Preparation and Phase Change Performance of Graphene Oxide and Silica Composite Na2SO4·10H2O Phase Change Materials (PCMs) as Thermal Energy Storage Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Structure
3.2. Micromorphology and Specific Surface Area Analysis
3.3. Supercooling Degrees of the Na2SO4·10H2O Composites
3.4. Crystallization Behavior
3.5. Phase Change Performance of the Composite PCMs
3.6. Microstructure Analysis of Na2SO4·10H2O Composite PCMs
3.7. Thermal Conductivity of the Composite PCMs
4. Conclusions
- (1)
- Compared to pure SiO2, the dispersion performance of the SiO2 nanoparticles was obviously improved with the introduction of GO, and the specific area of GO–SiO2 was greatly increased. The high specific area of GO–SiO2 enabled a good nucleation effect and produced better crystallization behavior for the Na2SO4·10H2O PCMs. In comparison to pure Na2SO4·10H2O, the supercooling degree of Na2SO4·10H2O composite PCMs could be reduced from 10.2 to as low as 1.2 °C when 0.45 wt% of GO was added.
- (2)
- The phase change performance of Na2SO4·10H2O was improved with the incorporation of GO–SiO2 composites. The crystallization enthalpy of the composite PCMs increased to about 163.4 J/g with the addition of 2.45 wt% of GO–SiO2.
- (3)
- The good compatibility of the hydrophilic GO led to a better combination of SiO2 with the hydrate salts, which further facilitated the nucleation and crystallization of Na2SO4·10H2O. Compared with Na2SO4·10H2O, the thermal conductivity of the composite PCMs was improved due to the large specific area of the GO–SiO2 composites.
- (4)
- The weight ratio of 2.45 wt% of GO–SiO2 in the Na2SO4·10H2O was appropriate for achieving a small supercooling degree, high latent heat of the phase change and high thermal conductivity. The prepared GO–SiO2 composited hydrated salt PCMs demonstrated potential applications in the domain of thermal energy storage materials.
Author Contributions
Funding
Conflicts of Interest
References
- Harish, V.S.K.V.; Kumar, A. A review on modeling and simulation of building energy systems. Renew. Sust. Energy Rev. 2016, 56, 1272–1292. [Google Scholar] [CrossRef]
- Nazir, H.; Batool, M.; Bolivar, O.F.J.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat. Mass. Tran. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- Kenisarin, M.; Mahkamov, K. Salt hydrates as latent heat storage materials: Thermophysical properties and costs. Sol. Energy Mater. Sol. Cells 2016, 145, 255–286. [Google Scholar] [CrossRef]
- Fallahi, A.; Guldentops, G.; Tao, M.; Granados, F.S.; Van, D.S. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Appl. Therm. Eng. 2017, 127, 1427–1441. [Google Scholar] [CrossRef]
- Lin, Y.; Alva, G.; Fang, G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials. Energy 2018, 165, 685–708. [Google Scholar] [CrossRef]
- Mariaenrica, F.; Mariateresa, L.; Antonella, S. Phase change materials for energy efficiency in buildings and their use in mortars. Materials 2019, 12, 1260. [Google Scholar]
- Yang, W.; Zhang, L.; Guo, Y.; Jiang, Z.; He, F.; Xie, C.; Fan, J.; Wu, J.; Zhang, K. Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J. Mater. Sci. 2017, 53, 2566–2575. [Google Scholar] [CrossRef]
- Khadiran, T.; Hussein, M.Z.; Zainal, Z.; Rusli, R. Advanced energy storage materials for building applications and their thermal performance characterization: A review. Renew. Sust. Energy Rev. 2016, 57, 916–928. [Google Scholar] [CrossRef]
- Fang, Y.; Su, J.; Fu, W.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z. Preparation and thermal properties of NaOAc·3H2O-CO(NH2)2 non-eutectic binary mixture PCM for radiant floor heating system. Appl. Therm. Eng. 2020, 167, 114820. [Google Scholar] [CrossRef]
- Zahir, M.H.; Mohamed, S.A.; Saidur, R.; Al-Sulaiman, F.A. Supercooling of phase-change materials and the techniques used to mitigate the phenomenon. Appl. Energy 2019, 240, 793–817. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, Y.; Ling, Z.; Zhang, Z.; Fang, X. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs. Appl. Therm. Eng. 2018, 133, 446–451. [Google Scholar] [CrossRef]
- Huang, J.; Wang, T.; Zhu, P.; Xiao, J. Preparation, characterization, and thermal properties of the microencapsulation of a hydrated salt as phase change energy storage materials. Thermochim. Acta 2013, 557, 1–6. [Google Scholar] [CrossRef]
- Dannemand, M.; Johansen, J.B.; Furbo, S. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Sol. Energy Mater. Sol. Cells 2016, 145, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, X.; Xu, X.; Munyalo, J.M.; Liu, L.; Liu, X.; Lu, M.; Zhao, Y. Preparation and characterization of sodium sulfate pentahydrate/sodium pyrophosphate composite phase change energy storage materials. J. Mol. Liq. 2019, 280, 360–366. [Google Scholar] [CrossRef]
- Shahbaz, K.; AlNashef, I.M.; Lin, R.J.T.; Hashim, M.A.; Mjalli, F.S.; Farid, M.M. A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Sol. Energy Mater. Sol. Cells 2016, 155, 147–154. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Sol. Energy Mater. Sol. Cells 2017, 160, 18–25. [Google Scholar] [CrossRef]
- Xiao, Q.; Yuan, W.; Li, L.; Xu, T. Fabrication and characteristics of composite phase change material based on Ba(OH)2·8H2O for thermal energy storage. Sol. Energy Mater. Sol. Cells 2018, 179, 339–345. [Google Scholar] [CrossRef]
- Liu, C.; Hu, P.; Xu, Z.; Ma, X.; Rao, Z. Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage. Thermochim. Acta 2019, 674, 28–35. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Nian, H.; Zhu, F.; Ren, X.; Dong, O.; Hai, C.; Shen, Y.; Zeng, J. Preparation and thermal energy storage studies of CH3COONa·3H2O–KCl composites salt system with enhanced phase change performance. Appl. Therm. Eng. 2016, 102, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Liu, J.; Wang, Q.; Lin, W.; Fang, X.; Zhang, Z. MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Sol. Energy Mater. Sol. Cells 2017, 172, 195–201. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y. Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material. Appl. Therm. Eng. 2017, 124, 533–538. [Google Scholar] [CrossRef]
- Zou, T.; Fu, W.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage. Int. J. Refrig. 2019, 101, 117–124. [Google Scholar] [CrossRef]
- Peng, S.; Huang, J.; Wang, T.; Zhu, P. Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4·12H2O as inorganic PCM. Thermochim. Acta 2019, 675, 1–8. [Google Scholar] [CrossRef]
- Xu, X.; Cui, H.; Memon, S.A.; Yang, H.; Tang, W. Development of novel composite PCM for thermal energy storage using CaCl2·6H2O with graphene oxide and SrCl2·6H2O. Energy Build. 2017, 156, 163–172. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, H.; Huang, P.; Huang, C.; Xu, F.; Zou, Y.; Chu, H.; Yan, E.; Sun, L. Graphene-oxide-induced lamellar structures used to fabricate novel composite solid-solid phase change materials for thermal energy storage. Chem. Eng. J. 2019, 362, 909–920. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.; Zhang, Z.; He, F.; Yan, S.; Yan, P.J.; Xie, R.; Ju, X.J.; Liu, Z.; Chu, L.Y. Monodisperse Na2SO4·10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage. Ind. Eng. Chem. Res. 2017, 56, 3297–3308. [Google Scholar] [CrossRef]
- Yang, S.; Feng, X.; Wang, L.; Tang, K.; Maier, J.; Mullen, K. Graphene-based nanosheets with a sandwich structure. Angew. Chem. Int. Ed. 2010, 49, 4795–4799. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Shi, L.; Feng, P.; Wang, X.; Zhu, Y.; Wu, G.; Song, G. Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites. Compos. Sci. Technol. 2019, 182, 107751. [Google Scholar] [CrossRef]
- Haeri, S.Z.; Ramezanzadeh, B.; Asghari, M. A novel fabrication of a high performance SiO2-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO2-GO nanohybrids. J. Colloid Interface Sci. 2017, 493, 111–122. [Google Scholar] [CrossRef]
- Yang, J.; Tang, L.S.; Bao, R.Y.; Bai, L.; Liu, Z.Y.; Xie, B.H.; Yang, M.B.; Yang, W. Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol. Energy Mater. Sol. Cells 2018, 174, 56–64. [Google Scholar] [CrossRef]
- Mousavi, A.; Roghani, M.H.; Salami, K.M.; Shahi, S.; Abdollahi, A. Grafting of silica nanoparticles at the surface of graphene for application in novolac-type phenolic resin hybrid composites. Mater. Chem. Phys. 2018, 216, 468–475. [Google Scholar] [CrossRef]
Samples | GO/ml | SiO2/g | Na2SO4·10H2O/g |
---|---|---|---|
GO–SiO2(GS-1) | 20 | 2 | - |
GO–SiO2(GS-2) | 40 | 2 | - |
GO–SiO2(GS-3) | 60 | 2 | - |
S-PCMs | - | 2 | 100 |
GS-PCMs-1 | 20 | 2 | 100 |
GS-PCMs-2 | 40 | 2 | 100 |
GS-PCMS-3 | 60 | 2 | 100 |
Sample | Melting | Crystallization | ||
---|---|---|---|---|
Temperature (°C) | Melting Enthalpy (J/g) | Temperature (°C) | Crystallization Enthalpy (J/g) | |
Na2SO4·10H2O | 33.1 | 208.2 | 9.4 | 67.4 |
S-PCMs | 32.8 | 199.2 | 10.9 | 110.8 |
GS-PCMs-1 | 32.8 | 184.5 | 11.5 | 138.2 |
GS-PCMs-2 | 32.2 | 168.4 | 11.2 | 142.2 |
GS-PCMs-3 | 32.5 | 182.7 | 11.5 | 163.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, W.; Kong, X.; Bao, A.; Fan, C.; Zhang, Y. Preparation and Phase Change Performance of Graphene Oxide and Silica Composite Na2SO4·10H2O Phase Change Materials (PCMs) as Thermal Energy Storage Materials. Materials 2020, 13, 5186. https://doi.org/10.3390/ma13225186
Tao W, Kong X, Bao A, Fan C, Zhang Y. Preparation and Phase Change Performance of Graphene Oxide and Silica Composite Na2SO4·10H2O Phase Change Materials (PCMs) as Thermal Energy Storage Materials. Materials. 2020; 13(22):5186. https://doi.org/10.3390/ma13225186
Chicago/Turabian StyleTao, Wen, Xiangfa Kong, Anyang Bao, Chuangang Fan, and Yi Zhang. 2020. "Preparation and Phase Change Performance of Graphene Oxide and Silica Composite Na2SO4·10H2O Phase Change Materials (PCMs) as Thermal Energy Storage Materials" Materials 13, no. 22: 5186. https://doi.org/10.3390/ma13225186