Research Progress in Nonlinear Ultrasonic Testing for Early Damage in Metal Materials
Abstract
:1. Introduction
2. Basic Theory of Nonlinear Ultrasonics
2.1. Generation of Higher Harmonic
2.2. Classical Nonlinear Ultrasonic Theoretical Models
2.2.1. Dislocation Monopole Model
2.2.2. Dislocation Dipole Model
2.2.3. Precipitate-Dislocation Pinning Model
2.3. Contact Nonlinear Ultrasonic Theory Model
3. Application of Nonlinear Ultrasonic Testing Technology
3.1. Higher Harmonic Technology
3.2. Modulation Technology
3.3. Frequency-MixingTechnology
3.3.1. Collinear Wave Mixing Technology
3.3.2. Non-Collinear Wave Mixing Technology
3.4. Sub-Harmonic Technology
3.5. Ultrasonic Resonance Spectroscopy Technology
3.6. Ultrasonic Phased-Array Nonlinear Imaging Detection Technology
4. Key Technologies of Ultrasonic Nonlinear Testing
4.1. Sources of Nonlinearity
4.1.1. Transducer
4.1.2. Coupling Agent
4.2. Signal Processing and Calibration of Detection Results
4.2.1. Signal Processing
4.2.2. Calibration of Test Results
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, X.L.; Dong, S.Y.; Xu, B.S.; Cao, Y. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating. Materials 2018, 11, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, X.L.; Xu, X.S. Method for accurately measuring of acoustic time difference based on optimal threshold. Measurement 2021, 171, 108769. [Google Scholar] [CrossRef]
- Janousek, L.; Stubendekova, A.; Smetana, M. Novel insight into swept frequency eddy-current non-destructive evaluation of material defects. Measurement 2018, 116, 246–250. [Google Scholar] [CrossRef]
- Rusli, N.S.; Abidin, I.Z.; Aziz, S.A. A review on eddy current thermography technique for non-destructive testing application. J. Teknol. 2016, 78, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Plessis, A.D.; Roux, S.G.; Guelpa, A. Comparison of medical and industrial X-ray computed tomography for non-destructive testing. Case Stud. Nondestruct. Test. Eval. 2016, 6, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Kolkoori, S.; Wrobel, N.; Zscherpel, U.; Ewert, U. A new X-ray backscatter imaging technique for non-destructive testing of aerospace materials. NDT E Int. 2015, 70, 41–52. [Google Scholar] [CrossRef]
- Kutman, M.K.; Muftuler, F.Z.B.; Harmansah, C.; Guldu, O.K. Use of bacteria as fluorescent penetrant for Penetrant Testing (PT). J. Nondestruct. Eval. 2020, 39, 15. [Google Scholar] [CrossRef]
- Shelikhov, G.S.; Glazkov, Y.A. On the improvement of examination questions during the nondestructive testing of magnetic powder. Russ. J. Nondestruct. Test. 2011, 47, 112–117. [Google Scholar] [CrossRef]
- Ritchie, R.O.; Lankford, J. Small fatigue cracks. In Proceedings of the Second Engineering Foundation International Conference/Workshop, Santa Barbara, CA, USA, 5–10 January 1986. [Google Scholar]
- Yan, H.J.; Xu, C.G.; Xiao, D.G.; Cai, H.C. Research on nonlinear ultrasonic properties of tension stress in metal materials. J. Mech. Eng. 2016, 52, 22–29. [Google Scholar] [CrossRef]
- Jang, J.; Sohn, H.; Lim, H.J. Spectral noise and data reduction using a long short-term memory network for nonlinear ultrasonic modulation-based fatigue crack detection. Ultrasonics 2023, 129, 106909. [Google Scholar] [CrossRef]
- Solodov, I.Y. Ultrasonics of non-linear contacts: Propagation, reflection and NDE-applications. Ultrasonics 1998, 36, 383–390. [Google Scholar] [CrossRef]
- Nazarov, V.E.; Sutin, A.M. Nonlinear elastic constants of solids with cracks. Acoust. Soc. Am. J. 1997, 102, 3349–3354. [Google Scholar] [CrossRef]
- Jasiūnienė, E.; Mažeika, L.; Samaitis, V.; Cicėnas, V.; Mattsson, D. Ultrasonic non-destructive testing of complex titanium/carbon fibre composite joints. Ultrasonics 2019, 95, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.G.; Liu, S.M. Nonlinear ultrasonic Techniques Used in Nondestructive Testing: A Review. J. Mech. Eng. 2011, 47, 2–11. [Google Scholar] [CrossRef]
- Vetrone, J.; Obregon, J.E.; Indacochea, E.J.; Ozevin, D. The characterization of deformation stage of metals using acoustic emission combined with nonlinear ultrasonics. Measurement 2021, 178, 109407. [Google Scholar] [CrossRef]
- Ha, H.; Kim, J.; Jhang, K.-Y. Influence of Surface Roughness on Measurement of the Ultrasonic Nonlinear Parameter. J. Korean Soc. Nondestruct. Test. 2017, 37, 223–229. [Google Scholar] [CrossRef]
- Choi, S.; Ryu, J.; Kim, J.-S.; Jhang, K.-Y. Comparison of Linear and Nonlinear Ultrasonic Parameters in Characterizing Grain Size and Mechanical Properties of 304L Stainless Steel. Metals 2019, 9, 1279. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.Y.; Zhang, Y.H.; Mao, H.L.; Huang, Z.F.; Fana, J.W.; Li, X.X.; Li, X.P. The fatigue damage evaluation of gear in sugarcane presser using higher order ultrasonic nonlinear coefficients. Results Phys. 2018, 10, 601–606. [Google Scholar] [CrossRef]
- Jiao, J.P.; Lv, H.T.; He, C.F.; Wu, B. Fatigue crack evaluation using the non-collinear wave mixing technique. Smart Mater. Struct. 2017, 26, 065005. [Google Scholar] [CrossRef]
- Liu, P.P.; Jang, J.H.; Sohn, H. Crack localization by laser-induced narrowband ultrasound and nonlinear ultrasonic modulation. Smart Struct. Syst. 2020, 25, 301–310. [Google Scholar]
- Jang, J.; Liu, P.; Kim, B.; Kim, S.-W.; Sohn, H. Silicon wafer crack detection using nonlinear ultrasonic modulation induced by high repetition rate pulse laser. Opt. Lasers Eng. 2020, 129, 106074. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Nayfeh, A.H. Contact force identification using the subharmonic resonance of a contact-mode atomic force microscopy. Nanotechnology 2005, 16, 199–207. [Google Scholar] [CrossRef]
- Payan, C.; Garnier, V.; Moysan, J.; Johnson, P.A. Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 2007, 121, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Ohara, Y.; Horinouchi, S.; Hashimoto, M.; Shintaku, Y.; Yamanaka, K. Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads. Ultrasonics 2011, 51, 661–666. [Google Scholar] [CrossRef]
- Cantrell, J.H. Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 2006, 86, 1539–1554. [Google Scholar] [CrossRef] [Green Version]
- Hikata, A.; Chick, B.B.; Elbaum, C. Dislocation contribution to the second harmonic generation of ultrasonic waves. J. Appl. Phys. 1965, 36, 229–236. [Google Scholar] [CrossRef]
- Cantrell, J.H.; Zhang, X.G. Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. J. Appl. Phys. 1998, 84, 5469–5472. [Google Scholar] [CrossRef]
- Biwa, S.; Hiraiwa, S.; Matsumoto, E. Experimental and theoretical study of harmonic generation at contacting interface. Ultrasonics 2006, 44 (Suppl. S1), e1319–e1322. [Google Scholar] [CrossRef]
- Suzuki, T.; Hikata, A.; Elbaum, C. An harmonicity due to glide motion of dislocations. J. Appl. Phys. 1964, 35, 2761–2766. [Google Scholar] [CrossRef]
- Hikata, A.; Elbaum, C. Generation of ultrasonic second and third harmonics due to dislocations. Phys. Rev. 1966, 151, 442–449. [Google Scholar] [CrossRef]
- Frank, F.C.; Read, W.T. Multiplication processes for slow-moving dislocation. Phys. Rev. 1950, 79, 722–723. [Google Scholar] [CrossRef]
- Li, J.C.M. Interaction of dislocation dipoles. Discuss. Faraday Soc. 1964, 38, 138. [Google Scholar] [CrossRef]
- Granato, A.; Lucke, K. Theory of mechanical damping due to dislocations. J. Appl. Phys. 1956, 27, 583–593. [Google Scholar] [CrossRef]
- Cantrell, J.H.; Yost, W.T. Acoustic harmonic generation from fatigue-induced dislocation dipoles. Philos. Mag. A 1994, 69, 315–326. [Google Scholar] [CrossRef]
- Cantrell, J.H.; Yost, W.T. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 2001, 23, 487–490. [Google Scholar] [CrossRef]
- Apple, T.M.; Cantrell, J.H.; Amaro, C.M.; Mayer, C.R.; Yost, W.T.; Agnew, S.R.; Howe, J.M. Acoustic harmonic generation from fatigue-generated dislocation substructures in copper single crystals. Philos. Mag. 2013, 93, 2802–2825. [Google Scholar] [CrossRef]
- Hurley, D.C.; Balzar, D.; Purtscher, P.T. Nonlinear ultrasonic assessment of precipitation hardening in ASTM A710 steel. J. Mater. Res. 2000, 15, 2036–2042. [Google Scholar] [CrossRef]
- Alston, J.; Croxford, A.; Potter, J.; Blanloeuil, P. Nonlinear non-collinear ultrasonic detection and characterisation of kissing bonds. NDT E Int. 2018, 99, 105–116. [Google Scholar] [CrossRef]
- Rose, J.L. Ultrasonic Wave Scattering in Solid Media; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Cao, M.S.; Lu, Q.T.; Su, Z.Q.; Radzienski, M.; Xu, W.; Ostachowicz, W. A nonlinearity-sensitive approach for detection of “breathing” cracks relying on energy modulation effect. J. Sound Vib. 2022, 524, 116754. [Google Scholar] [CrossRef]
- Cao, M.S.; Su, Z.Q.; Deng, T.F.; Xu, W. Nonlinear pseudo-force in “breathing” delamination to generate harmonics: A mechanism and application study. Int. J. Mech. Sci. 2021, 192, 106124. [Google Scholar] [CrossRef]
- Yan, D.W.; Drinkwater, B.W.; Neild, S.A. Measurement of the ultrasonic nonlinearity of kissing bonds in adhesive joints. NDT E Int. 2009, 42, 459–466. [Google Scholar] [CrossRef]
- Wan, C.H. Testing of Fatigue Damage of U71Mn Steel Welded Joints by Nonlinear Ultrasonic Technology; Harbin Institute of Technology: Harbin, China, 2015. [Google Scholar]
- Jhang, K.Y.; Kim, K.C. Evaluation of material degradation using nonlinear acoustic effect. Ultrasonics 1999, 37, 39–44. [Google Scholar] [CrossRef]
- Cantrell, J.H. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters. J. Appl. Phys. 1994, 76, 3372–3380. [Google Scholar] [CrossRef]
- Zhang, J.F.; Xuan, F.Z. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime. J. Appl. Phys. 2014, 115, 204906. [Google Scholar] [CrossRef]
- Thiele, S.; Matlack, K.H.; Kim, J.Y.; Qu, J.; Wall, J.J.; Jacobs, L.J. Assessment of Precipitation in Alloy Steel Using Nonlinear Rayleigh Surface Waves; American Institute of Physics Conference Series; American Institute of Physics: College Park, MD, USA, 2014. [Google Scholar]
- Li, H.Y.; Gao, C.C.; Shi, H.Y.; Wang, Z.B. Study of nonlinear Rayleigh wave detection technique for fatigue damage in Q235 steel. China Meas. Test. Technol. 2018, 44, 37–41. [Google Scholar]
- Zhang, Y.H.; Li, X.X.; Wu, Z.Y.; Huang, Z.F.; Mao, H.L. Fatigue life prediction of metallic materials based on the combined nonlinear ultrasonic parameter. J. Mater. Perform. 2017, 26, 3648–3656. [Google Scholar] [CrossRef]
- Qiao, R.; Yan, X.L. The characterization of fatigue damage of 316L stainless steel parts formed by selective laser melting with harmonic generation technique. Materials 2022, 15, 718. [Google Scholar] [CrossRef]
- Nam, T.; Lee, T.; Kim, C.; Jhang, K.Y.; Kim, N. Harmonic generation of an obliquely incident ultrasonic wave in solid-solid contact interfaces. Ultrasonics 2012, 52, 778–783. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Li, C.; Tie, Y.; Yin, Z.H. Experimental study on fatigue damage detection based on nonlinear ultrasonic. Fiber Reinf. Plast./Compos. 2019, 12, 12–30. [Google Scholar]
- Gebrekidan, S.B.; Kang, T.; Kim, H.J.; Song, S.J. Nonlinear ultrasonic characterization of early degradation of fatigued Al6061-T6 with harmonic generation technique. Ultrasonics 2018, 85, 23–30. [Google Scholar] [CrossRef]
- Yun, H.G.; Rayhana, R.; Pant, S.; Genest, M.; Liu, Z. Nonlinear ultrasonic testing and data analytics for damage characterization: A review. Measurement 2021, 186, 110155. [Google Scholar] [CrossRef]
- Shirgina, N.V.; Kokshaiski, A.I.; Korobov, A.I. Nonlinear reflection of elastic waves from the boundary of solids. In Proceedings of the 2014 IEEE International Ultrasonics Symposium, Chicago, IL, USA, 3–6 September 2014. [Google Scholar]
- Jiao, J.P.; Drinkwater, B.W.; Neild, S.A.; Wilcox, P.D. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structure health monitoring. Smart Mater. Struct. 2009, 18, 065006. [Google Scholar] [CrossRef]
- Lim, H.J.; Sohn, H. Necessary conditions for nonlinear ultrasonic modulation generation given a localized fatigue crack in a plate-like structure. Materials 2017, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Sun, J.J.; Jiao, J.P.; Wu, B.; He, C.F. Quantitative evaluation of micro-cracks using nonlinear ultrasonic modulation method. NDT E Int. 2016, 79, 63–72. [Google Scholar] [CrossRef]
- Jones, G.L.; Kobett, D.R. Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 1963, 35, 5–10. [Google Scholar] [CrossRef]
- Korneev, V.A.; Demcenko, A. Possible second-order nonlinear interactions of plane waves in an elastic solid. J. Acoust. Soc. Am. 2014, 135, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Yeh, P. Two-wave mixing in nonlinear media. IEEE J. Quantum Electron 1989, 25, 484–519. [Google Scholar] [CrossRef]
- Demcenko, A. Non-collinear wave mixing for a bulk wave phase velocity measurement in an isotropic solid. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Dresden, Germany, 7–10 October 2012. [Google Scholar]
- Korneev, V.A.; Nihei, K.T.; Myer, L.R. Nonlinear Interaction of Plane Elastic Waves; Lawrence Berkeley National Lab: Berkeley, CA, USA, 1998. [Google Scholar]
- Jiao, J.P.; Sun, J.J.; Wu, B.; He, C.F. A frequency-mixing nonlinear ultrasonic technique for micro-crack detection. Acta Acust. 2013, 38, 648–656. [Google Scholar]
- Jiao, J.P.; Fan, Z.X.; Wu, B.; He, C.F. Experiments of non-collinear mixed frequency ultrasonic for closed crack detection. Acta Acust. 2017, 42, 205–213. [Google Scholar]
- Jiao, J.P.; Sun, J.J.; Li, N.; Song, G.R.; Wu, B.; He, C.F. Micro-crack detection using a collinear wave mixing technique. NDT E Int. 2014, 62, 122–129. [Google Scholar] [CrossRef]
- Demcenko, A. Development and Analysis of Noncollinear Wave Mixing Techniques for Material Properties Evaluation Using Immersion Ultrasonic; Universiteit Twente: Enschede, The Netherlands, 2014. [Google Scholar]
- Shan, S.B.; Hasanian, M.; Cho, H.; Lissenden, C.J.; Cheng, L. New nonlinear ultrasonic method for material characterization: Codirectional shear horizontal guided wave mixing in plate. Ultrasonics 2019, 96, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H. Research on Ultrasonic Nonlinear Detection the Stress and Fatigue Damage of Metallic Parts; Guangxi University: Nanning, China, 2018. [Google Scholar]
- Yuan, B.; Shui, G.S.; Wang, Y.S. Evaluating and locating plasticity damage using collinear mixing waves. J. Mater. Eng. Perform. 2020, 29, 4575–4585. [Google Scholar] [CrossRef]
- Tang, G.X.; Liu, M.H.; Jacobs, L.J.; Qu, J.M. Detecting localized plastic strain by a scanning collinear wave mixing method. J. Nondestruct. Eval. 2014, 33, 196–204. [Google Scholar] [CrossRef]
- Jiao, J.P.; Meng, X.J.; He, C.F.; Bin, W. Nonlinear Lamb wave-mixing technique for micro—Crack detection in plates. NDT E Int. 2016, 85, 63–71. [Google Scholar]
- Li, H.Y.; An, Z.W.; Lian, G.X.; Wang, X.M. Detection of plastic zone at crack tip by non-collinear mixing method. In Proceedings of the IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Beijing, China, 30 October–2 November 2014. [Google Scholar]
- Rose, L.R.F.; Blanloeuil, P.; Veidt, M.; Wang, C.H. Analytical and numerical modelling of non-collinear wave mixing at a contact interface. J. Sound Vib. 2020, 468, 115078. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Nagy, P.B.; Hassan, W. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface. Ultrasonics 2015, 65, 165–176. [Google Scholar] [CrossRef]
- Lv, H.T.; Zhang, J.; Jiao, J.P.; Croxford, A. Fatigue crack inspection and characterisation using non-collinear shear wave mixing. Smart Mater. Struct. 2020, 29, 055024. [Google Scholar] [CrossRef]
- Jiao, J.P.; Li, l.; LV, H.T.; Wu, B.; He, C.F. Study on simulation of non collinear mixing ultrasonic testing method for closed crack. In Proceedings of the 23rd Annual Conference of Beijing Mechanics Society, Beijing, China, 14 January 2017; pp. 488–490. [Google Scholar]
- Thanseer, P.M.; Metya, A.K.; Sagar, S.P. Development of a non-collinear nonlinear ultrasonic-based technique for the assessment of crack tip deformation. J. Mater. Eng. Perform. 2017, 26, 2632–2639. [Google Scholar] [CrossRef]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Nagy, P.B. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 2009, 126, EL117–EL122. [Google Scholar] [CrossRef] [Green Version]
- Li, W.B.; Shi, T.Z.; Qin, X.X.; Deng, M.X. Detection and location of surface damage using third-order combined harmonic waves generated by non-collinear ultrasonic waves mixing. Sensors 2021, 21, 6027. [Google Scholar] [CrossRef]
- Mora, P.; Chekroun, M.; Raetz, S.; Tournat, V. Nonlinear generation of a zero group velocity mode in an elastic plate by non-collinear mixing. Ultrasonics 2021, 119, 106589. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Nagy, P.B.; Hassan, W. Enhanced Nonlinear Inspection of Diffusion Bonded Interfaces Using Reflected Non-Collinear Ultrasonic Wave Mixing; American Institute of Physics Conference Series; AIP Publishing LLC: Melville, NY, USA, 2016; p. 020023. [Google Scholar]
- Blanloeuil, P.; Meziane, A.; Bacon, C. 2D finite element modeling of the non-collinear mixing method for detection and characterization of closed cracks. NDT E Int. 2015, 76, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Ju, T.E.O.; Achenbach, J.D.; Jacobs, L.J.; Qu, J.M. Nondestructive evaluation of thermal aging of adhesive joints by using a nonlinear wave mixing technique. Ndt E Int. 2019, 103, 62–67. [Google Scholar] [CrossRef]
- Park, D.; Park, J.; Kim, M.; Lim, J.; Kim, S.; Jee, S. Influence of initial phase on subharmonic resonance in an incompressible boundary layer. Phys. Fluid 2021, 33, 044101. [Google Scholar] [CrossRef]
- Sathujoda, P. Detection of a slant crack in a rotor bearing system during shut-down. Mech. Based Des. Struct. Mach. 2020, 48, 266–276. [Google Scholar] [CrossRef]
- Migliori, A.; Sarrao, J.L. Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation; Wiley: Hoboken, NJ, USA, 1997. [Google Scholar]
- Wang, J.Z.; Shen, Y.F.; Rao, D.Y.; Xu, W. An instantaneous-baseline multi-indicial nonlinear ultrasonic resonance spectral correlation technique for fatigue crack detection and quantification. Nonlinear Dyn. 2021, 103, 677–698. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, F.; Fan, F.; Wang, R.; Wang, Y.; Niu, H.J. A method for identifying false positive frequencies extracted from resonant ultrasound spectra for highly dissipative materials. J. Appl. Phys. 2020, 128, 154902. [Google Scholar] [CrossRef]
- Rus, J.; Grosse, C.U. Local ultrasonic resonance spectroscopy: A demonstration on plate inspection. J. Nondestruct. Eval. 2020, 39, 31. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.P.; Wu, J.F.; Liu, Z.H.; Wang, R.; Jiang, B.Y.; Wen, W. Phased array ultrasonic test of vertical defect on butt-joint weld of CFETR vacuum vessel port stub. Fusion Eng. Des. 2019, 141, 1–8. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Meo, M. Nonlinear elastic imaging of barely visible impact damage in composite structures using a constructive nonlinear array sweep technique. Ultrasonics 2018, 90, 125–143. [Google Scholar] [CrossRef]
- Fierro, G.P.M.; Meo, M. A combined linear and nonlinear ultrasound time-domain approach for impact damage detection in composite structures using a constructive nonlinear array technique. Ultrasonics 2019, 93, 43–62. [Google Scholar] [CrossRef]
- Gao, P.; Li, F.X. Nonlinear ultrasonic phased array nondestructive testing: System and performance study. J. Exp. Mech. 2014, 12, 45–56. [Google Scholar]
- Ohara, Y.; Takahashi, K.; Ino, Y.; Yamanaka, K.; Tsuji, T.; Mihara, T. High-selectivity imaging of closed cracks in a coarse-grained stainless steel by nonlinear ultrasonic phased array. NDT E Int. 2017, 91, 139–147. [Google Scholar] [CrossRef]
- Potter, J.N.; Croxford, A.J.; Wilcox, P.D. Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 2014, 113, 144301. [Google Scholar] [CrossRef] [Green Version]
- Haupert, S.; Renaud, G.; Schumm, A. Ultrasonic imaging of nonlinear scatterers buried in a medium. NDT E Int. 2017, 87, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.P.; Yang, S.F.; Ma, T.; He, C.F.; Wu, B. Nonlinear imaging using ultrasonic array under different phased mode. J. Mech. Eng. 2016, 52, 15–24. [Google Scholar] [CrossRef]
- Cheng, X.M.; Yang, K.; Wang, J.; Xiao, W.T.; Huang, S.S. Ultrasonic system and ultrasonic metal welding performance: A status review. J. Manuf. Process. 2022, 84, 1196–1216. [Google Scholar] [CrossRef]
- Bachurin, D.V.; Murzaev, R.T.; Nazarov, A.A. Ultrasonic influence on evolution of disordered dislocation structures. Model. Simul. Mater. Sci. Eng. 2017, 25, 085010. [Google Scholar] [CrossRef]
- Masurkar, F.; Tse, P.; Yelve, N. Evaluation of inherent and dislocation induced material nonlinearity in metallic plates using Lamb waves. Appl. Acoust. 2018, 136, 76–85. [Google Scholar] [CrossRef]
- Zhu, W.; Deng, M.; Xiang, Y.; Xuan, F.-Z.; Liu, C.; Wang, Y.-N. Modeling of ultrasonic nonlinearities for dislocation evolution in plastically deformed materials: Simulation and experimental validation. Ultrasonics 2016, 68, 134–141. [Google Scholar] [CrossRef]
Conditions | Incident Wave | Frequency-Mixing Wave | Direction of Frequency-Mixing Wave | cosψ | Tan γ | Range of Frequency Ratio |
---|---|---|---|---|---|---|
1 | T(ω1),T(ω2) | L(ω1 + ω2) | k1 + k2 | |||
2 | L(ω1),L(ω2) | T(ω1 − ω2) | ||||
3 | L(ω1),T(ω2) | L(ω1 + ω2) | k1 + k2 | |||
4 | L(ω1),T(ω2) | L(ω1 − ω2) | ||||
5 | L(ω1),T(ω2) | T(ω1 − ω2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, H.; Fan, X. Research Progress in Nonlinear Ultrasonic Testing for Early Damage in Metal Materials. Materials 2023, 16, 2161. https://doi.org/10.3390/ma16062161
Yan X, Wang H, Fan X. Research Progress in Nonlinear Ultrasonic Testing for Early Damage in Metal Materials. Materials. 2023; 16(6):2161. https://doi.org/10.3390/ma16062161
Chicago/Turabian StyleYan, Xiaoling, Houpu Wang, and Xiaozhi Fan. 2023. "Research Progress in Nonlinear Ultrasonic Testing for Early Damage in Metal Materials" Materials 16, no. 6: 2161. https://doi.org/10.3390/ma16062161