A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment
Abstract
:1. Introduction
2. Heavy Metals
2.1. Cadmium and Chromium
2.2. Nickel and Lead
2.3. Copper and Zinc
3. Adsorption Mechanism
4. Adsorption Modeling
4.1. Adsorption Kinetics
4.1.1. Lagergren’s Pseudo-First-Order Kinetics
4.1.2. Pseudo-Second-Order Kinetics
5. Adsorption Isotherm
5.1. Freundlich Isotherm
5.2. Langmuir Isotherm
- Adsorbent surface has fixed vacancy on the adsorbent surface with the same energy.
- Only monolayer sorption occurs on the surface of sorbent which is reversible.
- Available empty sites having the same size and shape on the adsorbent surface [91].
5.3. Adsorption Thermodynamics
6. Factors Affecting the Adsorption Process
6.1. Effect of pH on Adsorption
6.2. Effect of Contact Time
6.3. Effect of Other Co-Existing Ions
6.4. Effect of Sorbent Dose
6.5. Regeneration of Adsorbent
6.6. Types of Adsorbent
6.6.1. Bark and Other Resources with Ample Tannin Content
6.6.2. Lignin
6.6.3. Chitosan and Seafood Processing Wastes
6.6.4. Seaweed and Alginate
6.6.5. Xanthate
6.6.6. Zeolites
6.6.7. Clay
6.6.8. Ion Exchange Resins
6.7. Synthetic Polymer Adsorbents
6.8. Aerogels
6.9. Commercially Available Adsorbents
6.9.1. Graphene
6.9.2. Carbon Nanotubes
6.9.3. Activated Carbon
7. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EIMH | (E)-2-[(1H-Imidazol-4-yl)methylidene]-Hydrazinecarbothioamide ligand |
EDTA | Ethylene diaminetetra acetic acid |
PADTC | Poly-ammonium dithiocarbamate |
PSDTC | Poly-sodium dithiocarbamate |
AC | Activated carbon |
ATRP | Atom transfer radical polymerisation |
SEM | Scanning electron microscopy |
EDX | Energy dispersive X-ray |
XRD | X-ray diffraction |
SPGMA | Sulfonated poly(glycidyl methacrylate) |
P(GMA-EGDMA) | Poly(glycidyl-methacrylate-ethylene glycol dimethylacrylate) |
P(AMO-VPY) | Poly(4-acrylolmorpholine-co-4-vinyl pyridine) |
P(DAPA-VPY) | Poly(3-dimethylamino)propylacrylate-co-4-vinyl pyridine |
P(NDPPA-VPY) | Poly(N-3-dimethylamino)propyl methacrylamide-co-4-vinyl pyridine |
References
- Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A.Z.; Ibrahim, M.H.; Tan, K.B.; Gholami, Z.; Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 2014, 113, 115–130. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Lee, S.M. Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv. Colloid Interface Sci. 2013, 201, 68–93. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.; Pereira, M.D.L. Heavy metals and human health. Environ. Health Emerg. Issues Pract. 2012, 10, 227–245. [Google Scholar]
- Escudero, L.B.; Quintas, P.Y.; Wuilloud, R.G.; Dotto, G.L. Biosorption of metals and metalloids. In Green Adsorbents for Pollutant Removal; Springer: Cham, Switzerland, 2018; pp. 35–86. [Google Scholar]
- Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratjer, K.; Dabek-Zlotorzynska, E. Separation of Metal Ions on a Modified Aluminum Oxide. Talanta 1990, 37, 613. [Google Scholar]
- Beauvais, R.A.; Alexandratos, S.D. Polymer-supported reagents for the selective complexation of metal ions: An overview. React. Funct. Polym. 1998, 36, 113–123. [Google Scholar] [CrossRef]
- Cassidy, H.G. Adsorption and Chromatography; Interscience Publishers: New York, NY, USA, 1951. [Google Scholar]
- Kantipuly, C.; Katragadda, S.; Chow, A.; Gesser, H.D. Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 1990, 37, 491–517. [Google Scholar] [CrossRef]
- Reed, B.E.; Lin, W.; Matsumoto, M.R.; Jensen, J.N. Physicochemical processes. Water Environ. Res. 1997, 69, 444–462. [Google Scholar] [CrossRef]
- Markovic, S.; Stankovic, A.; Lopicic, Z.; Lazarevic, S.; Stojanovic, M.; Uskokovic, D. Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. 2015, 3, 716–724. [Google Scholar] [CrossRef]
- He, J.; Lu, Y.; Luo, G. Ca (II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu (II), Cd (II) and Pb (II) from aqueous solutions. Chem. Eng. J. 2014, 244, 202–208. [Google Scholar] [CrossRef]
- Reddy, N.A.; Lakshmipathy, R.; Sarada, N.C. Application of Citrullus lanatus rind as biosorbent for removal of trivalent chromium from aqueous solution. Alex. Eng. J. 2014, 53, 969–975. [Google Scholar] [CrossRef] [Green Version]
- Akkaya, G.; Güzel, F. Bio removal and recovery of Cu (II) and Pb (II) from aqueous solution by a novel biosorbent watermelon (Citrullus lanatus) seed hulls: Kinetic study, equilibrium isotherm, SEM and FTIR analysis. Desalin. Water Treat. 2013, 51, 7311–7322. [Google Scholar] [CrossRef]
- Kumar, B.; Smita, K.; Sánchez, E.; Stael, C.; Cumbal, L. Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecol. Eng. 2016, 93, 152–158. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.M.; Adrian, D.D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2017, 7, 387–419. [Google Scholar]
- Atkovska, K.; Lisichkov, K.; Ruseska, G.; Dimitrov, A.T.; Grozdanov, A. Removal of heavy metal ions from wastewater using conventional and nanosorbents: A review. J. Chem. Technol. Metall. 2018, 53, 202–219. [Google Scholar]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2021, 43, 100951. [Google Scholar]
- Hasanpour, M.; Hatami, M. Application of three-dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci. 2020, 284, 102247. [Google Scholar] [CrossRef]
- Alinnor, I.J. Adsorption of heavy metal ions from aqueous solution by fly ash. Fuel 2007, 86, 853–857. [Google Scholar] [CrossRef]
- Duran, A.; Soylak, M.; Tuncel, S.A. Poly(vinyl pyridine-poly ethylene glycol methacrylate-ethylene glycol dimethacrylate) beads for heavy metal removal. J. Hazard. Mater. 2008, 155, 114–120. [Google Scholar] [CrossRef]
- Kara, A. Poly (ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J. Hazard. Mater. 2004, 106, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Şenkal, B.F.; Biçak, N. Glycidyl methacrylate-based polymer resins with diethylene triamine tetra acetic acid functions for efficient removal of Ca (II) and Mg (II). React. Funct. Polym. 2001, 49, 151–157. [Google Scholar] [CrossRef]
- Coutinho, F.M.B.; Rezende, S.M.; Barbosa, C.C.R. Influence of the morphological structure of macroreticular amidoxime resins on their complexation capacity. React. Funct. Polym. 2001, 49, 235–248. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; Elwakeel, K.Z. Selective separation of mercury (II) using a synthetic resin containing amine and mercaptan as chelating groups. React. Funct. Polym. 2005, 65, 267–275. [Google Scholar] [CrossRef]
- Gang, D.D.; Deng, B.; Lin, L. As (III) removal using an iron-impregnated chitosan sorbent. J. Hazard. Mater. 2010, 182, 156–161. [Google Scholar] [CrossRef]
- Gupta, A.; Yunus, M.; Sankararamakrishnan, N. Chitosan- and Iron–Chitosan-Coated Sand Filters: A Cost-Effective Approach for Enhanced Arsenic Removal. Ind. Eng. Chem. Res. 2013, 52, 2066–2072. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Chen, L.; Huang, X.; Liu, J. Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem. Eng. J. 2014, 251, 25–34. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Hou, Y. Preparation of a Novel Lignin Nanosphere Adsorbent for Enhancing Adsorption of Lead. Molecules 2019, 24, 2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.S.K.; Kumar, C.U.; Rajesh, V.; Rajesh, N. Microwave assisted preparation of n-butylacrylate grafted chitosan and its application for Cr (VI) adsorption. Int. J. Biol. Macromol. 2014, 66, 135–143. [Google Scholar] [CrossRef]
- Shen, C.; Chen, H.; Wu, S.; Wen, Y.; Li, L.; Jiang, Z.; Li, M.; Liu, W. Highly efficient detoxification of Cr (VI) by chitosan–Fe (III) complex: Process and mechanism studies. J. Hazard. Mater. 2013, 244, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lv, X.; Meng, X.; Yu, G.; Wang, D. Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions. Chem. Eng. J. 2013, 220, 412–419. [Google Scholar] [CrossRef]
- Lu, Y.; He, J.; Luo, G. An improved synthesis of chitosan bead for Pb(II) adsorption. Chem. Eng. J. 2013, 226, 271–278. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, X.; Pan, B.; Zhang, Q.; Teng, L.; Chen, Y.; Liu, L. Spherical polystyrene-supported chitosan thin film of fast kinetics and high capacity for copper removal. J. Hazard. Mater. 2014, 276, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Negm, N.A.; El Sheikh, R.; El-Farargy, A.F.; Hefni, H.H.H.; Bekhit, M. Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J. Ind. Eng. Chem. 2015, 21, 526–534. [Google Scholar] [CrossRef]
- Sikder, M.T.; Mihara, Y.; Islam, M.S.; Saito, T.; Tanaka, S.; Kurasaki, M. Preparation and characterization of chitosan–carboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem. Eng. J. 2014, 236, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Allouche, F.-N.; Guibal, E.; Mameri, N. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids Surf. Physicochem. Eng. Asp. 2014, 446, 224–232. [Google Scholar] [CrossRef]
- Jaiswal, A.; Ghsoh, S.S.; Chattopadhyay, A. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal. Langmuir 2012, 28, 15687–15696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, Y.; Li, Y.; Wu, J.; Ma, X.; Yu, C.; Ji, L. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase. J. Hazard. Mater. 2013, 260, 9–15. [Google Scholar] [CrossRef]
- Liu, D.; Li, Z.; Zhu, Y.; Li, Z.; Kumar, R. Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: Adsorption and desorption performance. Carbohydr. Polym. 2014, 111, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Kyzas, G.Z.; Siafaka, P.I.; Lambropoulou, D.A.; Lazaridis, N.K.; Bikiaris, D.N. Poly (itaconic acid)-Grafted Chitosan Adsorbents with Different Cross-Linking for Pb (II) and Cd (II) Uptake. Langmuir 2014, 30, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Monier, M.; Abdel-Latif, D.A. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J. Hazard. Mater. 2012, 209–210, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, M.; Irani, M.; Ismaeili, J.; Piri, H.; Parnian, M.J. Electrospun nanofiber membrane of PEO/Chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chem. Eng. J. 2013, 220, 237–243. [Google Scholar] [CrossRef]
- Heidari, A.; Younesi, H.; Mehraban, Z.; Heikkinen, H. Selective adsorption of Pb (II), Cd (II), and Ni (II) ions from aqueous solution using chitosan–MAA nanoparticles. Int. J. Biol. Macromol. 2013, 61, 251–263. [Google Scholar] [CrossRef]
- Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative adsorption of Ni (II) and Cd (II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chem. Eng. J. 2012, 197, 379–386. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448. [Google Scholar] [CrossRef]
- Milosavljevic, N.B.; Ristic, M.Đ.; Peric-Grujic, A.A.; Filipovic, J.M.; Strbac, S.B.; Rakocevic, Z.L.; Krusic, M.T.K. Sorption of zinc by novel pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J. Hazard. Mater. 2011, 192, 846–854. [Google Scholar] [CrossRef]
- Song, X.; Li, C.; Xu, R.; Wang, K. Molecular-Ion-Imprinted Chitosan Hydrogels for the Selective Adsorption of Silver(I) in Aqueous Solution. Ind. Eng. Chem. Res. 2012, 51, 11261–11265. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Helleur, R. Selective adsorption of Ag+ by ion-imprinted O-carboxymethyl chitosan beads grafted with thiourea–glutaraldehyde. Chem. Eng. J. 2015, 264, 56–65. [Google Scholar] [CrossRef]
- Aliabadi, M.; Irani, M.; Ismaeili, J.; Najafzadeh, S. Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J. Taiwan Inst. Chem. Eng. 2014, 45, 518–526. [Google Scholar] [CrossRef]
- Al-Wakeel, K.Z.; Abd El Monem, H.; Khalil, M.M.H. Removal of divalent manganese from aqueous solution using glycine modified chitosan resin. J. Environ. Chem. Eng. 2015, 3, 179–186. [Google Scholar] [CrossRef]
- Mahfouz, M.G.; Galhoum, A.A.; Gomaa, N.A.; Abdel-Rehem, S.S.; Atia, A.A.; Vincent, T.; Guibal, E. Uranium extraction using magnetic nano-based particles of diethylenetriamine-functionalized chitosan: Equilibrium and kinetic studies. Chem. Eng. J. 2015, 262, 198–209. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Yang, T.; Chen, X.; Liu, X.; Ding, X. Adsorption of uranium by amidoximated chitosan-grafted polyacrylonitrile, using response surface methodology. Carbohydr. Polym. 2015, 121, 79–85. [Google Scholar] [CrossRef]
- Padilla-Rodriguez, A.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L.; Perales-Perez, O.; Roman-Velazquez, F.R. Synthesis of protonated chitosan flakes for the removal of vanadium (III, IV and V) oxyanions from aqueous solutions. Microchem. J. 2015, 118, 1–11. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, J.; Liang, X.; Liu, Z. Adsorption of platinum (IV) and palladium (II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J. Hazard. Mater. 2010, 182, 518–524. [Google Scholar] [CrossRef]
- Yan, L.; Yin, H.; Zhang, S.; Leng, F.; Nan, W.; Li, H. Biosorption of inorganic and organic arsenic from aqueous solution by Acid thiobacillus ferrooxidans BY-3. J. Hazard. Mater. 2010, 178, 209–217. [Google Scholar] [CrossRef]
- Han, W.; Fu, F.; Cheng, Z.; Tang, B.; Wu, S. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater. J. Hazard. Mater. 2016, 302, 437–446. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive removal of nickel (II) ions from aqueous environment: A review. J. Environ. Manag. 2016, 179, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Koedrith, P.; Kim, H.; Weon, J.-I.; Seo, Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int. J. Hyg. Environ. Health 2013, 216, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Karnitz, O., Jr.; Gurgel, L.V.A.; De Melo, J.C.P.; Botaro, V.R.; Melo, T.M.S.; de Freitas Gil, R.P.; Gil, L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresour. Technol. 2007, 98, 1291–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugunan, A.; Thanachayanont, C.; Dutta, J.; Hilborn, J.G. Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci. Technol. Adv. Mater. 2005, 6, 335. [Google Scholar] [CrossRef]
- Krystofova, O.; Shestivska, V.; Galiova, M.; Novotny, K.; Kaiser, J.; Zehnalek, J.; Babula, P.; Opatrilova, R.; Adam, V.; Kizek, R. Sunflower Plants as Bioindicators of Environmental Pollution with Lead (II) Ions. Sensors 2009, 9, 5040–5058. [Google Scholar] [CrossRef]
- Demim, S.; Drouiche, N.; Aouabed, A.; Benayad, T.; Dendene-Badache, O.; Semsari, S. Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol. Eng. 2013, 61, 426–435. [Google Scholar] [CrossRef]
- Filipič, M. Mechanisms of cadmium induced genomic instability. Mutat. Res. Mol. Mech. Mutagen. 2012, 733, 69–77. [Google Scholar] [CrossRef]
- Atieh, M.A.; Bakather, O.Y.; Tawabini, B.S.; Bukhari, A.A.; Khaled, M.; Alharthi, M.; Fettouhi, M.; Abuilaiwi, F.A. Removal of Chromium (III) from Water by Using Modified and Nonmodified Carbon Nanotubes. J. Nanomater. 2010, 1–9. [Google Scholar] [CrossRef]
- Vaiopoulou, E.; Gikas, P. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Water Res. 2012, 46, 549–570. [Google Scholar] [CrossRef]
- Malamis, S.; Katsou, E. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. J. Hazard. Mater. 2013, 252–253, 428–461. [Google Scholar] [CrossRef] [PubMed]
- Mobasherpour, I.; Salahi, E.; Ebrahimi, M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Res. Chem. Intermed. 2012, 38, 2205–2222. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Shao, D.; Hu, J.; Wang, X. Adsorption of Ni (II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. J. Hazard. Mater. 2009, 166, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Acharya, J.; Sahu, J.N.; Mohanty, C.R.; Meikap, B.C. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J. 2009, 149, 249–262. [Google Scholar] [CrossRef]
- Cechinel, M.A.P.; de Souza, A.A.U. Study of lead (II) adsorption onto activated carbon originating from cow bone. J. Clean. Prod. 2014, 65, 342–349. [Google Scholar] [CrossRef]
- Qu, X.; Alvarez, P.J.J.; Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 2013, 47, 3931–3946. [Google Scholar] [CrossRef]
- Akar, S.T.; Akar, T.; Kaynak, Z.; Anilan, B.; Cabuk, A.; Tabak, Ö.; Demir, T.A.; Gedikbey, T. Removal of copper(II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy 2009, 97, 98–104. [Google Scholar] [CrossRef]
- Ding, Y.; Shen, S.Z.; Sun, H.; Sun, K.; Liu, F. Synthesis of l-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens. Actuators B Chem. 2014, 203, 35–43. [Google Scholar] [CrossRef]
- Ennigrou, D.J.; Ali, M.B.S.; Dhahbi, M. Copper and Zinc removal from aqueous solutions by polyacrylic acid assisted-ultrafiltration. Desalination 2014, 343, 82–87. [Google Scholar] [CrossRef]
- Awual, M.R.; Yaita, T.; El-Safty, S.A.; Shiwaku, H.; Suzuki, S.; Okamoto, Y. Copper (II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 2013, 221, 322–330. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, G.M.; Gong, J.L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B.B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468–469, 1014–1027. [Google Scholar] [CrossRef]
- Cristian, P.; Violeta, P.; Anita-Laura, R.; Raluca, I.; Alexandrescu, E.; Andrei, S.; Daniela, I.-E.; Raluca, M.A.; Cristina, M.; Ioana, C.A. Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica. J. Water Process. Eng. 2015, 8, 1–10. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Sequestering heavy metals from wastewater using cow dung. Water Resour. Ind. 2016, 13, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Demirbas, A. Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 2008, 157, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Vunain, E.; Mishra, A.; Mamba, B. Dendrimers, mesoporous silicas and chitosan-based nano sorbents for the removal of heavy-metal ions: A review. Int. J. Biol. Macromol. 2016, 86, 570–586. [Google Scholar] [CrossRef]
- Owsik, I.A.; Kolarz, B.N.; Jermakowicz-Bartkowiak, D.; Jezierska, J. Synthesis and characterization of resins with ligands containing guanidinine derivatives. Cu (II) sorption and coordination properties. Polymer 2003, 44, 5547–5558. [Google Scholar]
- Huang, Y.; Zeng, X.; Guo, L.; Lan, J.; Zhang, L.; Cao, D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol. 2018, 194, 462–469. [Google Scholar] [CrossRef]
- Bharathi, K.S.; Ramesh, S.T. Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci. 2013, 3, 773–790. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Over the adsorption in solution. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Atkins, P.; Paula, J. The rate of chemical reactions. In Atkins’ Physical Chemistry, 9th ed.; OUP Oxford: Oxford, UK, 2010. [Google Scholar]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 2009, 54, 1981–1985. [Google Scholar] [CrossRef]
- Dubey, R.; Bajpai, J.; Bajpai, A.K. Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environ. Nanotechnol. Monit. Manag. 2016, 6, 32–44. [Google Scholar] [CrossRef]
- Razzaz, A.; Ghorban, S.; Hosayni, L.; Irani, M.; Aliabadi, M. Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J. Taiwan Inst. Chem. Eng. 2016, 58, 333–343. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, C.S.; Chang, Y.Y.; Chang, Y.S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl. Mater. Interfaces 2013, 5, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Chen, D.H. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J. Hazard. Mater. 2009, 163, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A. Preparation of ethyleneamine functionalized crosslinked poly (acrylonitrile-ethylene glycol-dimethacrylate) chelating resins for adsorption of lead ions. Sep. Sci. Technol. 2017, 52, 447–455. [Google Scholar] [CrossRef]
- Vilar, V.J.; Botelho, C.M.; Boaventura, R.A. Kinetics and equilibrium modelling of lead uptake by algae Gelidium and algal waste from agar extraction industry. J. Hazard. Mater. 2007, 143, 396–408. [Google Scholar] [CrossRef]
- Kesenci, K.; Say, R.; Denizli, A. Removal of heavy metal ions from water by using poly (ethyleneglycol dimethacrylate-co-acrylamide) beads. Eur. Polym. J. 2002, 38, 1443–1448. [Google Scholar] [CrossRef]
- Kumari, S.; Rath, P.; Kumar, A.S.H.; Tiwari, T.N. Removal of hexavalent chromium using chitosan prepared from shrimp shells. Afr. J. Biotechnol. 2016, 15, 50–54. [Google Scholar]
- Verma, A.; Thakur, S.; Mamba, G.; Gupta, R.K.; Thakur, P.; Thakur, V.K. Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int. J. Biol. Macromol. 2020, 148, 1130–1139. [Google Scholar] [CrossRef]
- Vakili, M.; Deng, S.; Cagnetta, G.; Wang, W.; Meng, P.; Liu, D.; Yu, G. Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review. Sep. Purif. Technol. 2019, 224, 373–387. [Google Scholar] [CrossRef]
- Momina, M.; Shahadat, M.; Isamil, S. Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv. 2018, 8, 24571–24587. [Google Scholar] [CrossRef]
- Qu, R.; Wang, C.; Sun, C.; Ji, C.; Cheng, G.; Wang, X.; Xu, G. Syntheses and adsorption properties for Hg2+ of chelating resin of crosslinked polystyrene-supported 2,5-dimercapto-1,3,4-thiodiazole. J. Appl. Polym. Sci. 2004, 92, 1646–1652. [Google Scholar] [CrossRef]
- Saglam, A.; Bektaş, S.; Patır, S.; Genç, Ö.; Denizli, A. Novel metal complexing ligand: Thiazolidine carrying poly (hydroxyethyl methacrylate) microbeads for removal of cadmium (II) and lead (II) ions from aqueous solutions. React. Funct. Polym. 2001, 47, 185–192. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Singh, A.K.; Sharma, A. Studies on the uptake of lead and zinc by lignin obtained from black liquor—A paper industry waste material. Environ. Technol. 1994, 15, 353–361. [Google Scholar] [CrossRef]
- Rorrer, G.L.; Hsien, T.Y.; Way, J.D. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind. Eng. Chem. Res. 1993, 32, 2170–2178. [Google Scholar] [CrossRef]
- Volesky, B.; Prasetyo, I. Cadmium removal in a biosorption column. Biotechnol. Bioeng. 1994, 43, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Holan, Z.R.; Volesky, B.; Prasetyo, I. Biosorption of cadmium by biomass of marine algae. Biotechnol. Bioeng. 1993, 41, 819–825. [Google Scholar] [CrossRef]
- Bricka, R.M.; Hill, D.O. Metal immobilization by solidification of hydroxide and xanthate sludges. In Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes; ASTM International: West Conshohocken, PA, USA, 1989. [Google Scholar]
- Flynn, C.M.; Carnahan, T.G.; Lindstrom, R.E.; Lindstrom, R.E. Adsorption of Heavy Metal Ions by Xanthated Sawdust; Department of the Interior, Bureau of Mines: Washington, DC, USA, 1979; Volume 8427. [Google Scholar]
- Tare, V.; Chaudhari, S.; Jawed, M. Comparative evaluation of soluble and insoluble xanthate process for heavy metal removal from wastewaters. Water Sci. Technol. 1992, 26, 237–246. [Google Scholar] [CrossRef]
- Kral, P.; Klímek, P.; Mishra, P.K.; Rademacher, P.; Wimmer, R. Preparation and Characterization of Cork Layered Composite Plywood Boards. BioResources 2014, 9, 1977–1985. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Smita, K.; Flores, L.C. Plant mediated detoxification of mercury and lead. Arab. J. Chem. 2017, 10, S2335–S2342. [Google Scholar] [CrossRef] [Green Version]
- Masri, M.S.; Friedman, M. Effect of chemical modification of wool on metal ion binding. J. Appl. Polym. Sci. 1974, 18, 2367–2377. [Google Scholar] [CrossRef]
- Orhan, Y.; Büyükgüngör, H. The Removal of Heavy Metals by Using Agricultural Wastes. Water Sci. Technol. 1993, 28, 247–255. [Google Scholar] [CrossRef]
- Randall, J.M.; Hautala, E.; McDonald, G. Binding of heavy metal ions by formaldehyde-polymerized peanut skins. J. Appl. Polym. Sci. 1978, 22, 379–387. [Google Scholar] [CrossRef]
- Mishra, P.K.; Giagli, K.; Tsalagkas, D.; Mishra, H.; Talegaonkar, S.; Gryc, V.; Wimmer, R. Changing face of wood science in modern era: Contribution of nanotechnology. Recent Pat. Nanotechnol. 2018, 12, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Bryant, P.S.; Petersen, J.N.; Lee, J.M.; Brouns, T.M. Sorption of heavy metals by untreated red fir sawdust. Appl. Biochem. Biotechnol. 1992, 34–35, 777–788. [Google Scholar] [CrossRef]
- Mishra, P.; Wimmer, R. Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer-by-layer deposition. Ultrason. Sonochem. 2017, 35, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Celik, A.; Demirbaş, A. Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sources 2005, 27, 1167–1177. [Google Scholar] [CrossRef]
- Siddiqui, L.; Bag, J.; Mittal, D.; Leekha, A.; Mishra, H.; Mishra, M.; Verma, A.K.; Mishra, P.K.; Ekielski, A.; Iqbal, Z.; et al. Assessing the potential of lignin nanoparticles as drug carrier: Synthesis, cytotoxicity and genotoxicity studies. Int. J. Biol. Macromol. 2020, 152, 786–802. [Google Scholar] [CrossRef]
- Xie, B.; Hou, Y.; Li, Y. Modified lignin nanosphere adsorbent for lead and copper ions. BioResources 2021, 16, 249. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, S.; Wang, X.; Zhang, W.; Lagerquist, L.; Qin, M.; Willfor, S.; Xu, C.; Fatehi, P. Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem. Eng. J. 2019, 372, 82–91. [Google Scholar] [CrossRef]
- Supanchaiyamat, N.; Jetsrisuparb, K.; Knijnenburg, J.T.N.; Tsang, D.C.W.; Hunt, A.J. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour. Technol. 2019, 272, 570–581. [Google Scholar] [CrossRef]
- Berkeley, R. Chitin, Chitosan and their degradative enzymes in microbial polysaccharides and polysaccharides. In RCW Berkeley, CW Goody and DC Elwood; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Yang, T.C.; Zall, R.R. Absorption of metals by natural polymers generated from seafood processing wastes. Ind. Eng. Chem. Prod. Res. Dev. 1984, 23, 168–172. [Google Scholar] [CrossRef]
- Kurita, K.; Sannan, T.; Iwakura, Y. Studies on chitin. VI. Binding of metal cations. J. Appl. Polym. Sci. 1979, 23, 511–515. [Google Scholar] [CrossRef]
- Kurita, K.; Koyama, Y.; Taniguchi, A. Studies on chitin. IX. Crosslinking of water-soluble chitin and evaluation of the products as adsorbents for cupric ion. J. Appl. Polym. Sci. 1986, 31, 1169–1176. [Google Scholar] [CrossRef]
- Bertoni, F.A.; González, J.C.; García, S.I.; Sala, L.F.; Bellu, S.E. Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr. Polym. 2018, 180, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Hsien, T.Y.; Rorrer, G.L. Effects of Acylation and Crosslinking on the Material Properties and Cadmium Ion Adsorption Capacity of Porous Chitosan Beads. Sep. Sci. Technol. 1995, 30, 2455–2475. [Google Scholar] [CrossRef]
- Ishii, H.; Minegishi, M.; Lavitpichayawong, B.; Mitani, T. Synthesis of chitosan-amino acid conjugates and their use in heavy metal uptake. Int. J. Biol. Macromol. 1995, 17, 21–23. [Google Scholar] [CrossRef]
- Mohanasrinivasan, V.; Mishra, M.; Paliwal, J.S.; Singh, S.K.; Selvarajan, E.; Suganthi, V.; Devi, C.S. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech 2013, 4, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unagolla, J.M.; Adikary, S.U. Adsorption characteristics of cadmium and lead heavy metals into locally synthesized Chitosan Biopolymer. Trop. Agric. Res. 2015, 26, 395. [Google Scholar] [CrossRef]
- Kuang, S.P.; Wang, Z.Z.; Liu, J.; Wu, Z.C. Preparation of diethylene-tetramine grafted magnetic chitosan for adsorption of Pb (II) ion from aqueous solutions. J. Hazard. Mater. 2013, 260, 210–219. [Google Scholar] [CrossRef]
- Suresh, K.V.; Daniel, S.K.; Ruckmani, K.; Sivakumar, M. Fabrication of chitosan–magnetite nanocomposite strip for chromium removal. Appl. Nanosci. 2015, 6, 277–285. [Google Scholar]
- Lv, L.; Chen, N.; Feng, C.; Zhang, J.; Li, M. Heavy metal ions removal from aqueous solution by xanthate-modified cross-linked magnetic chitosan/poly (vinyl alcohol) particles. RSC Adv. 2017, 7, 27992–28000. [Google Scholar] [CrossRef] [Green Version]
- Leusch, A.; Holan, Z.R.; Volesky, B. Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. J. Chem. Technol. Biotechnol. 1995, 62, 279–288. [Google Scholar] [CrossRef]
- Russo, R.; Malinconico, M.; Santagata, G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 2007, 8, 3193–3197. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.F.; Abdel-Mohsen, A.M.; Elhadidy, H. Adsorption of arsenic by activated carbon, calcium alginate and their composite beads. Int. J. Biol. Macromol. 2014, 68, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.C.; Dwivedi, A.D.; Le, T.T.; Seo, S.H.; Kim, E.J.; Chang, Y.S. Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr (VI) and As (V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J. 2017, 307, 220–229. [Google Scholar] [CrossRef]
- Soltani, R.D.C.; Khorramabadi, G.S.; Khataee, A.R.; Jorfi, S. Silica nanopowders/alginate composite for adsorption of lead (II) ions in aqueous solutions. J. Taiwan Inst. Chem. Eng. 2014, 45, 973–980. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Katsaros, F.K. Calcium alginate beads from Laminaria digitata for the removal of Cu+ 2 and Cd+ 2 from dilute aqueous metal solutions. Desalination 2008, 224, 293–306. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tare, V. Role of various parameters in synthesis of insoluble agrobased xanthates for removal of copper from wastewater. Bioresour. Technol. 2006, 97, 2407–2413. [Google Scholar] [CrossRef]
- Santiago, I.; Worland, V.; Cazares, E.; Cadena, F. Adsorption of hexavalent chromium onto tailored zeolites. In 47th Purdue Industrial Waste Conference Proceedings; CRC Press: Boca Raton, FL, USA, 1992; pp. 669–710. [Google Scholar]
- He, K.; Chen, Y.; Tang, Z.; Hu, Y. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 2015, 23, 2778–2788. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Chen, G.; Shah, K.J.; Shi, L.; Chiang, P.C. Removal of Cd (II) and Pb (II) ions from aqueous solutions by synthetic mineral adsorbent: Performance and mechanisms. Appl. Surf. Sci. 2017, 409, 296–305. [Google Scholar] [CrossRef]
- Griffin, R.A.; Shimp, N.F. Attenuation of Pollutants in Municipal Landfill Leachate by Clay Minerals; Environmental Protection Agency, Office of Research and Development, Municipal Environmental Research Laboratory: Cincinnati, OH, USA, 1978; Volume 1. [Google Scholar]
- Sharma, Y.C.; Gupta, G.S.; Prasad, G.; Rupainwar, D.C. Use of wollastonite in the removal of Ni (II) from aqueous solutions. Water. Air. Soil Pollut. 1990, 49, 69–79. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Pathak, K.; Singh, V. Fluoride removal from water by adsorption on China clay. Appl. Clay Sci. 1988, 3, 337–346. [Google Scholar] [CrossRef]
- Pradas, E.G.; Sánchez, M.V.; Cruz, F.C.; Viciana, M.S.; Pérez, M.F. Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J. Chem. Technol. Biotechnol. 1994, 59, 289–295. [Google Scholar] [CrossRef]
- Kunin, R. Ion. Exchange Resins; (No. 541.2/K96); John Wiley & Sons Inc.: New York, NY, USA, 1958. [Google Scholar]
- Song, X.; Li, L.; Zhou, L.; Chen, P. Magnetic thiolated/quaternized-chitosan composites design and application for various heavy metal ions removal, including cation and anion. Chem. Eng. Res. Des. 2018, 136, 581–592. [Google Scholar] [CrossRef]
- Jokar, M.; Mirghaffari, N.; Soleimani, M.; Jabbari, M. Preparation and characterization of novel bio ion exchanger from medicinal herb waste (chicory) for the removal of Pb2+ and Cd2+ from aqueous solutions. J. Water Process. Eng. 2019, 28, 88–99. [Google Scholar] [CrossRef]
- Zahed, S.S.H.; Khanlari, S.; Mohammadi, T. Hydrous metal oxide incorporated polyacrylonitrile-based nanocomposite membranes for Cu(II) ions removal. Sep. Purif. Technol. 2019, 213, 151–161. [Google Scholar] [CrossRef]
- Chitpong, N.; Husson, S.M. High-capacity, nanofiber-based ion-exchange membranes for the selective recovery of heavy metals from impaired waters. Sep. Purif. Technol. 2017, 179, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Moghbeli, M.R.; Khajeh, A.; Alikhani, M. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies. Chem. Eng. J. 2017, 309, 552–562. [Google Scholar] [CrossRef]
- Murray, A.; Örmeci, B. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters. J. Environ. Sci. 2019, 75, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Beldar, A.; Tank, R.; Saxena, A.; Gupta, D. Synthesis of styrene-DVB copolymers in presence of diluents. J. Polym. Mater. 2006, 23, 415–421. [Google Scholar]
- Prasad, H.H.; Popat, K.M.; Anand, P.S. Synthesis of Crosslinked Methacrylic Acid-co-ethyleneglycol Dimethacrylate Polymers for the Removal of Copper and Nickel from Water. Indian J. Chem. Technol. 2002, 9, 385–392. [Google Scholar]
- Reddy, K.; Gaur, P.; Anand, P.; Dasare, B. Synthesis and characterization of weakly acidic porous cation exchangers based on methacrylic acid. J. Polym. Mater. 1989, 6, 257–262. [Google Scholar]
- Etorki, A.; Walli, M. Removal of mercury (II) from wastewater using poly (vinyl pyrrolidinone). In Water Pollution IX; WIT Press: Ashurst, UK, 2008. [Google Scholar]
- Denizli, A.; Garipcan, B.; Karabakan, A.; Senoz, H. Synthesis and characterization of poly (hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions. Mater. Sci. Eng. 2005, 25, 448–454. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y.; Chen, S.; Zhang, Q. Preparation of amine group-containing chelating fiber for thorough removal of mercury ions. J. Hazard. Mater. 2009, 171, 288–293. [Google Scholar] [CrossRef]
- Kalaivani, S.S.; Muthukrishnaraj, A.; Sivanesan, S.; Ravikumar, L. Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution. Process. Saf. Environ. Prot. 2016, 104, 11–23. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Y.; Wang, Y.; Liu, S.; Jiang, J.; Cao, C.; Yao, J. Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal. J. Colloid Interface Sci. 2017, 502, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.; Haider, S.; Oh, T.J.; Park, S.Y. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption. J. Membr. Sci. 2008, 322, 400–405. [Google Scholar] [CrossRef]
- Kavaklı, P.A.; Yılmaz, Z.; Şen, M. Investigation of Heavy Metal Ion Adsorption Characteristics of Poly (N, N Dimethylamino Ethylmethacrylate) Hydrogels. Sep. Sci. Technol. 2007, 42, 1245–1254. [Google Scholar] [CrossRef]
- Eisazadeh, H. Removal of arsenic in water using polypyrrole and its composites. Appl. Sci. J. 2008, 3, 10–13. [Google Scholar]
- Zhang, J.; Chen, Y.; Zhao, W.; Li, Y. Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism. R. Soc. Open Sci. 2018, 5, 181013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houari, B.; Louhibi, S.; Tizaoui, K.; Boukli-hacene, L.; Benguella, B.; Roisnel, T.; Dorcet, V. New synthetic material removing heavy metals from aqueous solutions and wastewater. Arab. J. Chem. 2019, 12, 5040–5048. [Google Scholar] [CrossRef]
- Kim, W.; Shin, H.; Maeng, K. Complexation characteristics of poly (acrylamidoxime) chelating resins using inductively coupled plasma atomic emission spectroscopy (Korea). Polymer 1982, 6, 119–125. [Google Scholar]
- Liu, C.Y.; Sun, P.J. Preparation and analytical properties of a chelating resin containing cysteine groups. Anal. Chim. Acta 1981, 132, 187–193. [Google Scholar] [CrossRef]
- Trochimczuk, A.W. Chelating resins with N-substituted diamides of malonic acid as ligands. Eur. Polym. J. 1998, 34, 1657–1662. [Google Scholar] [CrossRef]
- Pekel, N.; Şahiner, N.; Guven, O. Development of new chelating hydrogels based on N-vinyl imidazole and acrylonitrile. Radiat. Phys. Chem. 2000, 59, 485–491. [Google Scholar] [CrossRef]
- Büyüktuncel, E.; Bektas, S.; Genç, Ö.; Denizli, A. Poly (vinylalcohol) coated/Cibacron Blue F3GA-attached polypropylene hollow fiber membranes for removal of cadmium ions from aquatic systems. React. Funct. Polym. 2001, 47, 1–10. [Google Scholar] [CrossRef]
- Ali, A.E.H.; Shawky, H.A.; Abd El Rehim, H.A.; Hegazy, E.A. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur. Polym. J. 2003, 39, 2337–2344. [Google Scholar]
- Kavaklı, P.A.; Guven, O. Removal of concentrated heavy metal ions from aqueous solutions using polymers with enriched amidoxime groups. J. Appl. Polym. Sci. 2004, 93, 1705–1710. [Google Scholar] [CrossRef]
- Sivadasan Chettiar, K.; Sreekumar, K. Polystyrene-supported thiosemicarbazone-transition metal complexes: Synthesis and application as heterogeneous catalysts. Polym. Int. 1999, 48, 455–460. [Google Scholar] [CrossRef]
- Kaşgöz, H.; Özgümüş, S.; Orbay, M. Preparation of modified polyacrylamide hydrogels and application in removal of Cu (II) ion. Polymer 2001, 42, 7497–7502. [Google Scholar] [CrossRef]
- Ortiz-Palacios, J.; Cardoso, J.; Manero, O. Production of macroporous resins for heavy-metal removal. I. Nonfunctionalized polymers. J. Appl. Polym. Sci. 2007, 107, 2203–2210. [Google Scholar] [CrossRef]
- Cardoso, J.; Ortiz-Palacios, J.; Manero, O. Production of microporous resins for heavy-metal removal. II. Functionalized polymers. J. Appl. Polym. Sci. 2007, 107, 3644–3653. [Google Scholar] [CrossRef]
- El-Hamshary, H.; El-Garawany, M.; Assubaie, F.N.; Al-Eed, M. Synthesis of poly(acrylamide-co-4-vinylpyridine) hydrogels and their application in heavy metal removal. J. Appl. Polym. Sci. 2003, 89, 2522–2526. [Google Scholar] [CrossRef]
- Say, R.; Emir, S.; Garipcan, B.; Patir, S.; Denizli, A. Novel methacryloylamidophenylalanine functionalized porous chelating beads for adsorption of heavy metal ions. Adv. Polym. Technol. 2003, 22, 355–364. [Google Scholar] [CrossRef]
- Bilba, N.; Bilba, D.; Moroi, G. Copper (ii) and mercury (ii) retention properties of a polyacrylamidoxime chelating fiber. Environ. Eng. Manag. J. 2006, 5, 297–305. [Google Scholar] [CrossRef]
- Hazer, O.; Kartal, S. Synthesis of a Novel Chelating Resin for the Separation and Preconcentration of Uranium (VI) and Its Spectrophotometric Determination. Anal. Sci. 2009, 25, 547–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uguzdogan, E.; Denkbaş, E.B.; Özturk, E.; Tuncel, S.A.; Kabasakal, O.S. Preparation and characterization of polyethyleneglycolmethacrylate (PEGMA)-co-vinylimidazole (VI) microspheres to use in heavy metal removal. J. Hazard. Mater. 2009, 162, 1073–1080. [Google Scholar] [CrossRef]
- Jing, X.; Liu, F.; Yang, X.; Ling, P.; Li, L.; Long, C.; Li, A. Adsorption performances and mechanisms of the newly synthesized N, N′-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media. J. Hazard. Mater. 2009, 167, 589–596. [Google Scholar] [CrossRef]
- Amoyaw, P.A.; Williams, M.; Bu, X.R. The fast removal of low concentration of cadmium(II) from aqueous media by chelating polymers with salicylaldehyde units. J. Hazard. Mater. 2009, 170, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Denizli, A.; Salih, B.; Pişkin, E. Alkali blue 6B-attached poly (EGDMA-HEMA) microbeads for removal of heavy-metal ions. React. Funct. Polym. 1996, 29, 11–19. [Google Scholar] [CrossRef]
- Denizli, A.; Salih, B.; Pişkin, E. New sorbents for removal of heavy metal ions: Diamine-glow-discharge treated polyhydroxyethylmethacrylate microspheres. J. Chromatogr. 1997, 773, 169–178. [Google Scholar] [CrossRef]
- Arsalani, N.; Hossein, Z.M. Synthesis and characterization of EDTA functionalized polyacrylonitriles and their metal complexes. Iran. Polym. J. 2005, 14, 345–352. [Google Scholar]
- Jermakowicz-Bartkowiak, D.; Kolarz, B.N.; Serwin, A. Sorption of precious metals from acid solutions by functionalised vinyl benzyl chloride–acrylonitryle–divinylbenzene copolymers bearing amino and guanidine ligands. React. Funct. Polym. 2005, 65, 135–142. [Google Scholar] [CrossRef]
- Memon, J.R.; Memon, S.Q.; Bhanger, M.I.; Khuhawar, M.Y.; Allen, G.C.; Memon, G.Z.; Pathan, A.G. Efficiency of Cd (II) removal from aqueous media using chemically modified polystyrene foam. Eur. Polym. J. 2008, 44, 1501–1511. [Google Scholar] [CrossRef]
- Tharanitharan, V.; Srinivasan, K. Removal of Pb (II) from Aqueous Solutions by Using Dioctyl Sodium Sulphosuccinate-EDTA Modified Amberlite XAD-7HP Resin. Indian J. Chem. Technol. 2009, 16, 417–425. [Google Scholar]
- Solangi, I.B.; Memon, S.; Bhanger, M.I. Removal of fluoride from aqueous environment by modified Amberlite resin. J. Hazard. Mater. 2009, 171, 815–819. [Google Scholar] [CrossRef] [PubMed]
- El-Menshawy, A.M.; Kenawy, I.M.; El-Asmy, A.A. Modification of chloromethylated polystyrene with 2-mercabtobenzothiazole for application as a new sorbent for preconcentration and determination of Ag+ from different matrices. J. Hazard. Mater. 2010, 173, 523–527. [Google Scholar] [CrossRef]
- Sun, C.; Qu, R.; Xu, Q.; Chen, H.; Ji, C.; Wang, C.; Sun, Y.; Cheng, G. Preparation of crosslinked polystyrene-supported ethylenediamine via a S-containing spacer and adsorption properties towards metal ions. Eur. Polym. J. 2007, 43, 1501–1509. [Google Scholar] [CrossRef]
- Haratake, M.; Yasumoto, K.; Ono, M.; Akashi, M.; Nakayama, M. Synthesis of hydrophilic macroporous chelating polymers and their versatility in the preconcentration of metals in seawater samples. Anal. Chim. Acta 2006, 561, 183–190. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; Abou-El-Enein, S.A.; Yousif, A.M. Studies on uptake behaviour of copper (II) and lead (II) by amine chelating resins with different textural properties. Sep. Purif. Technol. 2003, 33, 295–301. [Google Scholar] [CrossRef]
- Choi, S.H.; Nho, Y.C.; Kim, G.T. Adsorption of Pb2+ and Pd2+ on polyethylene membrane with amino group modified by radiation-induced graft copolymerization. J. Appl. Polym. Sci. 1999, 71, 643–650. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; El-Enein, S.A.; Yousif, A.M. Effect of Chain Length of Aliphatic Amines Immobilized on a Magnetic Glycidyl Methacrylate Resin towards the Uptake Behavior of Hg (II) from Aqueous Solutions. Sep. Sci. Technol. 2007, 42, 403–420. [Google Scholar] [CrossRef]
- Bicak, N.; Sherrington, D.C.; Sungur, S.; Tan, N. A glycidyl methacrylate-based resin with pendant urea groups as a high-capacity mercury specific sorbent. React. Funct. Polym. 2003, 54, 141–147. [Google Scholar] [CrossRef]
- Şenkal, B.F.; Yavuz, E. Crosslinked poly (glycidyl methacrylate)-based resin for removal of mercury from aqueous solutions. J. Appl. Polym. Sci. 2006, 101, 348–352. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, M.S.; Hsu, K.R. Recovery of Cu (II) and Cd (II) by a chelating resin containing aspartate groups. J. Hazard. Mater. 2008, 152, 986–993. [Google Scholar] [CrossRef] [PubMed]
- Nastasovic, A.; Jovanovic, S.; Jakovljevic, D.; Stankovic, S.; Onjia, A. Noble metal binding on macroporous poly (GMA-co-EGDMA) modified with ethylenediamine. J. Serb. Chem. Soc. 2004, 69, 455–460. [Google Scholar] [CrossRef]
- Gupta, A.; Jain, R.; Gupta, D.C. Studies on uptake behavior of Hg (II) and Pb (II) by amine modified glycidyl methacrylate–styrene–N, N′-methylenebisacrylamide terpolymer. React. Funct. Polym. 2015, 93, 22–29. [Google Scholar] [CrossRef]
- Azanova, V.V.; Hradil, J.; Švec, F.; Pelzbauer, Z.; Panarin, E.F. Reactive polymers. 60. glycidyl methacrylate-styrene-ethylene dimethacrylate terpolymers modified with strong-acid groups. React. Polym. 1990, 12, 247–260. [Google Scholar]
- Lindsay, D.; Sherrington, D.C. Synthesis of chelating resins based on poly(styrene-co-divinylbenzene) and poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate). React. Polym. Ion. Exch. Sorbents 1985, 3, 327–339. [Google Scholar] [CrossRef]
- Verweij, P.D.; van der Geest, J.S.N.; Driessen, W.L.; Reedijk, J.; Sherrington, D.C. Metal uptake by a novel benzimidazole ligand immobilized onto poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate). React. Polym. 1992, 18, 191–201. [Google Scholar] [CrossRef]
- Bayramoğlu, G.; Arica, M.Y. Kinetics of mercury ions removal from synthetic aqueous solutions using by novel magnetic p(GMA-MMA-EGDMA) beads. J. Hazard. Mater. 2007, 144, 449–457. [Google Scholar] [CrossRef]
- Atia, A.A.; Donia, A.M.; Awed, H.A. Synthesis of magnetic chelating resins functionalized with tetraethylenepentamine for adsorption of molybdate anions from aqueous solutions. J. Hazard. Mater. 2008, 155, 100–108. [Google Scholar] [CrossRef]
- Liu, C.; Bai, R.; San Ly, Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 2008, 42, 1511–1522. [Google Scholar] [CrossRef]
- Mohy-Eldin, M.S.; Elkady, M.F.; Abu-Saied, M.A.; Rahman, A.M.A.; Soliman, E.A.; Elzatahry, A.A.; Youssef, M.E. Removal of cadmium ions from synthetic aqueous solutions with a novel nanosulfonated poly (glycidyl methacrylate) cation exchanger: Kinetic and equilibrium studies. J. Appl. Polym. Sci. 2010, 118, 3111–3122. [Google Scholar] [CrossRef]
- Nastasovic, A.; Sandic, Z.; Surucic, L.; Maksin, D.; Jakovljevic, D.; Onjia, A. Kinetics of hexavalent chromium sorption on amino-functionalized macroporous glycidyl methacrylate copolymer. J. Hazard. Mater. 2009, 171, 153–159. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Jalajamony, S.; Divya, L. Efficiency of Amine-Modified Poly (glycidyl methacrylate)-Grafted Cellulose in the Removal and Recovery of Vanadium(V) from Aqueous Solutions. Ind. Eng. Chem. Res. 2009, 48, 2118–2124. [Google Scholar] [CrossRef]
- Gokila, S.; Gomathi, T.; Sudha, P.N.; Anil, S. Removal of the heavy metal ion chromiuim (VI) using Chitosan and Alginate nanocomposites. Int. J. Biol. Macromol. 2017, 104, 1459–1468. [Google Scholar] [CrossRef]
- Liu, C.; Lei, X.; Wang, L.; Jia, J.; Liang, X.; Zhao, X.; Zhu, H. Investigation on the removal performances of heavy metal ions with the layer-by-layer assembled forward osmosis membranes. Chem. Eng. J. 2017, 327, 60–70. [Google Scholar] [CrossRef]
- Lam, B.; Deon, S.; Morin-Crini, N.; Crini, G.; Fievet, P. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. J. Clean. Prod. 2018, 171, 927–933. [Google Scholar] [CrossRef]
- Li, Z.; Kong, Y.; Ge, Y. Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution. Chem. Eng. J. 2015, 270, 229–234. [Google Scholar] [CrossRef]
- Ali, A.; Mannan, A.; Hussain, I.; Hussain, I.; Zia, M. Effective removal of metal ions from aqueous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ. Nanotechnol. Monit. Manag. 2018, 9, 1–11. [Google Scholar]
- Zhou, G.; Luo, J.; Liu, C.; Chu, L.; Crittenden, J. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 2018, 131, 246–254. [Google Scholar] [CrossRef]
- Racho, P.; Phalathip, P. Modified Nylon Fibers with Amino Chelating Groups for Heavy Metal Removal. Energy Procedia 2017, 118, 195–200. [Google Scholar] [CrossRef]
- Argun, M.E.; Dursun, S. Removal of heavy metal ions using chemically modified adsorbents. J. Int. Environ. Appl. Sci. 2006, 1, 27–40. [Google Scholar]
- Chen, Y.; Zhao, W.; Wang, H.; Li, Y.; Li, C. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance. R. Soc. Open Sci. 2018, 5, 171665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, D.; Lee, J.S.; Patel, H.A.; Jakobsen, M.H.; Hwang, Y.; Yavuz, C.T.; Hansen, H.C.B.; Andersen, H.R. Selective removal of heavy metal ions by disulfide linked polymer networks. J. Hazard. Mater. 2017, 332, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Wu, D.; Wang, X.; Huang, W.; Lawless, D.; Feng, X. Removal of heavy metals from water using polyvinylamine by polymer-enhanced ultrafiltration and flocculation. Sep. Purif. Technol. 2016, 158, 124–136. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Y.; Yang, Q.; Yan, Q. Preparation of poly-ammonium/sodium dithiocarbamate for the efficient removal of chelated heavy metal ions from aqueous environments. J. Environ. Chem. Eng. 2018, 6, 2344–2354. [Google Scholar] [CrossRef]
- Kistler, S.S.J.N. Coherent expanded aerogels and jellies. Nature 1931, 127, 741. [Google Scholar] [CrossRef]
- Maleki, H.; Hüsing, N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B Environ. 2018, 221, 530–555. [Google Scholar] [CrossRef]
- Gurav, J.L.; Jung, I.K.; Park, H.H.; Kang, E.S.; Nadargi, D.Y. Silica aerogel: Synthesis and applications. J. Nanomater. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Kadirvelu, K.; Goel, J.; Rajagopal, C. Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogel as adsorbent. J. Hazard. Mater. 2008, 153, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Meena, A.K.; Mishra, G.K.; Rai, P.K.; Rajagopal, C.; Nagar, P.N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 2005, 122, 161–170. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2005, 80, 469–476. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C. Competitive sorption of Cu (II), Pb (II) and Hg (II) ions from aqueous solution using coconut shell-based activated carbon. Adsorpt. Sci. Technol. 2004, 22, 257–273. [Google Scholar] [CrossRef]
- Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Cadmium (II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res. 2006, 45, 6531–6537. [Google Scholar] [CrossRef]
- Motahari, S.; Nodeh, M.; Maghsoudi, K. Absorption of heavy metals using resorcinol formaldehyde aerogel modified with amine groups. Desalin. Water Treat. 2016, 57, 16886–16897. [Google Scholar] [CrossRef]
- Veselá, P.; Slovák, V.; Zelenka, T.; Koštejn, M.; Mucha, M. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu (II) ions and phenol. J. Anal. Appl. Pyrolysis 2016, 121, 29–40. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, W.; Zhang, S.; Wen, B.; Su, Z. Advanced 3D nanohybrid foam based on graphene oxide: Facile fabrication strategy, interfacial synergetic mechanism, and excellent photocatalytic performance. Sci. China Mater. 2019, 62, 1888–1897. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Chen, L.; Li, W.; Zhou, Z.; Fang, Z.; Xu, Z.; Qian, X. Self-assembled three-dimensional double network graphene oxide/polyacrylic acid hybrid aerogel for removal of Cu 2+ from aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 34438–34447. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Z.; Yang, Q.; Huang, R. Efficient removal of lead, copper and cadmium ions from water by a porous calcium alginate/graphene oxide composite aerogel. Nanomaterials 2018, 8, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabrizi, N.; Zamani, S.J.W.S. Removal of Pb (II) from aqueous solutions by graphene, oxide aerogels. Water Sci. Technol. 2016, 74, 256–265. [Google Scholar] [CrossRef]
- Yu, B.; Xu, J.; Liu, J.H.; Yang, S.T.; Luo, J.; Zhou, Q.; Wan, J.; Liao, R.; Wang, H.; Liu, Y. Adsorption behavior of copper ions on graphene oxide–chitosan aerogel. J. Environ. Chem. Eng. 2013, 1, 1044–1050. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986. [Google Scholar] [CrossRef]
- Weng, X.; Wu, J.; Ma, L.; Owens, G.; Chen, Z. Impact of synthesis conditions on Pb (II) removal efficiency from aqueous solution by green tea extract reduced graphene oxide. Chem. Eng. J. 2019, 359, 976–981. [Google Scholar] [CrossRef]
- Fu, W.; Huang, Z. Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu (II), Cd (II), Pb (II), and Hg (II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 2018, 209, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Pang, H.; Yu, S.; Ai, Y.; Ma, X.; Song, G.; Hayat, T.; Alsaedi, A.; Wang, X. Effect of graphene oxide surface modification on the elimination of Co (II) from aqueous solutions. Chem. Eng. J. 2018, 344, 380–390. [Google Scholar] [CrossRef]
- Pakulski, D.; Czepa, W.; Witomska, S.; Aliprandi, A.; Pawluć, P.; Patroniak, V.; Ciesielski, A.; Samorì, P. Graphene oxide-branched polyethylenimine foams for efficient removal of toxic cations from water. J. Mater. Chem. A 2018, 6, 9384–9390. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Cheng, B.; You, W.; Yu, J.; Ho, W. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr (VI) ions. J. Hazard. Mater. 2019, 369, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Qiu, H.; Si, Y.; Wang, W.; Gao, J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 2011, 49, 827–837. [Google Scholar] [CrossRef]
- Yusuf, M.; Elfghi, F.M.; Zaidi, S.A.; Abdullah, E.C.; Khan, M.A. Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: A systematic and comprehensive overview. RSC Adv. 2015, 5, 50392–50420. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Y.; Zhou, H.; Ye, T.; Huang, Z.; Liu, R.; Kuang, Y. Highly efficient removal of Cu (II) from aqueous solution by using graphene oxide. Water Air Soil Pollut. 2013, 224, 1372. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 211, 406–411. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012, 136, 538–544. [Google Scholar] [CrossRef]
- Hao, L.; Song, H.; Zhang, L.; Wan, X.; Tang, Y.; Lv, Y. SiO2/graphene composite for highly selective adsorption of Pb (II) ion. J. Colloid Interface Sci. 2012, 369, 381–387. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb (II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011, 40, 10945–10952. [Google Scholar] [CrossRef]
- Dai, H. Carbon nanotubes: Opportunities and challenges. Surf. Sci. 2002, 500, 218–241. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Stoddart, J.F. Noncovalent functionalization of single-walled carbon nanotubes. Accounts Chem. Res. 2009, 42, 1161–1171. [Google Scholar] [CrossRef]
- Luo, C.; Wei, R.; Guo, D.; Zhang, S.; Yan, S. Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem. Eng. J. 2013, 225, 406–415. [Google Scholar] [CrossRef]
- Liang, J.; Liu, J.; Yuan, X.; Dong, H.; Zeng, G.; Wu, H.; Wang, H.; Liu, J.; Hua, S.; Zhang, S.; et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 2015, 273, 101–110. [Google Scholar] [CrossRef]
- Ren, X.; Chen, C.; Nagatsu, M.; Wang, X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410. [Google Scholar] [CrossRef]
- Al-Khaldi, F.A.; Abusharkh, B.; Khaled, M.; Atieh, M.A.; Nasser, M.S.; Saleh, T.A.; Agarwal, S.; Tyagi, I.; Gupta, V.K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 2015, 204, 255–263. [Google Scholar]
- Shao, D.; Jiang, Z.; Wang, X. SDBS modified XC-72 carbon for the removal of Pb (II) from aqueous solutions. Plasma Process. Polym. 2010, 7, 552–560. [Google Scholar] [CrossRef]
- Ren, X.; Shao, D.; Zhao, G.; Sheng, G.; Hu, J.; Yang, S.; Wang, X. Plasma Induced Multiwalled Carbon Nanotube Grafted with 2-Vinylpyridine for Preconcentration of Pb (II) from Aqueous Solutions. Plasma Process. Polym. 2011, 8, 589–598. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Shao, D.; Ren, X.; Wang, X. Poly (acrylic acid) grafted multiwall carbon nanotubes by plasma techniques for Co (II) removal from aqueous solution. Chem. Eng. J. 2012, 210, 475–481. [Google Scholar] [CrossRef]
- Yu, J.G.; Zhao, X.H.; Yu, L.Y.; Jiao, F.P.; Jiang, J.H.; Chen, X.Q. Removal, recovery and enrichment of metals from aqueous solutions using carbon nanotubes. J. Radioanal. Nucl. Chem. 2014, 299, 1155–1163. [Google Scholar] [CrossRef]
- Kahrizi, P.; Mohseni-Shahri, F.S.; Moeinpour, F. Adsorptive removal of cadmium from aqueous solutions using NiFe 2 O 4/hydroxyapatite/graphene quantum dots as a novel nano-adsorbent. J. Nanostructure Chem. 2018, 8, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.L.; Ding, J.; Luan, Z.; Di, J.; Zhu, Y.; Xu, C.; Wu, D.; Wei, B. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, 2787–2792. [Google Scholar]
- Van Oss, C.J. A review of:“Active Carbon.” RC Bansal, JB Donnet and F. Stoeckli; Marcel Dekker, New York, 1988. pp. 482, $135.00. J. Dispers. Sci. Technol. 1990, 11, 323. [Google Scholar] [CrossRef]
- Bahl, O.; Dhami, T.; Manocha, L.M. Advances in carbon and carbon materials. In Indo Carbon 2001—Conference (2001: Indian Carbon Society); Shipra: New Delhi, India, 2002. [Google Scholar]
- Singh, A.; Lal, D. Microporous activated carbon spheres prepared from resole-type crosslinked phenolic beads by physical activation. J. Appl. Polym. Sci. 2008, 110, 3283–3291. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Khalifa, M.A.; Al-sherady, M.A.; Mohamed, A.K.; El-Demerdash, F.M. A novel multifunctional sandwiched activated carbon between manganese and tin oxides nanoparticles for removal of divalent metal ions. Powder Technol. 2019, 351, 169–177. [Google Scholar] [CrossRef]
- Cao, F.; Lian, C.; Yu, J.; Yang, H.; Lin, S. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Bioresour. Technol. 2019, 276, 211–218. [Google Scholar] [CrossRef]
- Eeshwarasinghe, D.; Loganathan, P.; Vigneswaran, S. Simultaneous removal of polycyclic aromatic hydrocarbons and heavy metals from water using granular activated carbon. Chemosphere 2009, 223, 616–627. [Google Scholar] [CrossRef]
- Li, L.Y.; Gong, X.; Abida, O. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Manag. 2019, 87, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Sreekumari, S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 2017, 230, 686–695. [Google Scholar] [CrossRef]
- Dong, L.; Hou, L.; Wang, Z.; Gu, P.; Chen, G.; Jiang, R. A new function of spent activated carbon in BAC process: Removing heavy metals by ion exchange mechanism. J. Hazard. Mater. 2018, 359, 76–84. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Govindan, B.; Banat, F.; Sagadevan, V.; Purushothaman, M.; Show, P.L. Date pits activated carbon for divalent lead ions removal. J. Biosci. Bioeng. 2019, 128, 88–97. [Google Scholar] [CrossRef]
- Jain, M.; Yadav, M.; Kohout, T.; Lahtinen, M.; Garg, V.K.; Sillanpää, M. Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution. Water Resour. Ind. 2018, 20, 54–74. [Google Scholar] [CrossRef]
Langmuir Isotherm | Plot |
---|---|
Non-linear form | = |
Type-I | + |
Type-II | + |
Type-III | |
Freundlich Isotherm | |
Non-linear form | = 1/n |
Linear form | ln ( = ln () + ln () ln ( |
Adsorption kinetics | |
(i) Pseudo-first order | dqt/dt = K1 (qe − qt) |
(ii) Pseudo-second order | dqt/dt = K (qe − qt) 2 |
Thermodynamics | |
KC = CA/Ce | |
ΔG° = ΔH° − TΔS° | |
ΔG° = −RTlinKc |
S. No. | Adsorbent | Metal Ion/Adsorption Capacity | Reference |
---|---|---|---|
1 | Lignin | Pb2+ = 1865 mg/g, Zn2+ = 95 mg/g | [107] |
2 | Chitosan (powder) | Cd2+ = 420 mg/g | [108] |
3 | Chitosan (beads) | Cd2+ = 518 mg/g | [108] |
4 | Seaweed brown algae | Cd2+ = 67 mg/g | [109] |
5 | A. nodosum seaweed | Cd2+ = 215 mg/g | [109] |
6 | Formaldehyde cross-linked A. nodosum seaweed | Cd2+ = 149 mg/g | [110] |
7 | Starch xanthate | Cd2+ = 33.3 mg/g Cr2+ = 17.6 mg/g Hg2+ = 1.15 mg/g | [111,112] |
8 | Cellulose xanthate | Cd2+ = 19.9 mg/g Cr2+ = 19.7 mg/g Hg2+ = 0.64 mg/g | [111] |
9 | Xanthated sawdust | Cd2+ = 21.4 mg/g Hg2+ = 30.1 ± 40.1 | [112] |
10 | Zeolites | Pb2+ = 155.4 mg/g Cd2+ = 84.3 mg/g Cr3+ = 26.0 mg/g Hg2+ = 150.4 mg/g | [113] |
S. No. | Adsorbent | Adsorption Capacity | Reference |
---|---|---|---|
1 | Poly (ethylene glycol dimetharylate-n-vinyl imidazole) | 1. Hg = 74.2 mg/g 2. Pb = 92.5 mg/g 3. Cd = 45.6 mg/g | [26] |
2 | Poly (vinyl pyrrolidinone) | 1. Hg = 26.5 mg/g 2. Pb = 20.2 mg/g 3. Cd = 15.3 mg/g | [164] |
3 | Poly (hydroxy ethyl methacrylate-L-glutamic acid) | 1. Hg = 26.8 mg/g 2. Pb = 42.5 mg/g 3. Cd = 17.6 mg/g | [165] |
4 | Poly (2-hydroxy ethyl methacrylate-methacrylolmidophenylalanine) | 1. Hg = 669.4 mg/g 2. Pb = 584.4 mg/g 3. Cd = 268.4 mg/g | [165] |
5 | Acrylonitrile onto polypropylene fiber having diethylene triamine group | Hg = 657.9 mg/g | [166] |
6 | Polyurethane | 1.Pb = 236.5 mg/g 2.Ni = 217.5 mg/g | [167] |
7 | Porous attapulgite (ATP)/polyethersulfone beads | 1.Cu = 25.3 mg/g 2.Cd = 32.7 mg/g | [168] |
8 | amidoxime improved polyacrylonitrile (PAN) nanofibers | 1.Cu = 52.70 mg/g 2. Pb = 263.45 mg/g | [169] |
S. No. | Adsorbent | Metal Ion | Adsorption Capacity | References |
---|---|---|---|---|
1 | Amine-mercaptan modified poly (GMA-DVB) | Hg(II) | 621.8 mg/g | [29] |
2 | (GMA-MMA-DVB) having pendant urea group | Hg(II) | 7.8 mmol/g | [205] |
3 | Dibutylamine and chloroacetamide modified poly (GMA-EGDMA) | Hg(II) | 2.5 mmol/g | [206] |
4 | Cross-linked Poly (GMA-aspartic acid) | Cu(II) | 1.40 mmol/g | [207] |
Cd(II) | 1.28 mmol/g | |||
5 | Ethylenediamine modified poly(GMA--co-EGDMA) | Pt(IV) | 1.3 mmol/g | [208] |
6 | Ferric oxide containing poly (GMA-MMA-EGDMA) | Hg(II) | 124.8 mg/g | [29] |
7 | PGMA–EDA PGMA–DETA PGMA–TEPA | Hg (II) | 4.76 mmol/g 4.80 mmol/g 4.21 mmol/g | [209] |
8 | PGMA–EDA PGMA–DETA PGMA–TEPA | Pb(II) | 4.74 mmol/g 4.76 mmol/g 4.73 mmol/g | [209] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. https://doi.org/10.3390/ma14164702
Gupta A, Sharma V, Sharma K, Kumar V, Choudhary S, Mankotia P, Kumar B, Mishra H, Moulick A, Ekielski A, et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials. 2021; 14(16):4702. https://doi.org/10.3390/ma14164702
Chicago/Turabian StyleGupta, Archana, Vishal Sharma, Kashma Sharma, Vijay Kumar, Sonal Choudhary, Priyanka Mankotia, Brajesh Kumar, Harshita Mishra, Amitava Moulick, Adam Ekielski, and et al. 2021. "A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment" Materials 14, no. 16: 4702. https://doi.org/10.3390/ma14164702