Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Preparation of Activated Carbon Fabric
2.3. Characterization of Activated Carbon Fabric
2.4. Electromagnetic Shielding Effectiveness of Activated Carbon Fabric
3. Results and Discussions
3.1. Physical Properties of Activated Carbon Fabric
3.2. Characterization of Activated Carbon Fabric
3.3. Electromagnetic Shielding Ability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pensupa, N.; Leu, S.-Y.; Hu, Y.; Du, C.; Liu, H.; Jing, H.; Wang, H.; Lin, C.S.K. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. Top. Curr. Chem. 2017, 375, 76. [Google Scholar] [CrossRef]
- Overcash, M. A Comparison of Reusable and Disposable Perioperative Textiles: Sustainability State-of-the-Art 2012. Anesth. Analg. 2012, 114, 1055–1066. [Google Scholar] [CrossRef]
- Huang, Z.; Yilmaz, E.; Cao, S. Analysis of Strength and Microstructural Characteristics of Mine Backfills Containing Fly Ash and Desulfurized Gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Free Analysis: Carbon Fiber Market. Available online: https://www.zionmarketresearch.com/market-analysis/carbon-fiber-market (accessed on 22 June 2020).
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Recycling in Textiles—1st Edition. Available online: https://www.elsevier.com/books/recycling-in-textiles/wang/978-1-85573-952-9 (accessed on 22 June 2020).
- Recycling Textile and Plastic Waste—1st Edition. Available online: https://www.elsevier.com/books/recycling-textile-and-plastic-waste/horrocks/978-1-85573-306-0 (accessed on 22 June 2020).
- Cao, K.; Siepermann, C.P.; Yang, M.; Waas, A.M.; Kotov, N.A.; Thouless, M.D.; Arruda, E.M. Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 2013, 23, 2072–2080. [Google Scholar] [CrossRef]
- Castro-Muñiz, A.; Martínez-Alonso, A.; Tascón, J.M.D. Modification of the pyrolysis/carbonization of PPTA polymer by intermediate isothermal treatments. Carbon 2008, 46, 985–993. [Google Scholar] [CrossRef]
- Bhat, G.S.; Cook, F.L.; Abhiraman, A.S.; Peebles, L.H. New aspects in the stabilization of acrylic fibers for carbon fibers, Carbon. Carbon 1990, 28, 377. [Google Scholar] [CrossRef]
- Theydan, S.K.; Ahmed, M.J. Optimization of preparation conditions for activated carbons from date stones using response surface methodology. Powder Technol. 2012, 224, 101. [Google Scholar] [CrossRef]
- Deng, H.; Yang, L.; Tao, G.; Dai, J. Preparation and characterization of activated carbon from cotton stalk bymicrowave assisted chemical activation—Application in methylene blueadsorption from aqueous solution. J. Hazard. Mater. 2009, 166, 514–1521. [Google Scholar] [CrossRef]
- Zięzio, M.; Charmas, B.; Jedynak, K.; Hawryluk, M.; Kucio, K. Preparation and characterization of activated carbons obtained from the waste materials impregnated with phosphoric acid(V). Appl. Nanosci. 2020, 10, 4703–4716. [Google Scholar] [CrossRef]
- Freeman, J.; Tomlinson, J.; Sing, K.; Theocharis, C. Adsorption of nitrogen and water vapour by activated kevlar chars. Carbon 1993, 31, 865–869. [Google Scholar] [CrossRef]
- Castro-Muñiz, A.; Martínez-Alonso, A.; Tascón, J.M.D. Effect of PPTA pre-impregnation with phosphoric acid on the porous texture of carbons prepared by CO2activation of PPTA chars. Microporous Mesoporous Mater. 2009, 119, 284–289. [Google Scholar] [CrossRef]
- Choma, J.; Osuchowski, L.; Marszewski, M.; Dziura, A.; Jaroniec, M. Developing microporosity in Kevlar®-derived carbon fibers by CO2activation for CO2adsorption. J. CO2 Util. 2016, 16, 17–22. [Google Scholar] [CrossRef]
- Villar-Rodil, S.; Denoyel, R.; Rouquerol, J.; Martínez-Alonso, A.; Tascón, J.M.D. Characterization of aramid based activated carbon fibres by adsorption and immersion techniques. Carbon 2002, 40, 1376–1380. [Google Scholar] [CrossRef] [Green Version]
- Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Activated carbon fibers from Nomex by chemical activation with phosphoric acid. Carbon 2004, 42, 1419–1426. [Google Scholar] [CrossRef]
- Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Nomex polyaramid as a precursor for activated carbon fibres by phosphoric acid activation. Temperature and time effects. Microporous Mesoporous Mater. 2004, 75, 73–80. [Google Scholar] [CrossRef]
- Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Beneficial effects of phosphoric acid as an additive in the preparation of activated carbon fibers from Nomex aramid fibers by physical activation. Fuel Process. Technol. 2002, 77–78, 237–244. [Google Scholar] [CrossRef]
- Castro-Muñiz, A.; Suárez-García, F.; Martínez-Alonso, A.; Tascón, J.M.D. Activated carbon fibers with a high content of surface functional groups by phosphoric acid activation of PPTA. J. Colloid Interface Sci. 2011, 361, 307–315. [Google Scholar] [CrossRef]
- Ko, K.S.; Park, C.W.; Yoon, S.H.; Oh, S.M. Preparation of Kevlar-derived carbon fibers and their anodic performances in Li secondary batteries. Carbon 2001, 39, 1619–1625. [Google Scholar] [CrossRef]
- Lu, Z.; Dang, W.; Zhao, Y.; Wang, L.; Zhang, M.; Liu, G. Toward high-performance poly(para-phenylene terephthalamide) (PPTA)-based composite paper via hot-pressing: The key role of partial fibrillation and surface activation. RSC Adv. 2017, 7, 7293–7302. [Google Scholar] [CrossRef] [Green Version]
- Naeem, S.; Baheti, V.; Tunakova, V.; Militky, J.; Karthik, D.; Tomkova, B. Development of porous and electrically conductive activated carbon web for effective EMI shielding applications. Carbon 2017, 111, 439–447. [Google Scholar] [CrossRef]
- Mark, H.F. Encyclopedia of Polymer Science & Technology, Concise; J. Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-470-04610-4. [Google Scholar]
- Mosquera, M.E.G.; Jamond, M.; Martinez-Alonso, A.; Tascon, J.M.D. Thermal Transformations of Kevlar Aramid Fibers during Pyrolysis: Infrared and Thermal Analysis Studies. Available online: https://pubs.acs.org/doi/pdf/10.1021/cm00047a006 (accessed on 4 October 2021).
- ASTM D2259-21, Standard Test Method for Shrinkage of Yarns, ASTM International, West Conshohocken, PA. 2021. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D2259 (accessed on 4 October 2021).
- ASTM D1388-18, Standard Test Method for Stiffness of Fabrics, ASTM International, West Conshohocken, PA. 2018. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D1388 (accessed on 4 October 2021).
- Fridrichová, L. A New Apparatus for Measuring the Bending Rigidity. Adv. Mater. Res. 2013, 746, 440–443. [Google Scholar] [CrossRef]
- ASTM D3884-09(2017), Standard Guide for Abrasion Resistance of Textile Fabrics (Rotary Platform, Double-Head Method), ASTM International, West Conshohocken, PA. 2017. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D3884 (accessed on 4 October 2021).
- ASTM D257-14(2021)e1, Standard Test Methods for DC Resistance or Conductance of Insulating Materials, ASTM International, West Conshohocken, PA. 2021. Available online: http://www.astm.org/cgi-bin/resolver.cgi?D257 (accessed on 4 October 2021).
- Šafářová, V.; Tunák, M.; Truhlář, M.; Militký, J. A new method and apparatus for evaluating the electromagnetic shielding effectiveness of textiles. Text. Res. J. 2016, 86, 44–56. [Google Scholar] [CrossRef]
- Martínez-Alonso, A.; Jamond, M.; Montes-Morán, M.A.; Tascón, J.M.D. Microporous texture of activated carbon fibers prepared from aramid fiber pulp. Microporous Mater. 1997, 11, 303–311. [Google Scholar] [CrossRef]
- Ghorbani, H.; Tavanai, H.; Morshed, M. Fabrication of activated carbon nanoparticles from PAN precursor. J. Anal. Appl. Pyrolysis 2014, 110, 12–17. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhao, Y. Effects of activation conditions on BET specific surface area of activated carbon nanotubes. Microporous Mesoporous Mater. 2004, 76, 215–219. [Google Scholar] [CrossRef]
- Castro-Muñiz, A.; Martínez-Alonso, A.; Tascón, J.M.D. Microporosity and mesoporosity of PPTA-derived carbons. Effect of PPTA thermal pretreatment. Microporous Mesoporous Mater. 2008, 114, 185–192. [Google Scholar] [CrossRef]
- Blanco López, M.C.; Villar-Rodil, S.M.; Martínez-Alonso, A.; Tascón, J.M.D. Effect of some precursor characteristics on the porous texture of activated carbon fibres prepared from Nomex aramid fibres. Microporous Mesoporous Mater. 2000, 41, 319–321. [Google Scholar] [CrossRef] [Green Version]
- Baheti, V.; Naeem, S.; Militky, J.; Okrasa, M.; Tomkova, B. Optimized preparation of activated carbon nanoparticles from acrylic fibrous wastes. Fibers Polym. 2015, 16, 2193–2201. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Yin, X.W.; Li, Q. Effects of heat treatment temperature on microstructure and electromagnetic properties of ordered mesoporous carbon. Trans. Nonferrous Met. Soc. China Engl. Ed. 2013, 23, 1652–1660. [Google Scholar] [CrossRef]
- Kim, J.H.; Jeong, E.; Lee, Y.S. Preparation and characterization of graphite foams. J. Ind. Eng. Chem. 2015, 32, 21–33. [Google Scholar] [CrossRef]
- Cao, M.S.; Song, W.L.; Hou, Z.L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796. [Google Scholar] [CrossRef]
- Song, W.L.; Cao, M.S.; Hou, Z.L.; Fang, X.Y.; Shi, X.L.; Yuan, J. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 2009, 94, 233110. [Google Scholar] [CrossRef]
- Wen, B.; Cao, M.S.; Hou, Z.L.; Song, W.L.; Zhang, L.; Lu, M.M.; Jin, H.B.; Fang, X.Y.; Wang, W.Z.; Yuan, J. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon 2013, 65, 124–139. [Google Scholar] [CrossRef]
- Arjmand, M.; Chizari, K.; Krause, B.; Pötschke, P.; Sundararaj, U. Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 2016, 98, 358–372. [Google Scholar] [CrossRef]
- Arjmand, M.; Sundararaj, U. Electromagnetic interference shielding of Nitrogen-doped and Undoped carbon nanotube/polyvinylidene fluoride nanocomposites: A comparative study. Compos. Sci. Technol. 2015, 118, 257–263. [Google Scholar] [CrossRef]
- Sano, E.; Akiba, E. Electromagnetic absorbing materials using nonwoven fabrics coated with multi-walled carbon nanotubes. Carbon 2014, 78, 463–468. [Google Scholar] [CrossRef]
- Cao, M.-S.; Wang, X.-X.; Cao, W.-Q.; Yuan, J. Ultrathin graphene: Electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 2015, 3, 6589–6599. [Google Scholar] [CrossRef]
Sample | Yarn Count (dtex) | Areal Density (g/m2) | Thickness (mm) | Shrinkage | Flexibility | Dusting | Yield (%) |
---|---|---|---|---|---|---|---|
Kevlar | 1710 | 1031 | 1.16 | - | - | - | - |
800 °C | 715 | 600.5 | 0.61 | Good | Average | Good | 58.24 |
1000 °C | 450 | 368 | 0.54 | Good | Good | Average | 35.69 |
1200 °C | 410 | 322.5 | 0.46 | Average | Excellent | Poor | 31.28 |
Sample | Stiffness (N.m) | Breaking Force (N) | Breaking Elongation (%) |
---|---|---|---|
Kevlar | 40.92 ± 8.13 | 126.74 ± 9.07 | 1.79 ± 0.23 |
800 °C | 8.48 ± 1.17 | 2.7 ± 1.30 | 1.15 ± 0.49 |
1000 °C | 5.38 ± 1.01 | 2.25 ± 1.06 | 1.07 ± 0.49 |
1200 °C | 4.16 ± 0.93 | 2.09 ± 1.01 | 0.94 ± 0.27 |
Wt.% | C | N | O | Na | S | Cl | K | Ca |
---|---|---|---|---|---|---|---|---|
Kevlar | 63.85 | 15.09 | 18.84 | 1.20 | 0.84 | 0.10 | 0.01 | 0.08 |
800 °C | 69.17 | 8.66 | 13.19 | 4.86 | 2.07 | 0.18 | 0.79 | 1.07 |
1000 °C | 83.47 | 5.68 | 7.81 | 0.45 | 0.69 | 0.02 | 1.68 | 0.20 |
1200 °C | 89.26 | 2.56 | 5.87 | 0.16 | 0.60 | 0.15 | 1.22 | 0.17 |
Carbonization Temperature | Surface Resistivity (ohm) | Volume Resistivity (ohm.cm) |
---|---|---|
800 °C | 1.60 × 106 | 967.14 × 103 |
1000 °C | 486.15 | 1251.29 |
1200 °C | 95.78 | 414.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthik, D.; Baheti, V.; Militky, J.; Naeem, M.S.; Tunakova, V.; Ali, A. Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method. Materials 2021, 14, 6433. https://doi.org/10.3390/ma14216433
Karthik D, Baheti V, Militky J, Naeem MS, Tunakova V, Ali A. Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method. Materials. 2021; 14(21):6433. https://doi.org/10.3390/ma14216433
Chicago/Turabian StyleKarthik, Daniel, Vijay Baheti, Jiri Militky, Muhammad Salman Naeem, Veronika Tunakova, and Azam Ali. 2021. "Activated Carbon Derived from Carbonization of Kevlar Waste Materials: A Novel Single Stage Method" Materials 14, no. 21: 6433. https://doi.org/10.3390/ma14216433