Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network
Abstract
:1. Introduction
- i.
- The grade of the cement, the age, and the method of curing;
- ii.
- The water to binder ratio, as well as the compactness of the granular skeleton.
2. Research Significance
3. Artificial Neural Networks
3.1. Neuron Model (Logsig, Tansig, Purelin)
3.2. Training Methods
3.3. Feedforward Network
4. The Learning and Testing Process
4.1. The Backpropagation Algorithm (BPA)
4.2. Modeling Performance Criteria
- N is the number of experiments,
- aPREDICT = a (j,PREDICT) is the predicted value for the jth neuron
- aTARGET = a (j, TARGET) is the experimental value for the jth neuron.
5. Bibliographic Dataset and Data Preparation
6. Results and Discussion
- Pattern 1 (blue, Training) describes the training error obtained from 70% of the samples and improves the model’s fit by adjusting the network according to its error.
- Pattern 2 (green, Validation) fits the network generalization ability that instructed the network on when to stop the training process. Pattern 2 represents the ability of the model to predict new data [32] (predictive performance). The training process is halted when validation error stops decreasing, which inherently avoids over-fitting.
- Pattern 3 (red, Testing) does not affect training and is an independent measure of network performance. This error measured on the test data indicates how well the model is generalized to the data during and after training.
7. Conclusions
- The ANN model can predict compressive strength with high accuracy by learning the deep features of the water–cement ratio, the cement and admixture content, the age of the concrete, etc.
- The results have demonstrated that multilayer feedforward artificial neural networks are practicable methods to forecast compressive strength in concretes.
- Errors of the model calculated from R², MSE, MAPE and MAE show small gaps between experimental and forecast values.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tu, T.Y.; Chen, Y.Y.; Hwang, C.L. Properties of HPC with recycled aggregates. Cem. Concr. Res. 2006, 36, 943–950. [Google Scholar] [CrossRef]
- Gastaldini, A.; Hengen, M.; Gastaldini, M.; Amaral, F.D.; Antolini, M.; Coletto, T. The use of water treatment plant sludge ash as a mineral addition. Constr. Build. Mater. 2015, 94, 513–520. [Google Scholar] [CrossRef]
- Bolomey, J. Granulation et prévision de la résistance probable des bétons. Travaux 1935, 19, 228–232. [Google Scholar] [CrossRef]
- Powers, T.; Brownyard, T. Studies of the Physical Properties of Hardened Portland Cement Paste. J. Proc. 1946, 43, 101–132. Available online: https://www.concrete.org/publications/internationalconcreteabstractsportal (accessed on 19 August 2016).
- Feret, R. Sur la Compacité des Mortiers Hydrauliques. 1892. Available online: http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=123645.
- Bolomey, J. Détermination de la résistance à la compression des mortiers et bétons. Bull. Tech. la Suisse Rom. 1925, 51, 126–132. [Google Scholar] [CrossRef]
- Nagaraj, T.; Banu, Z. Generalization of Abrams’ law. Cem. Concr. Res. 1996, 26, 933–942. [Google Scholar] [CrossRef]
- Naderpour, H.; Mirrashid, M. An innovative approach for compressive strength estimation of mortars having calcium inosilicate minerals. J. Build. Eng. 2018, 19, 205–215. [Google Scholar] [CrossRef]
- Sarıdemir, M. Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. 2009, 40, 350–355. [Google Scholar] [CrossRef]
- Sobhani, J.; Najimi, M.; Pourkhorshidi, A.R.; Parhizkar, T. Prediction of the compressive strength of no-slump concrete: A comparative study of regression, neural network and ANFIS models. Constr. Build. Mater. 2010, 24, 709–718. [Google Scholar] [CrossRef]
- Ince, R. Prediction of fracture parameters of concrete by Artificial Neural Networks. Eng. Fract. Mech. 2004, 71, 2143–2159. [Google Scholar] [CrossRef]
- Onal, O.; Ozturk, A.U. Artificial neural network application on microstructure–compressive strength relationship of cement mortar. Adv. Eng. Softw. 2010, 41, 165–169. [Google Scholar] [CrossRef]
- Azimi-Pour, M.; Eskandari-Naddaf, H. ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Constr. Build. Mater. 2018, 189, 978–992. [Google Scholar] [CrossRef]
- Khan, M.I. Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks. Autom. Constr. 2011, 22, 516–524. [Google Scholar] [CrossRef]
- Prasad, B.R.; Eskandari, H.; Reddy, B.V. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 2009, 23, 117–128. [Google Scholar] [CrossRef]
- Bui, D.K.; Nguyen, T.; Chou, J.S.; Nguyen-Xuan, H.; Ngo, T.D. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Construct. Build. Mater. 2018, 180, 320–333. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Nasiri, S.; Anders, D.; Weinberg, K. Prediction of dynamic properties of ultra-high performance concrete by an artificial intelligence approach. Adv. Eng. Softw. 2018, 127, 51–58. [Google Scholar] [CrossRef]
- Öztaş, A.; Pala, M.; Özbay, E.; Kanca, E.; Çaǧlar, N.; Bhatti, M.A. Predicting the compressive strength and slump of high strength concrete using neural network. Constr. Build. Mater. 2006, 20, 769–775. [Google Scholar] [CrossRef]
- Chithra, S.; Kumar, S.S.; Chinnaraju, K.; Ashmita, F.A. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr. Build. Mater. 2016, 114, 528–535. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Elaty, M.A.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Uysal, M.; Tanyildizi, H. Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network. Constr. Build. Mater. 2011, 25, 4105–4111. [Google Scholar] [CrossRef]
- Vakhshouri, B.; Nejadi, S. ANFIS application to predict the compressive strength of lightweight self-compacting concrete. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 28–35. [Google Scholar] [CrossRef]
- Mashhadban, H.; Kutanaei, S.S.; Sayarinejad, M.A. Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr. Build. Mater. 2016, 119, 277–287. [Google Scholar] [CrossRef]
- Sadrmomtazi, A.; Sobhani, J.; Mirgozar, M. Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS. Constr. Build. Mater. 2013, 42, 205–216. [Google Scholar] [CrossRef]
- Bingöl, A.F.; Tortum, A.; Gül, R. Neural networks analysis of compressive strength of lightweight concrete after high temperatures. Mater. Des. 2013, 52, 258–264. [Google Scholar] [CrossRef]
- Altun, F.; Kişi, Ö.; Aydin, K. Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Comput. Mater. Sci. 2008, 42, 259–265. [Google Scholar] [CrossRef]
- Hendi, A.; Behravan, A.; Mostofinejad, D.; Moshtaghi, S.M.; Rezayi, K. Implementing ANN to minimize sewage systems concrete corrosion with glass beads substitution. Constr. Build. Mater. 2017, 138, 441–454. [Google Scholar] [CrossRef]
- Hodhod, O.; Salama, G.A. Analysis of sulfate resistance in concrete based on artificial neural networks and USBR4908-modeling. Ain Shams Eng. J. 2013, 4, 651–660. [Google Scholar] [CrossRef] [Green Version]
- Abambres, M.; Lantsoght, E.O. ANN-Based Fatigue Strength of Concrete under Compression. Materials 2019, 12, 3787. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr. Build. Mater. 2013, 44, 1–6. [Google Scholar] [CrossRef]
- Deng, F.; He, Y.; Zhou, S.; Yu, Y.; Cheng, H.; Wu, X. Compressive strength prediction of recycled concrete based on deep learning. Constr. Build. Mater. 2018, 175, 562–569. [Google Scholar] [CrossRef]
- Getahun, M.A.; Shitote, S.M.; Gariy, Z.C.A. Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Constr. Build. Mater. 2018, 190, 517–525. [Google Scholar] [CrossRef]
- Dehghan, S.; Sattari, G.; Chelgani, S.C.; Aliabadi, M. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Technol. (China) 2010, 20, 41–46. [Google Scholar] [CrossRef]
- Faridmehr, I.; Bedon, C.; Huseien, G.; Nikoo, M.; Baghban, M. Assessment of Mechanical Properties and Structural Morphology of Alkali-Activated Mortars with Industrial Waste Materials. Sustainability 2021, 13, 2062. [Google Scholar] [CrossRef]
- Mhaya, A.M.; Huseien, G.F.; Faridmehr, I.; Abidin, A.R.Z.; Alyousef, R.; Ismail, M. Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast Furnace slag and discarded rubber tire crumbs. Constr. Build. Mater. 2021, 295, 123603. [Google Scholar] [CrossRef]
- Golafshani, E.M.; Behnood, A. Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach. Constr. Build. Mater. 2021, 291, 123314. [Google Scholar] [CrossRef]
- Alabduljabbar, H.; Huseien, G.; Sam, A.; Alyouef, R.; Algaifi, H.; Alaskar, A. Engineering Properties of Waste Sawdust-Based Lightweight Alkali-Activated Concrete: Experimental Assessment and Numerical Prediction. Materials 2020, 13, 5490. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Piechówka-Mielnik, M.; Widziszowski, T.; Gardynik, A.; Mackiewicz, S. Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod. 2019, 212, 727–740. [Google Scholar] [CrossRef]
- Ray, S.; Haque, M.; Ahmed, T.; Nahin, T.T. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber. J. King Saud Univ. Eng. Sci. 2021, 4, 144–169. [Google Scholar] [CrossRef]
- Yeşilmen, S.; Tatar, B. Efficiency of convolutional neural networks (CNN) based image classification for monitoring construction related activities: A case study on aggregate mining for concrete production. Case Stud. Constr. Mater. 2022, 17, e01372. [Google Scholar] [CrossRef]
- Almasaeid, H.H.; Suleiman, A.; Alawneh, R. Assessment of high-temperature damaged concrete using non-destructive tests and artificial neural network modelling. Case Stud. Constr. Mater. 2022, 16, e01080. [Google Scholar] [CrossRef]
- Yang, D.S.; Park, S.K.; Lee, J.H. A prediction on mix proportion factor and strength of concrete using neural network. KSCE J. Civ. Eng. 2003, 7, 525–536. [Google Scholar] [CrossRef]
- Kim, J.I.; Kim, D.K. Application of neural networks for estimation of concrete strength. KSCE J. Civ. Eng. 2002, 6, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Apostolopoulou, M.; Asteris, P.G.; Armaghani, D.J.; Douvika, M.G.; Lourenço, P.B.; Cavaleri, L.; Bakolas, A.; Moropoulou, A. Mapping and holistic design of natural hydraulic lime mortars. Cem. Concr. Res. 2020, 136, 106167. [Google Scholar] [CrossRef]
- Gupta, T.; Patel, K.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [Google Scholar] [CrossRef]
- Topçu, I.B.; Sarıdemir, M. Prediction of properties of waste AAC aggregate concrete using artificial neural network. Comput. Mater. Sci. 2007, 41, 117–125. [Google Scholar] [CrossRef]
- Dantas, A.T.A.; Leite, M.B.; de Jesus Nagahama, K. Prediction of compressive strength of concrete containing construction and demolition waste using artificial neural networks. Constr. Build. Mater. 2013, 38, 717–722. [Google Scholar] [CrossRef]
- Shaik, S.B.; Karthikeyan, J.; Jayabalan, P. Influence of using agro-waste as a partial replacement in cement on the compressive strength of concrete – A statistical approach. Constr. Build. Mater. 2020, 250, 118746. [Google Scholar] [CrossRef]
- Faridmehr, I.; Nehdi, M.; Nikoo, M.; Huseien, G.; Ozbakkaloglu, T. Life-Cycle Assessment of Alkali-Activated Materials Incorporating Industrial Byproducts. Materials 2021, 14, 2401. [Google Scholar] [CrossRef]
- Catherina Vasanthalin, P.; Chella Kavitha, N. Prediction of compressive strength of recycled aggregate concrete using artificial neural network and cuckoo search method. Mater. Today: Proc. 2021, 46, 8480–8488. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Asteris, P.G. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Comput. Appl. 2020, 33, 4501–4532. [Google Scholar] [CrossRef]
- Özcan, F.; Atis, C.; Karahan, O.; Uncuoğlu, E.; Tanyildizi, H. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete. Adv. Eng. Softw. 2009, 40, 856–863. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, G.; Alyami, H.; Alharbi, A.; Jameel, M.; Khadimallah, M.A. Intelligence decision mechanism for prediction of compressive strength of self-compaction green concrete via neural network. J. Clean. Prod. 2022, 340, 130580. [Google Scholar] [CrossRef]
- Irandegani, M.A.; Zhang, D.; Shadabfar, M. Probabilistic assessment of axial load-carrying capacity of FRCM-strengthened concrete columns using artificial neural network and Monte Carlo simulation. Case Stud. Constr. Mater. 2022, 17. [Google Scholar] [CrossRef]
- Farooq, F.; Ahmed, W.; Akbar, A.; Aslam, F.; Alyousef, R. Predictive modeling for sustainable high-performance concrete from industrial wastes: A comparison and optimization of models using ensemble learners. J. Clean. Prod. 2021, 292, 126032. [Google Scholar] [CrossRef]
- Asteris, P.G.; Moropoulou, A.; Skentou, A.D.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.; Varum, H. Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects. Appl. Sci. 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Bui, D.T.; Abdullahi, M.M.; Ghareh, S.; Moayedi, H.; Nguyen, H. Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete. Eng. Comput. 2019, 37, 701–712. [Google Scholar] [CrossRef]
- Garg, A.; Aggarwal, P.; Aggarwal, Y.; Belarbi, M.O.; Chalak, H.D.; Tounsi, A.; Gulia, R. Machine learning models for predicting the compressive strength of concrete containing nano silica. Comput. Concr. 2022, 30, 33–42. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhou, S. The Prediction of Self-Healing Capacity of Bacteria-Based Concrete Using Machine Learning Approaches. Comput. Mater. Contin. 2019, 59, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry; United Nations Environment Program: Nairobi, Kenya, 2016. [Google Scholar]
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- DeRousseau, M.; Kasprzyk, J.; Srubar, W. Computational design optimization of concrete mixtures: A review. Cem. Concr. Res. 2018, 109, 42–53. [Google Scholar] [CrossRef]
- Agrawal, V.; Sharma, A. Prediction-of-Slump-in-Concrete-using-Artificial-Neural-Networks. World Acad. Sci. Eng. Technol. 2010, 4, 279–286. [Google Scholar]
- Rafiq, M.; Bugmann, G.; Easterbrook, D. Neural network design for engineering applications. Comput. Struct. 2001, 79, 1541–1552. [Google Scholar] [CrossRef]
- Flood, I.; Kartam, N. Neural Networks in Civil Engineering. I: Principles and Understanding. J. Comput. Civ. Eng. 1994, 8, 131–148. [Google Scholar] [CrossRef]
- KewalRamani, M.A.; Gupta, R. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Autom. Constr. 2006, 15, 374–379. [Google Scholar] [CrossRef]
- Duan, Z.; Kou, S.; Poon, C. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks. Constr. Build. Mater. 2013, 40, 1200–1206. [Google Scholar] [CrossRef]
- Patil, S.R. Regionalization of an Event Based Nash Cascade Model for Flood Predictions in Ungauged Basins. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, July 2008. [Google Scholar]
- Dorofki, M.; Elshafie, A.H.; Jaafar, O.; Karim, O.A.; Mastura, S. Comparison of Artificial Neural Network Transfer Functions Abilities to Simulate Extreme Runoff Data. Int. Proc. Chem. Biol. Environ. Eng. 2012, 33, 39–44. [Google Scholar]
- Kumar, G.S.; Rajasekhar, K. Performance analysis of Levenberg—Marquardt and Steepest Descent algorithms based ANN to predict compressive strength of SIFCON using manufactured sand. Eng. Sci. Technol. Int. J. 2017, 20, 1396–1405. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kubat, M. Neural networks: A comprehensive foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Knowl. Eng. Rev. 1998, 13, 409–412. [Google Scholar] [CrossRef]
- Chen, Q.; Norcio, A.F.; Wang, J. Neural Network Based Stereotyping for User Profiles. Neural Comput. Appl. 2000, 9, 259–265. [Google Scholar] [CrossRef]
- Huang, C.-H.; Lin, S.-K.; Chang, C.-S.; Chen, H.-J. Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash. Constr. Build. Mater. 2013, 46, 71–78. [Google Scholar] [CrossRef]
- Wild, S.; Khatib, J.; Jones, A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Alyamaç, K.E.; Ince, R. A preliminary concrete mix design for SCC with marble powders. Constr. Build. Mater. 2009, 23, 1201–1210. [Google Scholar] [CrossRef]
- Li, L.G.; Lin, C.J.; Chen, G.M.; Kwan, A.K.H.; Jiang, T. Effects of packing on compressive behaviour of recycled aggregate concrete. Constr. Build. Mater. 2017, 157, 757–777. [Google Scholar] [CrossRef]
- Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 2018, 16, 213–219. [Google Scholar] [CrossRef]
- Jalal, M.; Mansouri, E. Effects of Fly Ash and Cement Content on Rheological, Mechanical, and Transport Properties of High-Performance Self-Compacting Concrete. Sci. Eng. Compos. Mater. 2012, 19, 393–405. [Google Scholar] [CrossRef]
- Irfan Che-Ani, A.; Siddiqi, Z.; M Zain, M.F.; Abd, S.M.; Sopian, K.; Jamil, M. Mathematical Regression Model for the Prediction of Concrete Strength. academia.edu 2007, 5, 3096–3402. [Google Scholar]
- Jiang, L.H.; Malhotra, V.M. Reduction in Water Demand of Non-Air-Entrained Concrete Incorporating Large Volumes of Fly Ash. Cem. Concr. Res. 2000, 30, 1785–1789. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Dhir, R.K. Development of High Volume Fly Ash Cements for Use in Concrete Construction. Fuel 2005, 84, 1423–1432. [Google Scholar] [CrossRef]
- Bouzoubaâ, N.; Lachemi, M. Self-Compacting Concrete Incorporating High Volumes of Class F Fly Ash: Preliminary Results. Cem. Concr. Res. 2001, 31, 413–420. [Google Scholar] [CrossRef]
Method Type | Regulation Technique | Learning Method | Training Method | Activation Function | Inputs | Hidden Layers (HL) | Neurons per HL | Outputs |
---|---|---|---|---|---|---|---|---|
Feedforward, back propagation network | Gradient descent | Supervised | Levenberg-Marquardt backpropagation algorithm (LMBPA) | Log-sigmoid (logsig) | 18 | 2 | 10 | 1 |
C | W | W/B | Specimen Compression Type | S | CA | SP | |
---|---|---|---|---|---|---|---|
Cement | Water | Water/Binder | 1 = cubic 2 = cylindrical | Sand | Coarse aggregates | Superplasticizer | |
MK | LF | SF | GGBFS | FA | MW | RA | Rc (MPa) |
Metakaolin | Limestone filler | Silica fume | Ground granulated blast furnace slag | Fly ash | Marble waste | Recycled aggregates | Compressive strength |
Parameter | C | E | MK | LF | SF | GGBFS | FA | MW | RA | W/B | Age (days) | Rc (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum (Kg/m3) | 70.0 | 95.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 1.0 | 1.0 |
Maximum (Kg/m3) | 833.3 | 319.0 | 104.1 | 317.0 | 208.3 | 360.0 | 544.0 | 500.0 | 1772.0 | 0.72 | 365.0 | 123.0 |
Mix N° | Author | C (Kg/m3) | W (Kg/m3) | W/B | Specimen Compression Type | S (Kg/m3) | Coarse Aggregates (Kg/m3) | SP (%) | Slump/Flow (mm) | MK (Kg/m3) | LF (Kg/m3) | SF (Kg/m3) | GGBFS (Kg/m3) | FA (Kg/m3) | MW (Kg/m3) | RA (Kg/m3) | Age (days) | Rc (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[74] | ||||||||||||||||||
1 | 280.0 | 202.0 | 0.72 | 2 | 777.0 | 988.0 | 0.0 | 160.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 5.3 | |
2 | 224.0 | 185.0 | 0.66 | 2 | 788.0 | 1003.0 | 0.2 | 170.0 | 0.0 | 0.0 | 0.0 | 0.0 | 56.0 | 0.0 | 0.0 | 1 | 5.0 | |
3 | 168.0 | 157.0 | 0.56 | 2 | 802.0 | 1041.0 | 0.8 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 112.0 | 0.0 | 0.0 | 1 | 3.9 | |
4 | 112.0 | 124.0 | 0.44 | 2 | 801.0 | 1106.0 | 1.4 | 210.0 | 0.0 | 0.0 | 0.0 | 0.0 | 168.0 | 0.0 | 0.0 | 1 | 2.6 | |
5 | 112.0 | 150.0 | 0.27 | 2 | 418.0 | 1101.0 | 0.7 | 220.0 | 0.0 | 0.0 | 0.0 | 0.0 | 448.0 | 0.0 | 0.0 | 1 | 2.3 | |
6 | 340.0 | 203.0 | 0.60 | 2 | 737.0 | 977.0 | 0.1 | 220.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 7.6 | |
7 | 272.0 | 188.0 | 0.55 | 2 | 743.0 | 985.0 | 0.2 | 210.0 | 0.0 | 0.0 | 0.0 | 0.0 | 68.0 | 0.0 | 0.0 | 1 | 7.6 | |
[10] | ||||||||||||||||||
8 | 350.0 | 95.2 | 0.27 | 1 | 575.9 | 1273.0 | 0.0 | --- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 61.1 | |
9 | 350.0 | 98.5 | 0.28 | 1 | 558.2 | 1325.4 | 0.0 | --- | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 54.0 | |
10 | 339.5 | 97.7 | 0.28 | 1 | 655.3 | 1273.0 | 0.0 | --- | 0.0 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 65.7 | |
11 | 339.5 | 97.6 | 0.28 | 1 | 535.0 | 1247.0 | 0.0 | --- | 0.0 | 10.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 62.2 | |
12 | 336.0 | 97.6 | 0.28 | 1 | 535.0 | 1247.0 | 0.0 | --- | 0.0 | 14.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 54.5 | |
13 | 332.5 | 97.7 | 0.28 | 1 | 655.3 | 1273.0 | 0.0 | --- | 0.0 | 17.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 63.1 | |
14 | 329.0 | 97.6 | 0.28 | 1 | 535.0 | 1247.0 | 0.0 | --- | 0.0 | 21.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 28 | 52.2 | |
[75] | ||||||||||||||||||
15 | 350.2 | 157.60 | 0.45 | 1 | 810.4 | 1200.6 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 19.07 | |
16 | 332.2 | 157.30 | 0.45 | 1 | 809.2 | 1198.9 | 0.6 | 10.0 | 17.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 21.50 | |
17 | 314.2 | 157.10 | 0.45 | 1 | 808.0 | 1197.0 | 1.2 | 15.0 | 34.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 22.43 | |
18 | 296.3 | 156.90 | 0.45 | 1 | 806.8 | 1195.3 | 1.8 | 25.0 | 52.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 20.23 | |
19 | 278.5 | 156.70 | 0.45 | 1 | 805.6 | 1193.6 | 2.4 | 75.0 | 69.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 19.33 | |
20 | 260.7 | 156.40 | 0.45 | 1 | 804.5 | 1191.8 | 3.0 | 75.0 | 86.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 15.73 | |
21 | 243.0 | 156.20 | 0.45 | 1 | 803.3 | 1190.0 | 3.6 | 90.0 | 104.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1 | 14.53 | |
22 | 350.2 | 157.60 | 0.45 | 1 | 810.4 | 1200.6 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 50.23 | |
23 | 332.2 | 157.30 | 0.45 | 1 | 809.2 | 1198.9 | 0.6 | 10.0 | 17.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 7 | 53.80 | |
[76] | ||||||||||||||||||
24 | 300.0 | 165.0 | 0.41 | 1 | 1095.0 | 722.0 | 1.0 | 30.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 25.8 | |
25 | 300.0 | 165.0 | 0.41 | 1 | 1095.0 | 722.0 | 2.0 | 57.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 30.7 | |
26 | 300.0 | 165.0 | 0.41 | 1 | 1095.0 | 722.0 | 3.0 | 58.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 22.2 | |
27 | 300.0 | 180.0 | 0.45 | 1 | 1071.0 | 706.0 | 1.0 | 43.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 25.8 | |
28 | 300.0 | 180.0 | 0.45 | 1 | 1071.0 | 706.0 | 2.0 | 60.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 28.9 | |
29 | 300.0 | 189.0 | 0.47 | 1 | 1055.0 | 696.0 | 2.0 | 66.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 27.6 | |
30 | 300.0 | 201.0 | 0.50 | 1 | 1039.0 | 685.0 | 2.0 | 68.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 0.0 | 7 | 26.2 | |
[77] | ||||||||||||||||||
38 | 553.5 | 161.6 | 0.10 | 2 | 734.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1145.9 | 7 | 51.6 | |
39 | 524.5 | 205.5 | 0.13 | 2 | 695.7 | 0.0 | 0.0 | 55.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1085.8 | 7 | 40.4 | |
40 | 498.3 | 245.2 | 0.16 | 2 | 661.0 | 0.0 | 0.0 | 179.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1031.6 | 7 | 28.9 | |
41 | 474.7 | 280.9 | 0.19 | 2 | 629.7 | 0.0 | 0.0 | 531.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 982.7 | 7 | 24.6 | |
42 | 553.5 | 152.0 | 0.08 | 2 | 734.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1351.5 | 7 | 62.1 | |
43 | 524.5 | 196.4 | 0.11 | 2 | 695.7 | 0.0 | 0.0 | 32.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1280.6 | 7 | 46.4 | |
44 | 498.3 | 229.4 | 0.13 | 2 | 661.0 | 0.0 | 0.0 | 180.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1216.7 | 7 | 33.6 | |
45 | 474.7 | 272.7 | 0.17 | 2 | 629.7 | 0.0 | 0.0 | 563.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1159.1 | 7 | 27.3 |
Parameters | Performance Indicators | ||||
---|---|---|---|---|---|
RMSE (MPa) | R² | MSE (MPa) | MAE (MPa) | MAPE (%) | |
Values | 2.91 | 0.9888 | 8.4689 | 1.7463 | 2.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amar, M.; Benzerzour, M.; Zentar, R.; Abriak, N.-E. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network. Materials 2022, 15, 7045. https://doi.org/10.3390/ma15207045
Amar M, Benzerzour M, Zentar R, Abriak N-E. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network. Materials. 2022; 15(20):7045. https://doi.org/10.3390/ma15207045
Chicago/Turabian StyleAmar, Mouhamadou, Mahfoud Benzerzour, Rachid Zentar, and Nor-Edine Abriak. 2022. "Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network" Materials 15, no. 20: 7045. https://doi.org/10.3390/ma15207045
APA StyleAmar, M., Benzerzour, M., Zentar, R., & Abriak, N. -E. (2022). Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network. Materials, 15(20), 7045. https://doi.org/10.3390/ma15207045