Angular X-ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials
Abstract
:1. Introduction
2. Systems with Angular Anisotropy
2.1. Classification of Structural Order
2.2. Bond-Orientational Order
2.3. Recent Developments in the Study of Soft Matter with X-rays
3. Principles of AXCCA
4. Applications of AXCCA
4.1. The Hexatic Phase in Liquid Crystals
4.2. Reconstruction of the Anisotropic Pair Distribution Function (PDF)
4.3. Colloidal Systems
5. Mesocrystals Formed by Nanoparticles
Laser-Induced Orientational Order in Photo-Reactions
6. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Chaikin, P.; Lubensky, T. Principles of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Selinger, J.V. Introduction to the Theory of Soft Matter; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- De Gennes, P.G. Soft matter. Rev. Mod. Phys. 1992, 64, 645. [Google Scholar] [CrossRef]
- Jones, R.A.L. Soft Condensed Matter; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Dürr, A.C.; Schreiber, F.; Ritley, K.A.; Kruppa, V.; Krug, J.; Dosch, H.; Struth, B. Rapid Roughening in Thin Film Growth of an Organic Semiconductor (Diindenoperylene). Phys. Rev. Lett. 2003, 90, 016104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aufderheide, A.; Broch, K.; Novák, J.; Hinderhofer, A.; Nervo, R.; Gerlach, A.; Banerjee, R.; Schreiber, F. Mixing-induced Anisotropic Correlations in Molecular Crystalline Systems. Phys. Rev. Lett. 2012, 109, 156102. [Google Scholar] [CrossRef] [PubMed]
- Kurta, R.P.; Altarelli, M.; Vartanyants, I.A. Structural Analysis By X-Ray Intensity Angular Cross Correlations. Adv. Chem. Phys. 2016, 161, 1. [Google Scholar] [CrossRef]
- Kam, Z. Determination of Macromolecular Structure in Solution by Spatial Correlation of Scattering Fluctuations. Macromolecules 1977, 10, 927–934. [Google Scholar] [CrossRef]
- Kam, Z. The Reconstruction of Structure from Electron Micrographs of Randomly Oriented Particles. J. Theor. Biol. 1980, 82, 15–39. [Google Scholar] [CrossRef]
- Griffin, W.G.; Pusey, P.N. Anticorrelations in Light Scattered by Nonspherical Particles. Phys. Rev. Lett. 1979, 43, 1100–1104. [Google Scholar] [CrossRef]
- Clark, N.A.; Ackerson, B.J.; Hurd, A.J. Cross-correlation Intensity Fluctuation Spectroscopy Applied to Colloidal Suspensions. Phys. Rev. Lett. 1983, 50, 1459. [Google Scholar] [CrossRef]
- Wochner, P.; Gutt, C.; Autenrieth, T.; Demmer, T.; Bugaev, V.; Ortiz, A.D.; Duri, A.; Zontone, F.; Grübel, G.; Dosch, H. X-ray Cross Correlation Analysis Uncovers Hidden Local Symmetries in Disordered Matter. Proc. Natl. Acad. Sci. USA 2009, 106, 11511–11514. [Google Scholar] [CrossRef]
- Schroer, M.A.; Gutt, C.; Grübel, G. Characteristics of Angular Cross Correlations Studied by Light Scattering from Two-Dimensional Microsphere Films. Phys. Rev. E 2014, 90, 012309. [Google Scholar] [CrossRef]
- Kurta, R.P.; Grodd, L.; Mikayelyan, E.; Gorobtsov, O.Y.; Fratoddi, I.; Venditti, I.; Sprung, M.; Grigorian, S.; Vartanyants, I.A. Structural Properties of π-π Conjugated Network in Polymer Thin Films Studied by X-ray Cross-Correlation Analysis. J. Phys. Conf. Ser. 2014, 499, 12021. [Google Scholar] [CrossRef]
- Kurta, R.P.; Grodd, L.; Mikayelyan, E.; Gorobtsov, O.Y.; Zaluzhnyy, I.A.; Fratoddi, I.; Venditti, I.; Russo, M.V.; Sprung, M.; Vartanyants, I.A.; et al. Local Structure of Semicrystalline P3HT Films Probed by Nanofocused Coherent X-rays. Phys. Chem. Chem. Phys. 2015, 17, 7404–7410. [Google Scholar] [CrossRef] [PubMed]
- Kurta, R.P.; Ostrovskii, B.I.; Singer, A.; Gorobtsov, O.Y.; Shabalin, A.; Dzhigaev, D.; Yefanov, O.M.; Zozulya, A.V.; Sprung, M.; Vartanyants, I.A. X-ray Cross-Correlation Analysis of Liquid Crystal Membranes in the Vicinity of the Hexatic-Smectic Phase Transition. Phys. Rev. E 2013, 88, 044501. [Google Scholar] [CrossRef] [PubMed]
- Zaluzhnyy, I.A.; Kurta, R.P.; Sulyanova, E.A.; Gorobtsov, O.Y.; Shabalin, A.G.; Zozulya, A.V.; Menushenkov, A.P.; Sprung, M.; Krówczyński, A.; Górecka, E.; et al. Structural Studies of the Bond-Orientational Order and Hexatic-Smectic Transition in Liquid Crystals of Various Compositions. Soft Matter 2017, 13, 3240–3252. [Google Scholar] [CrossRef] [PubMed]
- Zaluzhnyy, I.A.; Kurta, R.P.; André, A.; Gorobtsov, O.Y.; Rose, M.; Skopintsev, P.; Besedin, I.; Zozulya, A.V.; Sprung, M.; Schreiber, F.; et al. Quantifying Angular Correlations between the Atomic Lattice and the Superlattice of Nanocrystals Assembled with Directional Linking. Nano Lett. 2017, 17, 3511–3517. [Google Scholar] [CrossRef] [PubMed]
- Lehmkühler, F.; Schulz, F.; Schroer, M.A.; Frenzel, L.; Lange, H.; Grübel, G. Heterogeneous Local Order in Self-Assembled Nanoparticle Films Revealed by X-ray Cross-Correlations. IUCrJ 2018, 5, 354–360. [Google Scholar] [CrossRef] [PubMed]
- De Jeu, W.H.; Ostrovskii, B.I.; Shalaginov, A.N. Structure and Fluctuations of Smectic Membranes. Rev. Mod. Phys. 2003, 75, 181–235. [Google Scholar] [CrossRef]
- Stanley, H.E. Introduction to Phase Transitions and Critical Phenomena; Oxford University Press: New York, NY, USA, 1987. [Google Scholar]
- Kleman, M.; Lavrentovich, O.D. Soft Matter Physics: An Introduction; Springer: New York, NY, USA, 2003. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Statistical Physics; Pergamon: New York, NY, USA, 1980. [Google Scholar]
- Frenkel, D. Liquids, Freezing and Glass Transition; Hansen, J.-P., Levesque, D., Zinn-Justin, J., Eds.; Elsevier Science Publishers B.V.: Amsterdam, The Neverlands, 1991; pp. 691–762. [Google Scholar]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Oswald, P.; Pieranski, P. Smectic and Columnar Liquid Crystals; Taylor and Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Halperin, B.I.; Nelson, D.R. Theory of Two-Dimensional Melting. Phys. Rev. Lett. 1978, 41, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.R. Defects and Geometry in Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kosterlitz, J.M. Kosterlitz–Thouless Physics: A Review of Key Issues. Rep. Prog. Phys. 2016, 79, 026001. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Nelson, D.R.; Ronchetti, M. Bond-Orientational Order in Liquids and Glasses. Phys. Rev. B 1983, 28, 784–805. [Google Scholar] [CrossRef]
- Martin, A.V. Orientational Order of Liquids and Glasses via Fluctuation Diffraction. IUCrJ 2017, 4, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Strandburg, K.J. Bond-Orientational Order in Condensed Matter Systems; Springer-Verlag: New York, NY, USA, 1992. [Google Scholar]
- Pindak, R.; Moncton, D.E.; Davey, S.C.; Goodby, J.W. X-ray Observation of a Stacked Hexatic Liquid-Crystal B Phase. Phys. Rev. Lett. 1981, 46, 1135–1138. [Google Scholar] [CrossRef]
- Keim, P.; Maret, G.; von Grünberg, H.H. Frank’s Constant in the Hexatic Phase. Phys. Rev. E 2007, 75, 031402. [Google Scholar] [CrossRef] [PubMed]
- Deutschländer, S.; Horn, T.; Löwen, H.; Maret, G.; Keim, P. Two-Dimensional Melting under Quenched Disorder. Phys. Rev. Lett. 2013, 111, 098301. [Google Scholar] [CrossRef] [Green Version]
- Derzsi, A.; Kovacs, A.Z.; Donko, Z.; Hartmann, P. On the Metastability of the Hexatic Phase During the Melting of Two-Dimensional Charged Particle Solids. Phys. Plasmas 2014, 21, 23706. [Google Scholar] [CrossRef]
- Kapfer, S.C.; Krauth, W. Two-Dimensional Melting: From Liquid-Hexatic Coexistence to Continuous Transitions. Phys. Rev. Lett. 2015, 114, 035702. [Google Scholar] [CrossRef] [Green Version]
- Kurta, R.P.; Altarelli, M.; Vartanyants, I.A. X-ray Cross-Correlation Analysis of Disordered Ensembles of Particles: Potentials and Limitations. Adv. Condens. Matter Phys. 2013, 2013, 959835. [Google Scholar] [CrossRef]
- Brock, J.D.; Aharony, A.; Birgeneau, R.J.; Evans-Lutterodt, K.W.; Litster, J.D.; Horn, P.M.; Stephenson, G.B.; Tajbakhsh, A.R. Orientational and Positional Order in a Tilted Hexatic Liquid-Crystal Phase. Phys. Rev. Lett. 1986, 57, 98–101. [Google Scholar] [CrossRef]
- Aharony, A.; Birgeneau, R.J.; Brock, J.D.; Litster, J.D. Multicriticality in Hexatic Liquid Crystals. Phys. Rev. Lett. 1986, 57, 1012–1015. [Google Scholar] [CrossRef]
- Brock, J.D.; Noh, D.Y.; McClain, B.R.; Litster, J.D.; Birgeneau, R.J.; Aharony, A.; Horn, P.M.; Liang, J.Z. Hexatic Ordering in Freely Suspended Liquid Crystal Films. Phys. B-Condens. Matter 1989, 74, 197–213. [Google Scholar] [CrossRef]
- Brock, J.D.; Birgeneau, R.J.; Litster, D.; Aharony, A. Hexatic Ordering in Liquid Crystal Films. Contemp. Phys. 1989, 30, 321–335. [Google Scholar] [CrossRef]
- Sutton, M.; Mochrie, S.G.J.; Greytak, T.; Nagler, S.E.; Berman, L.E.; Held, G.A.; Stephenson, G.B. Observation of Speckle by Diffraction with Coherent X-rays. Nature 1991, 352, 608–610. [Google Scholar] [CrossRef]
- Miao, J.; Charalambous, P.; Kirz, J.; Sayre, D. Extending the Methodology of X-ray Crystallography to Allow Imaging of Micrometre-Sized Non-Crystalline Specimens. Nature 1999, 400, 342–344. [Google Scholar] [CrossRef]
- Robinson, I.K.; Vartanyants, I.A.; Williams, G.J.; Pfeifer, M.A.; Pitney, J.A. Reconstruction of the Shapes of Gold Nanocrystals Using Coherent X-Ray Diffraction. Phys. Rev. Lett. 2001, 87, 195505. [Google Scholar] [CrossRef] [Green Version]
- Rodenburg, J.M.; Hurst, A.C.; Cullis, A.G.; Dobson, B.R.; Pfeiffer, F.; Bunk, O.; David, C.; Jefimovs, K.; Johnson, I. Hard-X-Ray Lensless Imaging of Extended Objects. Phys. Rev. Lett. 2007, 98, 034801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiboth, F.; Schropp, A.; Scholz, M.; Wittwer, F.; Rödel, C.; Wünsche, M.; Ullsperger, T.; Nolte, S.; Rahomäki, J.; Parfeniukas, K.; et al. Perfect X-ray Focusing via Fitting Corrective Glasses to Aberrated Optics. Nat. Commun. 2017, 8, 14623. [Google Scholar] [CrossRef]
- Krüger, S.P.; Neubauer, H.; Bartels, M.; Kalbfleisch, S.; Giewekemeyer, K.; Wilbrandt, P.J.; Sprung, M.; Salditt, T. Sub-10nm Beam Confinement by X-ray Waveguides: Design, Fabrication and Characterization of Optical Properties. J. Synchrotron Radiat. 2012, 19, 227–236. [Google Scholar] [CrossRef]
- Huang, X.; Yan, H.; Nazaretski, E.; Conley, R.; Bouet, N.; Zhou, J.; Lauer, K.; Li, L.; Eom, D.; Legnini, D.; et al. 11 nm Hard X-ray Focus from a Large-Aperture Multilayer Laue Lens. Sci. Rep. 2013, 3, 3562. [Google Scholar] [CrossRef]
- Altarelli, M.; Kurta, R.P.; Vartanyants, I.A. X-ray Cross-Correlation Analysis and Local Symmetries of Disordered Systems: General Theory. Phys. Rev. B 2010, 82, 104207, Erratum: 2012, 86, 179904. [Google Scholar] [CrossRef]
- Kurta, R.P.; Altarelli, M.; Weckert, E.; Vartanyants, I.A. X-ray Cross-Correlation Analysis Applied to Disordered Two-Dimensional Systems. Phys. Rev. B 2012, 85, 184204. [Google Scholar] [CrossRef]
- Baskin, J.S.; Zewail, A.H. Oriented Ensembles in Ultrafast Electron Diffraction. ChemPhysChem 2006, 7, 1562–1574. [Google Scholar] [CrossRef] [PubMed]
- Pedrini, B.; Menzel, A.; Guizar-Sicairos, M.; Guzenko, V.A.; Gorelick, S.; David, C.; Patterson, B.D.; Abela, R. Two-Dimensional Structure from Random Multiparticle X-ray Scattering Images Using Cross-Correlations. Nat. Commun. 2013, 4, 1647. [Google Scholar] [CrossRef] [PubMed]
- Saldin, D.K.; Poon, H.C.; Shneerson, V.L.; Howells, M.; Chapman, H.N.; Kirian, R.A.; Schmidt, K.E.; Spence, J.C.H. Beyond Small-Angle X-ray Scattering: Exploiting Angular Correlations. Phys. Rev. B 2010, 81, 174105. [Google Scholar] [CrossRef]
- Donatelli, J.J.; Zwart, P.H.; Sethian, J.A. Iterative Phasing for Fluctuation X-ray Scattering. Proc. Natl. Acad. Sci. USA 2015, 112, 10286–10291. [Google Scholar] [CrossRef]
- Kurta, R.P.; Dronyak, R.; Altarelli, M.; Weckert, E.; Vartanyants, I.A. Solution of the Phase Problem for Coherent Scattering from a Disordered System of Identical Particles. New J. Phys. 2013, 15, 13059. [Google Scholar] [CrossRef]
- Kurta, R.P.; Donatelli, J.J.; Yoon, C.H.; Berntsen, P.; Bielecki, J.; Daurer, B.J.; DeMirci, H.; Fromme, P.; Hantke, M.F.; Maia, F.R.N.C.; et al. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses. Phys. Rev. Lett. 2017, 119, 158102. [Google Scholar] [CrossRef]
- Vester, P.; Zaluzhnyy, I.A.; Kurta, R.P.; Møller, K.B.; Biasin, E.; Haldrup, K.; Nielsen, M.M.; Vartanyants, I.A. Ultrafast Structural Dynamics of Photo-Reactions Observed by Time-Resolved X-ray Cross-Correlation Analysis. Struct. Dynam. 2019, 6, 24301. [Google Scholar] [CrossRef]
- Kurta, R.P.; Wiegart, A.; Fluerasu, A.; Madsen, A. Fluctuation X-ray Scattering from Nanorods in Solution Reveals Weak Temperature-Dependent Orientational Ordering. IUCrJ 2019, 6, 635–648. [Google Scholar] [CrossRef]
- Latychevskaia, T.; Mancini, G.F.; Carbone, F. The Role of the Coherence in the Cross-Correlation Analysis of Diffraction Patterns from Two-Dimensional Dense Mono-Disperse Systems. Sci. Rep. 2015, 5, 16573. [Google Scholar] [CrossRef]
- Davey, S.C.; Budai, J.; Goodby, J.W.; Pindak, R.; Moncton, D.E. X-Ray Study of the Hexatic-B-to-Smectic-A Phase Transition in Liquid-Crystal Films. Phys. Rev. Lett. 1984, 53, 2129–2132. [Google Scholar] [CrossRef]
- Aeppli, G.; Bruinsma, R. Hexatic Order and Liquid Density Fluctuations. Phys. Rev. Lett. 1984, 53, 2133–2136. [Google Scholar] [CrossRef]
- Aharony, A.; Kardar, M. Diffraction Patterns from Thin Hexatic Films. Phys. Rev. Lett. 1988, 61, 2855–2858. [Google Scholar] [CrossRef] [PubMed]
- Zaluzhnyy, I.A.; Kurta, R.P.; Menushenkov, A.P.; Ostrovskii, B.I.; Vartanyants, I.A. Analysis of the Shape of X-ray Diffraction Peaks Originating from the Hexatic Phase of Liquid Crystal Films. Mol. Cryst. Liq. Cryst. 2017, 647, 169–178. [Google Scholar] [CrossRef]
- Stoebe, T.; Huang, C.C. Physical Properties of Thin Substrate-Free Liquid-Crystal Films. Int. J. Mod. Phys. B 1995, 9, 2285–2319. [Google Scholar] [CrossRef]
- Paczuski, M.; Kardar, M. Harmonics of Orientational Order in Liquid Crystals. Phys. Rev. Lett. 1988, 60, 861. [Google Scholar] [CrossRef]
- Zaluzhnyy, I.A.; Kurta, R.P.; Sulyanova, E.A.; Gorobtsov, O.Y.; Shabalin, A.G.; Zozulya, A.V.; Menushenkov, A.P.; Sprung, M.; Ostrovskii, B.I.; Vartanyants, I.A. Spatially Resolved X-ray Studies of Liquid Crystals with Strongly Developed Bond-Orientational Order. Phys. Rev. E 2015, 91, 042506. [Google Scholar] [CrossRef]
- Noh, D.Y.; Brock, J.D.; Litster, J.D.; Birgeneau, R.J.; Goodby, J.W. Fluid, hexatic, and crystal phases in terephthal-bis-(4n)-alkylanilines. Phys. Rev. B 1989, 40, 4920–4927. [Google Scholar] [CrossRef]
- Van Roie, B.; Denolf, K.; Pitsi, G.; Thoen, J. Characterization of the Smectic-A-Hexatic-B Transition in 65OBC by Adiabatic Scanning Calorimetry. Eur. Phys. J. E 2005, 16, 361–364. [Google Scholar] [CrossRef]
- Zaluzhnyy, I.A.; Kurta, R.P.; Mukharamova, N.; Kim, Y.Y.; Khubbutdinov, R.M.; Dzhigaev, D.; Lebedev, V.V.; Pikina, E.S.; Kats, E.I.; Clark, N.A.; et al. Evidence of a First-Order Smectic-Hexatic Transition and its Proximity to a Tricritical Point in Smectic Films. Phys. Rev. E 2018, 98, 052703. [Google Scholar] [CrossRef]
- Chou, C.-F.; Ho, J.T.; Hui, S.W.; Surendranath, V. Scaling of 6n-Fold Bond-Orientational Order Parameters in a Hexatic Liquid-Crystal Thin Film. Phys. Rev. Lett. 1996, 76, 4556–4559. [Google Scholar] [CrossRef]
- Chou, C.-F.; Jin, A.J.; Hui, S.W.; Huang, C.C.; Ho, J.T. Multiple-Step Melting in Two-Dimensional Hexatic Liquid-Crystal Films. Science 1998, 280, 1424–1426. [Google Scholar] [CrossRef] [PubMed]
- Kats, E.I.; Lebedev, V.V.; Pikina, E.S. Landau Theory for Smectic-A-Hexatic-B Coexistence in Smectic Films. Phys. Rev. E 2019, 100, 022705. [Google Scholar] [CrossRef] [PubMed]
- Egami, T.; Billinge, S.J.L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials; Pergamon: Oxford, UK, 2003. [Google Scholar]
- Als-Nielsen, J.; McMorrow, D. Elements of Modern X-ray Physics; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Zaluzhnyy, I.A.; Kurta, R.P.; Menushenkov, A.P.; Ostrovskii, B.I.; Vartanyants, I.A. Direct Reconstruction of the Two-Dimensional Pair Distribution Function in Partially Ordered Systems with Angular Correlations. Phys. Rev. E 2016, 94, 030701. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gates, B.; Li, Z.-Y. Self-Assembly Approaches to Three-Dimensional Photonic Crystals. Adv. Mater. 2001, 13, 409–413. [Google Scholar] [CrossRef]
- Yethiraj, A.; Thijssen, J.H.J.; Wouterse, A.; van Blaaderen, A. Large-Area Electric-Field-Induced Colloidal Single Crystals for Photonic Applications. Adv. Mater. 2004, 16, 596–600. [Google Scholar] [CrossRef]
- Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S.W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondia, J.P.; et al. Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap Near 1.5 Micrometres. Nature 2000, 405, 437–440. [Google Scholar] [CrossRef]
- Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C.M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M.R.; Fytas, G. A New Class of Tunable Hypersonic Phononic Crystals Based on Polymer-Tethered Colloids. Nat. Commun. 2015, 6, 8309. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, L.; Lopez, G.P.; Yellen, B.B. Tunable Assembly of Colloidal Crystal Alloys Using Magnetic Nanoparticle Fluids. ACS Nano 2013, 7, 2705–2716. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Beltramo, P.J.; Vutukuri, H.R. Colloidal Switches by Electric and Magnetic Fields. ACS Appl. Mater. Interfaces 2017, 9, 17238–17244. [Google Scholar] [CrossRef]
- Liu, A.C.Y.; Tabor, R.F.; de Jonge, M.D.; Mudie, S.T.; Petersen, T.C. Favored Local Structures in Amorphous Colloidal Packings Measured by Microbeam X-ray Diffraction. Proc. Natl. Acad. Sci. USA. 2017, 114, 10344–10349. [Google Scholar] [CrossRef]
- Schroer, M.A.; Gutt, C.; Lehmkühler, F.; Fischer, B.; Steinke, I.; Westermeier, F.; Sprung, M.; Grübel, G. Nano-Beam X-ray Microscopy of Dried Colloidal Films. Soft Matter 2015, 11, 5465–5472. [Google Scholar] [CrossRef] [PubMed]
- Lehmkühler, F.; Fischer, B.; Müller, L.; Ruta, B.; Grübel, G. Structure Beyond Pair Correlations: X-ray Cross-Correlation From Colloidal Crystals. J. Appl. Crystallogr. 2016, 49, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Schroer, M.A.; Westermeier, F.; Lehmkühler, F.; Conrad, H.; Schavkan, A.; Zozulya, A.V.; Fischer, B.; Roseker, W.; Sprung, M.; Gutt, C.; et al. Colloidal Crystallite Suspensions Studied by High Pressure Small Angle X-ray Scattering. Chem. Phys. 2016, 144, 084903. [Google Scholar] [CrossRef] [PubMed]
- Weidman, M.C.; Smilgies, D.-M.; Tisdale, W.A. Kinetics of the Self-Assembly of Nanocrystal Superlattices Measured by Real-Time in situ X-ray Scattering. Nat. Mater. 2016, 15, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Grünwald, M. Orientational Order in Self-Assembled Nanocrystal Superlattices. J. Am. Chem. Soc. 2019, 141, 1980–1988. [Google Scholar] [CrossRef] [PubMed]
- Bian, K.; Choi, J.J.; Kaushik, A.; Clancy, P.; Smilgies, D.-M.; Hanrath, T. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs. ACS Nano 2011, 5, 2815–2823. [Google Scholar] [CrossRef]
- Li, R.; Bian, K.; Hanrath, T.; Bassett, W.A.; Wang, Z. Decoding the Superlattice and Interface Structure of Truncate PbS Nanocrystal-Assembled Supercrystal and Associated Interaction Forces. J. Am. Chem. Soc. 2014, 136, 12047–12055. [Google Scholar] [CrossRef]
- Song, R.-Q.; Cölfen, H. Mesocrystals—Ordered Nanoparticle Superstructures. Adv. Mater. 2010, 22, 1301–1330. [Google Scholar] [CrossRef]
- Talapin, D.V.; Lee, J.-S.; Kovalenko, M.V.; Shevchenko, E.V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389–458. [Google Scholar] [CrossRef]
- Scheele, M.; Brütting, W.; Schreiber, F. Coupled Organic-Inorganic Nanostructures (COIN). Phys. Chem. Chem. Phys. 2015, 17, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Bahrig, L.; Hickey, S.G.; Eychmüller, A. Mesocrystalline Materials and the Involvement of Oriented Attachment—A Review. CrystEngComm 2014, 16, 9408–9424. [Google Scholar] [CrossRef]
- Weidman, M.C.; Yager, K.G.; Tisdale, W.A. Correction to Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange. Chem. Mater. 2015, 27, 474–482. [Google Scholar] [CrossRef]
- André, A.; Zherebetskyy, D.; Hanifi, D.; He, B.; Khoshkhoo, M.S.; Jankowski, M.; Chassé, T.; Wang, L.-W.; Schreiber, F.; Salleo, A.; et al. Toward Conductive Mesocrystalline Assemblies: PbS Nanocrystals Cross-Linked with Tetrathiafulvalene Dicarboxylate. Chem. Mater. 2015, 27, 8105–8115. [Google Scholar] [CrossRef]
- Diroll, B.T.; Ma, X.; Wu, Y.; Murray, C.B. Anisotropic Cracking of Nanocrystal Superlattices. Nano Lett. 2017, 17, 6501–6506. [Google Scholar] [CrossRef]
- Mukharamova, N.; Lapkin, D.; Zaluzhnyy, I.A.; André, A.; Lazarev, S.; Kim, Y.Y.; Sprung, M.; Kurta, R.P.; Schreiber, F.; Vartanyants, I.A.; et al. Revealing Grain Boundaries and Defect Formation in Nanocrystal Superlattices by Nanodiffraction. arXiv 2019, arXiv:1904.02408. [Google Scholar]
- Bodnarchuk, M.I.; Shevchenko, E.V.; Talapin, D.V. Structural Defects in Periodic and Quasicrystalline Binary Nanocrystal Superlattices. J. Am. Chem. Soc. 2011, 133, 20837–20849. [Google Scholar] [CrossRef]
- Bals, S.; Goris, B.; Liz-Marzán, L.M.; van Tendeloo, G. Three-Dimensional Characterization of Noble-Metal Nanoparticles and their Assemblies by Electron Tomography. Angew. Chem. Int. Ed. 2014, 53, 10600–10610. [Google Scholar] [CrossRef]
- Zherebetskyy, D.; Scheele, M.; Zhang, Y.; Bronstein, N.; Thompson, C.; Britt, D.; Salmeron, M.; Alivisatos, P.; Wang, L.-W. Hydroxylation of the Surface of PbS Nanocrystals Passivated with Oleic Acid. Science 2014, 344, 1380–1384. [Google Scholar] [CrossRef]
- Novák, J.; Banerjee, R.; Kornowski, A.; Jankowski, M.; André, A.; Weller, H.; Schreiber, F.; Scheele, M. Site-Specific Ligand Interactions Favor the Tetragonal Distortion of PbS Nanocrystal Superlattices. ACS Appl. Mater. Interfaces 2016, 8, 22526–22533. [Google Scholar] [CrossRef]
- Simon, P.; Bahrig, L.; Baburin, I.A.; Formanek, P.; Röder, F.; Sickmann, J.; Hickey, S.G.; Eychmüller, A.; Lichte, H.; Kniep, R.; et al. Interconnection of Nanoparticles within 2D Superlattices of PbS/Oleic Acid Thin Films. Adv. Mater. 2014, 26, 3042–3049. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.J.; Bealing, C.R.; Bian, K.; Hughes, K.J.; Zhang, W.; Smilgies, D.-M.; Hennig, R.G.; Engstrom, J.R.; Hanrath, T. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage. J. Am. Chem. Soc. 2011, 133, 3131–3138. [Google Scholar] [CrossRef] [PubMed]
- Mancini, G.F.; Latychevskaia, T.; Pennacchio, F.; Reguera, J.; Stellacci, F.; Carbone, F. Order/Disorder Dynamics in a Dodecanethiol-Capped Gold Nanoparticles Supracrystal by Small-Angle Ultrafast Electron Diffraction. Nano. Lett. 2016, 16, 2705–2713. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, U.; Møller, K.B.; Henriksen, N.E. On the Interpretation of Time-Resolved Anisotropic Diffraction Patterns. New J. Phys. 2010, 12, 113022. [Google Scholar] [CrossRef]
- Nilsson, A.; Schreck, S.; Perakis, F.; Pettersson, L.G.M. Probing water with X-ray lasers. Adv. Phys. X 2016, 1, 226–245. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.T.; Chess, J.J.; Montoya, S.A.; Shi, X.; Tamura, N.; Mishra, S.K.; Fischer, P.; McMorran, B.J.; Sinha, S.K.; Fullerton, E.E.; et al. Synthesizing Skyrmion Bound Pairs in Fe-Gd Thin Films. Appl. Phys. Lett. 2016, 109, 22402. [Google Scholar] [CrossRef]
- Hadjimichael, M.; Zatterin, E.; Fernandez-Peña, S.; Leake, S.J.; Zubko, P. Domain Wall Orientations in Ferroelectric Superlattices Probed with Synchrotron X-ray Diffraction. Phys. Rev. Lett. 2018, 120, 037602. [Google Scholar] [CrossRef]
- Kurta, R.P. Multiple-Wavelength Resonant Fluctuation X-ray Scattering. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 165001. [Google Scholar] [CrossRef]
- Liu, A.C.Y.; Neish, M.J.; Stokol, G.; Buckley, G.A.; Smillie, L.A.; de Jonge, M.D.; Ott, R.T.; Kramer, M.J.; Bourgeois, L. Systematic Mapping of Icosahedral Short-Range Order in a Melt-Spun Zr36Cu64 Metallic Glass. Phys. Rev. Lett. 2013, 110, 205505. [Google Scholar] [CrossRef]
- Liu, A.C.Y.; Tabor, R.F.; Bourgeois, L.; de Jonge, M.D.; Mudie, S.T.; Petersen, T.C. Calculation of Projected Bond-Orientational Order Parameters to Quantify Local Symmetries from Transmission Diffraction Data. Phys. Rev. Lett. 2016, 116, 205501. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaluzhnyy, I.A.; Kurta, R.P.; Scheele, M.; Schreiber, F.; Ostrovskii, B.I.; Vartanyants, I.A. Angular X-ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. Materials 2019, 12, 3464. https://doi.org/10.3390/ma12213464
Zaluzhnyy IA, Kurta RP, Scheele M, Schreiber F, Ostrovskii BI, Vartanyants IA. Angular X-ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials. Materials. 2019; 12(21):3464. https://doi.org/10.3390/ma12213464
Chicago/Turabian StyleZaluzhnyy, Ivan A., Ruslan P. Kurta, Marcus Scheele, Frank Schreiber, Boris I. Ostrovskii, and Ivan A. Vartanyants. 2019. "Angular X-ray Cross-Correlation Analysis (AXCCA): Basic Concepts and Recent Applications to Soft Matter and Nanomaterials" Materials 12, no. 21: 3464. https://doi.org/10.3390/ma12213464