grijpma, D.W.; Richards, R.G.; Alini, M.; Eglin, D.; Grad, S.; Li, Z. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials 2015, 42, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Wu, D.; Huang, L.; Jiao, Y.; Li, L.; Lu, L.; Zhou, C. 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater. Lett. 2018, 223, 219–222. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, D.; Zhao, Q.; Chen, Z.; Liu, K.; Chen, S.; Sun, X.; Yue, Q.; Zhang, R.; Feng, G. Fabrication of a novel whole tissue-engineered intervertebral disc for intervertebral disc regeneration in the porcine lumbar spine. RSC Adv. 2018, 8, 39013–39021. [Google Scholar] [CrossRef]
- Choy, A.T.H.; Chan, B.P. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering. PLoS One 2015, 10, e0131827. [Google Scholar] [CrossRef]
- Hudson, K.D.; Bonassar, L.J. Hypoxic Expansion of Human Mesenchymal Stem Cells Enhances Three-Dimensional Maturation of Tissue-Engineered Intervertebral Discs. Tissue Eng. Part A 2017, 23, 293–300. [Google Scholar] [CrossRef]
- Hudson, K.D.; Mozia, R.I.; Bonassar, L.J. Dose-Dependent Response of Tissue-Engineered Intervertebral Discs to Dynamic Unconfined Compressive Loading. Tissue Eng. Part A 2015, 21, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Buckley, C.T.; Hoyland, J.A.; Fujii, K.; Pandit, A.; Iatridis, J.C.; Grad, S. Critical aspects and challenges for intervertebral disc repair and regeneration—Harnessing advances in tissue engineering. JOR Spine 2018, 1, e1029. [Google Scholar] [CrossRef]
Cervical IVD Dimensions | C2/C3 | C3/C4 | C4/C5 | C5/C6 | C6/C7 | C7/T1 | ||||
Area (mm2) | 190 ± 10 | 280 ± 40 | 240 ± 20 | 300 ± 30 | 460 ± 5 | 440 ± 5 | ||||
Thickness (mm) | 3.51 ± 0.71 | 3.74 ± 0.36 | 4.07 ± 0.36 | 4.45 ± 0.21 | 4.11 ± 0.28 | 4.50 ± 0.53 | ||||
Thoracic IVD Dimensions | T1/T2 | T2/T3 | T3/T4 | T4/T5 | T5/T6 | T6/T7 | ||||
Area (mm2) | 510 ± 50 | 490 ± 5 | 485 ± 5 | 450 ± 40 | 605 ± 20 | 750 ± 10 | ||||
Thickness (mm) | 4.40 ± 0.65 | 3.50 ± 0.69 | 3.30 ± 0.50 | 3.20 ± 0.47 | 3.50 ± 0.47 | 4.10 ± 0.47 | ||||
Thoracic IVD Dimensions | T7/T8 | T8/T9 | T9/T10 | T10/T11 | T11/T12 | T12/L1 | ||||
Area (mm2) | 710 ± 30 | 900 ± 10 | 840 ± 30 | 1080 ± 20 | 1170 ± 30 | 1190 ± 40 | ||||
Thickness (mm) | 3.90 ± 0.72 | 5.30 ± 0.80 | 4.80 ± 1.07 | 6.50 ± 0.97 | 5.40 ± 0.95 | 6.8 ± 0.21 | ||||
Lumbar IVD Dimensions | L1/L2 | L2/L3 | L3/L4 | L4/L5 | L5/S1 | |||||
Area (mm2) | 1400 ± 20 | 1640 ± 50 | 1690 ± 40 | 1660 ± 30 | 1680 ± 30 | |||||
Thickness (mm) | 7.65 ± 0.57 | 8.90 ± 0.25 | 9.25 ± 0.29 | 9.90 ± 0.49 | 9.35 ± 1.06 |
Collagen Type | Structure | Genes | Alpha Chains | % Collagen Distribution |
---|---|---|---|---|
Collagen I | Large diameter, 67-nm banded fibrils | COL1A1 COL1A2 | α1(I) α2(I) | Increases from 0→100 from inner to outer regions |
Collagen II | 67-nm banded fibrils | COL2A1 | α1(II) | Decreases from 100→0 from inner to outer regions |
Tensile Properties of the Annulus Fibrosus | ||||||||
Sample | Sample Specification | Ultimate Stress, MPa | Elastic Modulus, MPa | Yield Strain, % | Ultimate Strain, % | Stiffness, N/m | ||
Bulk Annulus | Outer, A | 3.9 ± 1.8 | 16.4 ± 7.0 | 20–30 * | 65 ± 16 | 5.7 ± 3.4 | ||
Outer, P | 8.6 ± 4.3 | 61.8 ± 23.2 | 20–30 * | 34 ± 11 | 5.7 ± 3.4 | |||
Inner | 0.9 | -- | 20–30 * | 33 | 1.2 ± 1.1 | |||
Single Lamella | Parallel | -- | 80–120 | -- | -- | -- | ||
Perpendicular | -- | 0.22 | -- | -- | -- | |||
Compressive Properties of the Annulus Fibrosus | ||||||||
Section | Swell Pressure, (Psw), MPa | Modulus, (HA), MPa | Permeability, (k), (×10−15 m4/N-s) | |||||
Anterior | 0.11 ± 0.05 | 0.36 ± 0.15 | 0.26 ± 0.12 | |||||
Posterior | 0.14 ± 0.06 | 0.40 ± 0.18 | 0.23 ± 0.09 | |||||
Outer | 0.11 ± 0.07 | 0.44 ± 0.21 | 0.25 ± 0.11 | |||||
Middle | 0.14 ± 0.04 | 0.42 ± 0.10 | 0.22 ± 0.06 | |||||
Inner | 0.12 ± 0.04 | 0.27 ± 0.11 | 0.27 ± 0.13 | |||||
Compressive Properties of the Nucleus Pulposus | ||||||||
Sample | Swell Pressure, (Psw), MPa | Modulus, (HA), MPa | Permeability, (k), (×10−16 m4/N-s) | |||||
Nucleus Pulposus | 0.138 | 1.0 | 9.0 |
Grade | Structure | Distinction of Nucleus and Annulus | Signal Intensity | Height of Intervertebral Disc |
---|---|---|---|---|
I | Homogenous, bright white | Clear | Hyperintense, isointense to cerebrospinal fluid | Normal |
II | Inhomogeneous with or without horizontal bands | Clear | Hyperintense, isointense to cerebrospinal fluid | Normal |
III | Inhomogeneous, gray | Unclear | Intermediate | Normal to slightly decreased |
IV | Inhomogeneous, gray to black | Lost | Intermediate to hypointense | Normal to moderately decreased |
V | Inhomogeneous, black | Lost | Hypointense | Collapsed disc space |
Device | Classification | Biomaterials | Bearing Design | Examples of Manufacturer |
---|---|---|---|---|
CHARITE | MoP | CoCr-UHMWPE | Mobile | DePuy Spine |
Prodisc-L | MoP | CoCr-UHMWPE | Fixed | DePuy Synthes |
Activ-L | MoP | CoCr-UHMWPE | Mobile | Aesculap |
Mobidisc | MoP | CoCr-UHMWPE | Mobile | LDR Medical |
Baguera | MoP | DLC coated Ti-UHMWPE | Fixed | Spineart |
NuBlac | PoP | PEEK-PEEK | Fixed | Pioneer |
Maverick | MoM | CoCr-CoCr | Fixed | Medtronic |
Kineflex | MoM | CoCr-CoCr | Mobile | SpinalMotion |
Flexicore | MoM | CoCr-CoCr | Constrained | Stryker |
XL-TDR | MoM | CoCr-CoCr | Fixed | NuVasive |
CAdisc-L | 1P | PU-PC graduated modulus | 1P | Rainier Technology |
Freedom | 1P | Ti plates; silicone PU-PC core | 1P | Axiomed |
eDisc | 1P | Ti plates; elastomer core | 1P | Theken |
Physio-L | 1P | Ti plates; elastomer core | 1P | NexGen Spine |
M6-L | 1P | Ti plates; PU-PC core with UHMWPE fiber encapsulation | 1P | Spinal Kinetics |
LP-ESP (elastic spine pad) | 1P | Ti endplates; PU-PC coated silicone gel with microvoids | 1P | FH Orthopedics |
Bearing Type | Material | Problems | Effects |
---|---|---|---|
Ball and Socket | CoCr | Reactive wear ions and fibrous particles | Metal sensitivity reactions, Inflammation, Osteolysis |
Metallosis | -- | ||
No shock absorption | Compressive stresses on vertebral bodies | ||
UHMWPE | Large wear volume and wear debris | Bone resorption, Osteolysis | |
Plastic deformation | -- | ||
Increased range of motion (hypermobility) | Facet and ligament loading | ||
No shock absorption | Compressive stresses on vertebral bodies | ||
PEEK | Prosthesis migration | Biomechanical incompatibility, Stress on remaining annulus, Total rejection of device | |
Endplate reaction | Severe biological rejection | ||
1P | PUPC | More studies necessary |
Targeted Tissue | Material | Structure | Mechanical Properties | Cells | Comments | Reference |
---|---|---|---|---|---|---|
Total IVD | AF: Poly caprolactone urethane NP: Collagen II and aggrecan | AF: Nanofibrous, aligned NP: Hydrogel | Compressive modulus of 17.2 ± 7.5 kPa | AF and NP cells | Integration between the two compartments. Tested in vitro and in vivo in a bovine model | [129] |
Total IVD | AF: Polycaprolactone/poly(d,l-lactide-co-glycolide)/collagen type I NP: Alginate | AF: Electrospun nanofibers to create a concentric ring-structure NP: Hydrogel | Tensile Young’s modulus of 380 MPa | Rat AF and NP cells | Integration with host tissue and between compartment in in vivo rat caudal spine model | [130] |
AF | Silk | Concentric layers of lamella sheets on an angle-ply construct | 499.18 ± 86.45 kPa | Porcine AF cells and human MSCs | Subcutaneous implantation in rat showed negligible immune response | [131] |
NP | chitosan-β-glycerophosphate-hyaluronic acid, chondroitin-6-sulfate, type II collagen, gelatin, and fibroin silk | Hydrogel | ≈50 Pa | Rabbit NP cells | Preliminary study with in vitro cell compatibility assays | [132] |
IVD | PLA and GG_PEGDA | 3D printed | Compressive Young’s modulus of ≈400 MPa | hMSCs | Preliminary study on cell viability | [133] |
IVD | NP: Chitosan; inner AF: PBST and outer AF: PEEK | NP: hydrogel and AF fiber film and ring | Compressive Young’s modulus of 58.4 ± 12.9 MPa | Porcine IVD cells | In vivo implantation on a porcine spine model | [134] |
NP | Dextran, gelatin and poly (ethylene glycol); | Hydrogel | Compressive Young’s modulus of 15.86 ± 1.7 kPa | Porcine NP cells | In vivo subcutaneous implantation in Lewis rats | [135] |
NP | Cross-linked collagen-II, aggrecan and hyaluronan | Hydrogel | Storage modulus of ≈1.25 kPa | Bovine NP cells | 7 days in vitro cell culture studies | [136] |
NP | Silk-fibrin and hyaluronic acid composite hydrogels | Hydrogel | Compressive modulus of ≈5–7 kPa | Human primary chondrocytes | Full in vitro study with up to 4 weeks cell culture | [137] |
AF | Nanocellulose reinforced gellan-gum hydrogels | Hydrogel | Compressive modulus of ≈45–55 kPa | Bovine AF cells | Preliminary in vitro studies | [138] |
AF | Electrospun aligned polyurethane scaffolds | Fibrous scaffold | N/A | Rabbit AF derived progenitor cells | 7 days in vitro cultures | [139] |
AF | poly(trimethylene carbonate) and polyester urethane | Fibrous scaffold | Yield strength of 4.9 ± 1.4 MPa | Human MSCs | In vitro bovine caudal spine organ culture model with or without dynamic load. | [140] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frost, B.A.; Camarero-Espinosa, S.; Foster, E.J. Materials for the Spine: Anatomy, Problems, and Solutions. Materials 2019, 12, 253. https://doi.org/10.3390/ma12020253
Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the Spine: Anatomy, Problems, and Solutions. Materials. 2019; 12(2):253. https://doi.org/10.3390/ma12020253
Chicago/Turabian StyleFrost, Brody A., Sandra Camarero-Espinosa, and E. Johan Foster. 2019. "Materials for the Spine: Anatomy, Problems, and Solutions" Materials 12, no. 2: 253. https://doi.org/10.3390/ma12020253