Analytical Review of Geopolymer Concrete: Retrospective and Current Issues
Abstract
:1. Introduction
1.1. Relevance
- (1)
- Despite the rather large number of studies devoted to geopolymers, this is still a relatively new topic with a large number of promising areas for researchers. Therefore, there is a significant increase in the number of studies on geopolymer concrete, and an increase in the volume of new experimental and theoretical data about it, which need to be systematized.
- (2)
- The practical applied research problem lies in the fact that such insufficiently deep knowledge and systematization of existing ideas do not allow in some way to unify and standardize certain approaches, technologies and compositions, although this could in principle be done to improve understanding in the world community of efficiency and correct use of geopolymer concretes and geopolymer technologies.
1.2. Background
1.3. Rationale
- (1)
- The main prescription, technological, constructive, engineering and scientific approaches to solving the problems of the best and most ecological and economic efficiency of geopolymer concrete for various types of climatic zones, regions, buildings, structures, and various levels of their responsibility are determined.
- (2)
- The main factors and main criteria influencing the final quality and efficiency of geopolymer concretes are identified.
- (3)
- The main fundamental relationships among the composition, construction and properties of geopolymer concretes are determined.
- (4)
- Interrelation at micro- and macrolevels was revealed in the formation of the construction and properties of geopolymer concretes.
- (5)
- The factors of raw materials and the correct dosage of the component composition were evaluated.
1.4. Methods
2. Geopolymer Concrete as an Environmentally Friendly Composite Material
2.1. Structure Formation Mechanism of Geopolymer Binders
2.2. Main Raw Materials of Geopolymer Composite Binder Systems
2.3. Selection of Compositions of Geopolymer Concretes
2.4. Polymerization Process of Geopolymer Concretes
- -
- In the first stage, silicon and aluminum oxides are dissolved in an alkaline medium of a concentrated solution of NaOH or KOH;
- -
- in the second stage, natural polymer structures are split into monomers;
- -
- in the third stage, setting and compaction occurs as a result of the conversion of monomers into polymeric materials.
3. Physical and Mechanical Properties of Geopolymer Concretes
4. Geopolymer Concretes with Partial Replacement of Conventional Portland Cement with Aluminosilicate Binders
5. Modern Trends and Innovations in the Field of Research of Geopolymer Concretes
5.1. Assessment of the Impact of Geopolymer Concretes on Global Warming
5.2. Three-Dimensional Printing Using Geopolymer Concrete
5.3. Nano-Modified Geopolymer Concrete
5.4. Monitoring the State of Structures Using Self-Sensitive Geopolymer Concrete
5.5. Self-Healing Geopolymer Concrete
6. Discussion
7. Conclusions
- (1)
- Geopolymer concrete is a suitable, environmentally friendly and sustainable alternative to concrete based on OPC with higher strength, physical-mechanical and deformation properties due to its more stable and denser aluminosilicate spatial microstructure. With the active use of agricultural and industrial waste, the production of geopolymer concrete can also become more economical than the production of OPC.
- (2)
- The main factors influencing the properties of fresh and hardened geopolymer concrete mixture are identified and visually presented. The physical and mechanical properties and durability of geopolymer concretes depend on the composition of the mixture and the proportions of its components. The selection of compositions must necessarily consider the main ratios of the components that determine the physical and mechanical properties of the finished material. These include activator-to-binder ratio, silicates to hydroxides, binder type, activator concentration, aggregate fineness modulus, presence and amount of superplasticizers, water-to-binder ratio, and binder-to-sand ratio.
- (3)
- Despite a large number of types of aluminosilicate binders, most researchers have considered geopolymer concretes based on FA and GGBS because of their higher strength characteristics and outstanding physical and mechanical properties compared to other types of binders. Microsilica, metakaolin, perfluorooctanoic acid, high calcium ash and rice straw ash have been considered by researchers as independent binders much less often, but their influence as additives has often been analyzed. The most popular activator mortars used by researchers are sodium hydroxide and sodium metasilicate, as well as their combinations in various ratios. Moreover, sodium metasilicate showed a faster course of the polymerization reaction compared to sodium hydroxide. The course of the polymerization reaction, in addition to the type of binder used, is greatly influenced by the characteristics of the activator, such as its concentration, amount in relation to the binder and reactivity. The optimal value of the proportion of activator to binder allows you to get the best mechanical properties and durability.
- (4)
- Geopolymer concretes with partial replacement of OPC with aluminosilicate binder have a denser and more compact microstructure due to the formation of a large amount of calcium silicate hydrate, which provides improved CS, durability, less shrinkage, porosity and water absorption.
- (5)
- The first studies devoted to the subject of geopolymer concretes were aimed at obtaining new data on the influence of the ratios of the mixture components on the strength and physical-mechanical properties of the final material. They were based on the influence of such factors as the proportion of NaOH/Na2SiO3, the proportion of activator to binder, the proportion of NaOH to slag, the combined use of various activating compositions, various variations in conditions and curing temperatures, the concentration of activators, various types of coarse filler, the addition of nanomodifiers, the percentage of reinforcement, adding various additives, fibers and coarse aggregates from recycled waste to find the optimal mixture parameters and a combination of various factors to obtain the best properties of the final material. Recent research uses new ideas and technologies, such as 3D printing of fiber-reinforced geopolymer concrete, and needs to be further developed in studies based on the analysis of the properties of compositions obtained with various types of binders and activators.
- (6)
- The technologies of the combined selection of the composition of geopolymer concrete, production of nanomodified geopolymer concrete, 3D printing of building structures from geopolymer concrete, and monitoring the state of structures using self-sensitive geopolymer concrete are considered.
- (7)
- An assessment was made of the potential reduction in greenhouse gas emissions from the production of geopolymer concrete compared to the production of OPC.
- (8)
- The inclusion of nanomodifiers, such as graphene oxide, in the composition of geopolymer concretes reduces the hardening time of the composition and increases the stability of the microstructure of the material, improving its physical and mechanical properties and positively affecting durability.
- (9)
- The most promising areas for further research of geopolymer concretes are the search for new types of aluminosilicate binders and activators; the analysis of the economic and environmental efficiency of geopolymer concretes; the development of methods for the optimal selection of compositions; the analysis of the effect of nanomodification of the composition of geopolymer concrete on the characteristics of the finished material; the search for new technologies that allow more efficient and productive 3D printing using geopolymer concretes; the search for new technologies to improve the properties of geopolymer concretes by nanomodifying the composition with graphene oxide and the search for alternative, more effective nanomodifiers; the search for technologies that can reduce the toxicity of certain types of geopolymer concretes for fresh reservoirs and humans; the search for new technologies and replacement methods concrete on OPC with geopolymer concrete and the search for new methods for monitoring the state of structures using self-sensing concrete. Self-healing concrete technologies can enhance the properties of geopolymer concrete, reduce environmental pollution by increasing the service life of geopolymer concrete structures, and reduce repair costs and save energy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
CO2 | carbon dioxide |
Si | silicon |
O | oxygen |
Al | aluminum |
SiO2 | silica |
Al2O3 | aluminum oxide |
Fe2O3 | iron(III) oxide |
CaO | calcium oxide |
TiO2 | titanium dioxide |
K2O | potassium oxide |
MgO | magnesium oxide |
Na2O | sodium oxide |
Na2SiO3 | sodium metasilicate |
NaOH | sodium hydroxide |
KOH | potassium hydroxide |
H2O | hydrogen oxide (water) |
CaCO3 | calcium carbonate |
Na | sodium |
K | potassium |
Ca | calcium |
H | hydrogen |
Ca(OH)2 | calcium hydroxide |
H4SiO4 | orthosilicic acid |
Ca(C3H5O2)2 | calcium salt of propionic acid |
References
- Khan, K.; Ahmad, W.; Amin, M.N.; Nazar, S. A Scientometric-Analysis-Based Review of the Research Development on Geopolymers. Polymers 2022, 14, 3676. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H.; Fernández-Pereira, C. Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. J. Hazard. Mater. 2009, 166, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Aliabdo, A.A.; Elmoaty, A.E.M.A.; Emam, M.A. Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Constr. Build. Mater. 2019, 197, 339–355. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—A guide for civil engineer. Constr. Build. Mater. 2013, 47, 29–55. [Google Scholar] [CrossRef]
- Bhikshma, V.; Koti, R.M.; Srinivas, R.T. An experimental investigation on properties of geopolymer concrete (no cement concrete). Asian J. Civ. Eng. Build. Hous. 2012, 13, 841–853. Available online: https://www.semanticscholar.org/paper/AN-EXPERIMENTAL-INVESTIGATION-ON-PROPERTIES-OF-(NO-Bhikshma-Reddy/895edbe2306139f7331e3db2be25dceb5d9b1521?sort=relevance&pdf=true (accessed on 29 September 2022).
- McCaffrey, R. Climate Change and the Cement Industry. Global Cement and Lime Magazine (Environmental Special Issue). 2002, Volume 15, p. 19. Available online: https://thegreencaiman.files.wordpress.com/2016/03/climate_change_and_the_cement_industry.pdf (accessed on 29 September 2022).
- WMO. Greenhouse Gas: Bulletin: The State of the Greenhouse Gases in the Atmosphere Based on Global Observations through 2018; WMO: Geneva, Switzerland, 2019; Volume 15, p. 191536. Available online: https://library.wmo.int/doc_num.php?explnum_id=10100 (accessed on 29 September 2022).
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Shuyskiy, A.; Beskopylny, N.; Dotsenko, N. Mathematical Modeling and Experimental Substantiation of the Gas Release Process in the Production of Non-Autoclaved Aerated Concrete. Materials 2022, 15, 2642. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Zherebtsov, Y. Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types. Materials 2022, 15, 2739. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Quantitative and Qualitative Aspects of Composite Action of Concrete and Dispersion-Reinforcing Fiber. Polymers 2022, 14, 682. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Efremenko, I.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Modeling and Experimental Verification of the Performance of Polymer Composite Reinforcing Bars of Different Types in Concrete of Different Density. Polymers 2022, 14, 1756. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Beskopylny, N. High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Appl. Sci. 2022, 12, 5480. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels 2022, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; Varavka, V.; Beskopylny, N. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials 2022, 15, 4254. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. Enhanced Eco-Friendly Concrete Nano-Change with Eggshell Powder. Appl. Sci. 2022, 12, 6606. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Dotsenko, N.; Kotenko, M. Nanomodified Concrete with Enhanced Characteristics Based on River Snail Shell Powder. Appl. Sci. 2022, 12, 7839. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; El’shaeva, D.; Kotenko, M. The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels 2022, 8, 530. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Shilov, A.A.; Beskopylny, N.; Chernil’nik, A. Enhanced Performance of Concrete Dispersedly Reinforced with Sisal Fibers. Appl. Sci. 2022, 12, 9102. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. J. Compos. Sci. 2022, 6, 268. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Ceramic-Like Inorganic Polymers. J. Ceram. Sci. Technol. 2017, 8, 335–350. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Cement a review. Geopolym. Sci. Tech. 2013, 21, 1–11. Available online: https://www.researchgate.net/publication/306946529_Geopolymer_Cement_a_review_2013 (accessed on 29 September 2022).
- Davidovits, J. Geopolymer Chemistry and Applications, 5th ed.; Geopolymer Institute: Saint-Quentin, France, 2020; 680p, ISBN 9782954453118. [Google Scholar]
- Davidovits, J. Global Worming Impact on the Cement and Aggregates Industries; World Resource Review: Saint-Quentin, France, 1994; Volume 6, pp. 263–278. Available online: https://www.researchgate.net/publication/236503901 (accessed on 29 September 2022).
- Davidovits, J.; Davidovits, R. Poly(sialate-disiloxo)-Based Geopolymeric Cement and Production Method Thereof. U.S. Patent 7,229,491, 12 August 2007. Available online: https://patents.google.com/patent/US7229491B2/en (accessed on 29 September 2022).
- Hassan, A.; Arif, M.; Shariq, M. Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure. J. Clean. Prod. 2019, 223, 704–728. [Google Scholar] [CrossRef]
- Kumar, H.; Prasad, R.; Srivastava, A.; Vashista, M.; Khan, M. Utilisation of industrial waste (Fly ash) in synthesis of copper based surface composite through friction stir processing route for wear applications. J. Clean. Prod. 2018, 196, 460–468. [Google Scholar] [CrossRef]
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Diaz, E.I.; Allouche, E.N. Recycling of Fly Ash into Geopolymer Concrete: Creation of a Database. In Proceedings of the 2010 IEEE Green Technologies Conference, Grapevine, TX, USA, 15–16 April 2010; pp. 1–7. [Google Scholar] [CrossRef]
- Poranek, N.; Łaźniewska-Piekarczyk, B.; Czajkowski, A.; Pikoń, K. MSWIBA Formation and Geopolymerisation to Meet the United Nations Sustainable Development Goals (SDGs) and Climate Mitigation. Buildings 2022, 12, 1083. [Google Scholar] [CrossRef]
- Nikmehr, B.; Al-Ameri, R. A State-of-the-Art Review on the Incorporation of Recycled Concrete Aggregates in Geopolymer Concrete. Recycling 2022, 7, 51. [Google Scholar] [CrossRef]
- Danish, A.; Ozbakkaloglu, T.; Ali Mosaberpanah, M.; Salim, M.U.; Bayram, M.; Yeon, J.H.; Jafar, K. Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: A review. J. Build. Eng. 2022, 58, 105005. [Google Scholar] [CrossRef]
- Li, N.; Shi, C.; Zhang, Z.; Wang, H.; Liu, Y. A review on mixture design methods for geopolymer concrete. Compos. Part B Eng. 2019, 178, 107490. [Google Scholar] [CrossRef]
- Paruthi, S.; Husain, A.; Alam, P.; Khan, A.H.; Hasan, M.A.; Magbool, H.M. A review on material mix proportion and strength influence parameters of geopolymer concrete: Application of ANN model for GPC strength prediction. Constr. Build. Mater. 2022, 356, 129253. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mahmood, L.J.; Muhammad, M.A.; Faraj, R.H.; Qaidi, S.; Sor, N.H.; Mohammed, A.S.; Mohammed, A.A. Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Clean. Mater. 2022, 5, 100111. [Google Scholar] [CrossRef]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential applications of geopolymer concrete in construction: A review. Case Stud. Constr. Mater. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, Y.; Wang, K.; Zhang, J. A review on properties of fresh and hardened geopolymer mortar. Compos. Part B Eng. 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Ng, C.; Alengaram, U.J.; Wong, L.S.; Mo, K.H.; Jumaat, M.Z.; Ramesh, S. A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete. Constr. Build. Mater. 2018, 186, 550–576. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Luhar, I.; Luhar, S. A Comprehensive Review on Fly Ash-Based Geopolymer. J. Compos. Sci. 2022, 6, 219. [Google Scholar] [CrossRef]
- Jindal, B.B. Investigations on the properties of geopolymer mortar and concrete with mineral admixtures: A review. Constr. Build. Mater. 2019, 227, 116644. [Google Scholar] [CrossRef]
- Yang, J.; Yu, X.; He, X.; Su, Y.; Zeng, J.; Dai, F.; Guan, S. Effect of Ultrafine Fly Ash and Water Glass Content on the Performance of Phosphorus Slag-Based Geopolymer. Materials 2022, 15, 5395. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Alkali-Activated Materials and Geopolymer: A Review of Common Precursors and Activators Addressing Circular Economy. Circ. Econ. Sust. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Manikandan, P.; Vasugi, V. A Critical Review of Waste Glass Powder as an Aluminosilicate Source Material for Sustainable Geopolymer Concrete Production. Silicon 2021, 13, 3649–3663. [Google Scholar] [CrossRef]
- Ramagiri, K.K.; Kar, A. Environmental impact assessment of alkali-activated mortar with waste precursors and activators. J. Build. Eng. 2021, 44, 103391. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Alrefaei, Y.; Dai, J.-G. Roles of hybrid activators in improving the early-age properties of one-part geopolymer pastes. Constr. Build. Mater. 2021, 306, 124880. [Google Scholar] [CrossRef]
- Mohapatra, S.S.; Mishra, J.; Nanda, B.; Patro, S.K. A review on waste-derived alkali activators for preparation of geopolymer composite. Mater. Today Proc. 2022, 56, 440–446. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Abdullah, M.; Hussin, K.; Bnhussain, M.; Ismail, K.; Ibrahim, W. Mechanism and chemical reaction of fly ash geopolymer cement—A review. Int. J. Pure Appl. Sci. Technol. 2011, 6, 35–44. Available online: https://www.yumpu.com/en/document/view/53787756/mechanism-and-chemical-reaction-of-fly-ash-geopolymer-cement-a-review (accessed on 29 September 2022).
- Mohammed, A.A.; Ahmed, H.U.; Mosavi, A. Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis. Materials 2021, 14, 4690. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Arif, M.; Shariq, M. Influence of microstructure of geopolymer concrete on its mechanical properties—A review. In Advances in Sustainable Construction Materials and Geotechnical Engineering; Springer: Berlin/Heidelberg, Germany, 2020; pp. 119–129. [Google Scholar] [CrossRef]
- Habert, G.; De Lacaillerie, J.D.E.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Davidovits, J. Why Alkali-Activated-Materials AAM Are Not Geopolymers; Geopolymer Institute: Saint-Quentin, France, 2018. [Google Scholar]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Valencia-Saavedra, W.; Mejía de Gutiérrez, R. Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units. Sustainability 2022, 14, 9685. [Google Scholar] [CrossRef]
- Figiela, B.; Brudny, K.; Lin, W.-T.; Korniejenko, K. Investigation of Mechanical Properties and Microstructure of Construction- and Demolition-Waste-Based Geopolymers. J. Compos. Sci. 2022, 6, 191. [Google Scholar] [CrossRef]
- Kozhukhova, N.I.; Fomina, E.V.; Zhernovsky, I.V.; Strokova, V.V.; Chizhov, R.V. The Utilization Efficiency of Natural Alumosilicates in Composite Binders. Appl. Mech. Mater. 2014, 670, 182–186. [Google Scholar] [CrossRef]
- Górski, M.; Wielgus, N.; Loska, K.; Kozioł, M.; Landrat, M.; Ścierski, W.; Pikoń, K. Characteristics of Metakaolin-Based Geopolymer with Cathode Ray Tube Glass. Polymers 2021, 13, 1149. [Google Scholar] [CrossRef]
- Eroshkina, N.A.; Korovkin, M.O.; Chamurliev, M.J. Application of polypropylene microfiber in technology of geopolymer fine grained concrete. Eng. J. Don. 2018, 2. Available online: http://www.ivdon.ru/ru/magazine/archive/N2y2018/5024 (accessed on 16 May 2023).
- Eroshkina, N.A.; Korovkin, M.O.; Korovchenko, I.V. Resource-saving effectiveness of technologies geopolymer binders based on magmatic rocks. Modern Sci. Res. Innov. 2015, 3, 50975. Available online: https://web.snauka.ru/issues/2015/03/50975 (accessed on 16 May 2023).
- Ding, Y.; Bai, Y.-L.; Dai, J.-G.; Shi, C.-J. An Investigation of Softening Laws and Fracture Toughness of Slag-Based Geopolymer Concrete and Mortar. Materials 2020, 13, 5200. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, H.; Jiang, L.; Meng, L.; Zhou, B.; Zhang, J. Long-Term Physical and Mechanical Properties and Microstructures of Fly-Ash-Based Geopolymer Composite Incorporating Carbide Slag. Materials 2021, 14, 6692. [Google Scholar] [CrossRef]
- Abdullah, A.; Hussin, K.; Abdullah, M.M.A.B.; Yahya, Z.; Sochacki, W.; Razak, R.A.; Błoch, K.; Fansuri, H. The Effects of Various Concentrations of NaOH on the Inter-Particle Gelation of a Fly Ash Geopolymer Aggregate. Materials 2021, 14, 1111. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 2016, 5, 277–287. [Google Scholar] [CrossRef]
- Roychand, R.; Li, J.; De Silva, S.; Saberian, M.; Law, D.; Pramanik, B.K. Development of zero cement composite for the protection of concrete sewage pipes from corrosion and fatbergs. Resour. Conserv. Recycl. 2021, 164, 105166. [Google Scholar] [CrossRef]
- Wulandari, K.D.; Ekaputri, J.J.; Triwulan; Kurniawan, S.B.; Primaningtyas, W.E.; Abdullah, S.R.S.; Ismail, N.I.; Imron, M.F. Effect of microbes addition on the properties and surface morphology of fly ash-based geopolymer paste. J. Build. Eng. 2021, 33, 101596. [Google Scholar] [CrossRef]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hutchison, W. Resistance of fly ash based geopolymer mortar to both chemicals and high thermal cycles simultaneously. Constr. Build. Mater. 2020, 239, 117886. [Google Scholar] [CrossRef]
- Sivasakthi, M.; Jeyalakshmi, R.; Rajamane, N.P. Fly ash geopolymer mortar: Impact of the substitution of river sand by copper slag as a fine aggregate on its thermal resistance properties. J. Clean. Prod. 2021, 279, 123766. [Google Scholar] [CrossRef]
- Ouyang, X.; Ma, Y.; Liu, Z.; Liang, J.; Ye, G. Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag. Minerals 2020, 10, 15. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Pang, E. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials 2022, 15, 3732. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yan, C.; Duan, P.; Liu, Y.; Zhang, Z.; Qiu, X.; Li, D. A comparative study of high- and low-Al2O3 fly ash based-geopolymers: The role of mix proportion factors and curing temperature. Mater. Des. 2016, 95, 63–74. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Qi, S.L.; Cao, L.; Wu, B. Development of metakaolin–fly ash based geopolymers for fire resistance applications. Constr. Build. Mater. 2014, 55, 38–45. [Google Scholar] [CrossRef]
- Pangdaeng, S.; Sata, V.; Aguiar, J.B.; Pacheco-Torgal, F.; Chindaprasirt, P. Apatite formation on calcined kaolin–white Portland cement geopolymer. Mater. Sci. Eng. C 2015, 51, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhu, P.; Liu, H.; Wang, X.; Ge, W.; Hua, M. Resistance to Sulfuric Acid Corrosion of Geopolymer Concrete Based on Different Binding Materials and Alkali Concentrations. Materials 2021, 14, 7109. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Gevaudan, J.P.; Craun, Z.; Srubar, W.V. Sulfuric acid degradation of alkali-activated metakaolin cements supplemented with brucite. Cem. Concr. Compos. 2021, 121, 104063. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Kumar, L.; Revathi, V. Durability studies in alkaline activated systems (metakaolin–bottom ash): A prospective study. Bol. Soc. Esp. Cerám. Vidr. 2021, 62, 40–55. [Google Scholar] [CrossRef]
- Thumrongvut, J.; Seangatith, S.; Phetchuay, C.; Suksiripattanapong, C. Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash. Sustainability 2022, 14, 9856. [Google Scholar] [CrossRef]
- Islam, M.N.; Zain, M.F.M.; Jamil, M. Prediction of strength and slump of rice husk ash incorporated high-performance concrete. J. Civ. Eng. Manag. 2012, 18, 310–317. [Google Scholar] [CrossRef]
- Celik, F.; Canakci, H. Examination of the mechanical properties and failure pattern of soilcrete mixtures modified with rice husk ash. Eur. J. Environ. Civ. Eng. 2020, 24, 1245–1260. [Google Scholar] [CrossRef]
- Abolhasani, A.; Samali, B.; Dehestani, M.; Libre, N.A. Effect of rice husk ash on mechanical properties, fracture energy, brittleness and aging of calcium aluminate cement concrete. Structures 2022, 36, 140–152. [Google Scholar] [CrossRef]
- Malathy, R.; Shanmugam, R.; Chung, I.-M.; Kim, S.-H.; Prabakaran, M. Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash. Processes 2022, 10, 1424. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Sun, Q.; Gu, Q. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 4397. [Google Scholar] [CrossRef]
- Ahmed, A.; Ameer, S.; Abbas, S.; Abbass, W.; Razzaq, A.; Mohamed, A.M.; Mohamed, A. Effectiveness of Ternary Blend Incorporating Rice Husk Ash, Silica Fume, and Cement in Preparing ASR Resilient Concrete. Materials 2022, 15, 2125. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; de-Prado-Gil, J.; Palencia, C.; Ali, E.; Hakeem, I.; Martínez-García, R. Impact of sulfate activation of rice husk ash on the performance of high strength steel fiber reinforced recycled aggregate concrete. J. Build. Eng. 2022, 54, 104610. [Google Scholar] [CrossRef]
- Amin, M.N.; Rehman, K.U.; Shahzada, K.; Khan, K.; Wahab, N.; Alabdullah, A.A. Mechanical and microstructure performance and global warming potential of blended concrete containing rice husk ash and silica fume. Constr. Build. Mater. 2022, 346, 128470. [Google Scholar] [CrossRef]
- Ha, N.S.; Marundrury, S.S.; Pham, T.M.; Pournasiri, E.; Shi, F.; Hao, H. Effect of grounded blast furnace slag and rice husk ash on performance of ultra-high-performance concrete (UHPC) subjected to impact loading. Constr. Build. Mater. 2022, 329, 127219. [Google Scholar] [CrossRef]
- Al-Alwan, A.A.K.; Al-Bazoon, M.; Mussa, F.I.; Alalwan, H.A.; Shadhar, M.H.; Mohammed, M.M.; Mohammed, M.F. The impact of using rice husk ash as a replacement material in concrete: An experimental study. J. King Saud Univ. Eng. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Omer, S.A.; Demirboga, R.; Khushefati, W.H. Relationship between compressive strength and UPV of GGBFS based geopolymer mortars exposed to elevated temperatures. Constr. Build. Mater. 2015, 94, 189–195. [Google Scholar] [CrossRef]
- Soultana, A.; Valouma, A.; Bartzas, G.; Komnitsas, K. Properties of Inorganic Polymers Produced from Brick Waste and Metallurgical Slag. Minerals 2019, 9, 551. [Google Scholar] [CrossRef]
- Zuaiter, M.; El-Hassan, H.; El-Maaddawy, T.; El-Ariss, B. Properties of Slag-Fly Ash Blended Geopolymer Concrete Reinforced with Hybrid Glass Fibers. Buildings 2022, 12, 1114. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B.; Nisar, K.S.; Abdel-Aty, A.-H.; Yahia, I.S. Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete. Polymers 2022, 14, 306. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Tang, Z.; Wang, K. Property degradation of seawater sea sand cementitious mortar with GGBFS and glass fiber subjected to elevated temperatures. J. Mater. Res. Technol. 2021, 13, 366–384. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Influence of the slag content on the chloride and sulfuric acid resistances of alkali-activated fly ash/slag paste. Cem. Concr. Compos. 2016, 72, 168–179. [Google Scholar] [CrossRef]
- Hussain, K.; Butt, F.; Alwetaishi, M.; Waqas, R.M.; Aslam, F.; Ibraheem, M.; Xulong, Z.; Ahmad, N.; Tufail, R.F.; Musarat, M.A.; et al. Effect of Quarry Rock Dust as a Binder on the Properties of Fly Ash and Slag-Based Geopolymer Concrete Exposed to Ambient and Elevated Temperatures. Appl. Sci. 2021, 11, 9192. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Sustainable geopolymer concrete using ground granulated blast furnace slag and rice husk ash: Strength and permeability properties. J. Clean. Prod. 2018, 205, 49–57. [Google Scholar] [CrossRef]
- Junior, J.; Saha, A.K.; Sarker, P.K.; Pramanik, A. Workability and Flexural Properties of Fibre-Reinforced Geopolymer Using Different Mono and Hybrid Fibres. Materials 2021, 14, 4447. [Google Scholar] [CrossRef] [PubMed]
- Rashedi, A.; Marzouki, R.; Raza, A.; Rawi, N.F.M.; Naveen, J. Mechanical, Fracture, and Microstructural Assessment of Carbon-Fiber-Reinforced Geopolymer Composites Containing Na2O. Polymers 2021, 13, 3852. [Google Scholar] [CrossRef] [PubMed]
- Karthik, S.; Mohan, K.S.R. A Taguchi Approach for Optimizing Design Mixture of Geopolymer Concrete Incorporating Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume. Crystals 2021, 11, 1279. [Google Scholar] [CrossRef]
- Dal Poggetto, G.; Catauro, M.; Crescente, G.; Leonelli, C. Efficient Addition of Waste Glass in MK-Based Geopolymers: Microstructure, Antibacterial and Cytotoxicity Investigation. Polymers 2021, 13, 1493. [Google Scholar] [CrossRef]
- Sathish Kumar, V.; Ganesan, N.; Indira, P.V. Effect of Hybrid Fibres on the Durability Characteristics of Ternary Blend Geopolymer Concrete. J. Compos. Sci. 2021, 5, 279. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Zhu, X.; Jiang, T.; Tufail, R.F. A Comprehensive Study on the Factors Affecting the Workability and Mechanical Properties of Ambient Cured Fly Ash and Slag Based Geopolymer Concrete. Appl. Sci. 2021, 11, 8722. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Danish, A.; Alqurashi, M.; Mosaberpanah, M.A.; Masood, B.; Hussein, E.E. Influence of Bentonite on Mechanical and Durability Properties of High-Calcium Fly Ash Geopolymer Concrete with Natural and Recycled Aggregates. Materials 2021, 14, 7790. [Google Scholar] [CrossRef]
- Ibraheem, M.; Butt, F.; Waqas, R.M.; Hussain, K.; Tufail, R.F.; Ahmad, N.; Usanova, K.; Musarat, M.A. Mechanical and Microstructural Characterization of Quarry Rock Dust Incorporated Steel Fiber Reinforced Geopolymer Concrete and Residual Properties after Exposure to Elevated Temperatures. Materials 2021, 14, 6890. [Google Scholar] [CrossRef]
- Rehman, S.K.U.; Imtiaz, L.; Aslam, F.; Khan, M.K.; Haseeb, M.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H. Experimental Investigation of NaOH and KOH Mixture in SCBA-Based Geopolymer Cement Composite. Materials 2020, 13, 3437. [Google Scholar] [CrossRef]
- Longos, A., Jr.; Tigue, A.A.; Dollente, I.J.; Malenab, R.A.; Bernardo-Arugay, I.; Hinode, H.; Kurniawan, W.; Promentilla, M.A. Optimization of the Mix Formulation of Geopolymer Using Nickel-Laterite Mine Waste and Coal Fly Ash. Minerals 2020, 10, 1144. [Google Scholar] [CrossRef]
- Lăzărescu, A.-V.; Szilagyi, H.; Baeră, C.; Hegyi, A. Parametric Studies Regarding the Development of Alkali-Activated Fly Ash-Based Geopolymer Concrete Using Romanian Local Raw Materials. Proceedings 2020, 63, 11. [Google Scholar] [CrossRef]
- Xie, J.; Wang, J.; Rao, R.; Wang, C.; Fang, C. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Compos. Part B Eng. 2019, 164, 179–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Ma, X.; Reid, A.; Wang, H. Efflorescence and subflorescence induced microstructural and mechanical evolution in fly ash-based geopolymers. Cem. Concr. Compos. 2018, 92, 165–177. [Google Scholar] [CrossRef]
- Rao, M. Goriparthi Effect of fly ash and GGBS combination on mechanical and durability properties of GPC. Adv. Concr. Constr. 2017, 5, 313–330. [Google Scholar] [CrossRef]
- Koushkbaghi, M.; Alipour, P.; Tahmouresi, B.; Mohseni, E.; Saradar, A.; Sarker, P.K. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Constr. Build. Mater. 2019, 205, 519–528. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D. The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Appl. Sci. 2022, 12, 613. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Increasing the Corrosion Resistance and Durability of Geopolymer Concrete Structures of Agricultural Buildings Operating in Specific Conditions of Aggressive Environments of Livestock Buildings. Appl. Sci. 2022, 12, 1655. [Google Scholar] [CrossRef]
- Ravikumar, D.; Neithalath, N. Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cem. Concr. Compos. 2012, 34, 809–818. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Patankar, S.V.; Ghugal, Y.M.; Jamkar, S.S. Effect of concentration of sodium hydroxide and degree of heat curing on fly ash-based geopolymer mortar. Indian J. Mater. Sci. 2014, 2014, 938789. [Google Scholar] [CrossRef]
- Patil, A.A.; Chore, H.; Dodeb, P. Effect of curing condition on strength of geopolymer concrete. Adv. Concr. Constr. 2014, 2, 29–37. [Google Scholar] [CrossRef]
- Ferdous, M.; Kayali, O.; Khennane, A. A detailed procedure of mix design for fly ash based geopolymer concrete. In Proceedings of the Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013), Melbourne, Australia, 11–13 December 2013; International Institute for FRP in Construction: Winnipeg, MB, Canada. [Google Scholar]
- Gunasekara, M.; Law, D.; Setunge, S. Effect of composition of fly ash on compressive strength of fly ash based geopolymer mortar. In Proceedings of the 23rd Australasian Conference on the Mechanics of Structures and Materials (ACMSM23), Byron Bay, Australia, 9–12 December 2014; Available online: https://www.researchgate.net/publication/286301657_Effect_of_composition_of_fly_ash_on_compressive_strength_of_fly_ash_based_geopolymer_mortar (accessed on 29 September 2022).
- Duxson, P.; Mallicoat, S.W.; Lukey, G.C.; Kriven, W.M.; van Deventer, J.S. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 292, 8–20. [Google Scholar] [CrossRef]
- Pavithra, P.; Srinivasula Reddy, M.; Dinakar, P.; Hanumantha Rao, B.; Satpathy, B.; Mohanty, A. Effect of the Na2SiO3/NaOH ratio and NaOH molarity on the synthesis of fly ash-based geopolymer mortar. In Proceedings of the Geo-Chicago 2016: Sustainability and Resiliency in Geotechnical Engineering, Chicago, IL, USA, 14–18 August 2016; pp. 336–344. [Google Scholar] [CrossRef]
- Mallikarjuna Rao, G.; Gunneswara Rao, T. A quantitative method of approach in designing the mix proportions of fly ash and GGBS-based geopolymer concrete. Aust. J. Civ. Eng. 2018, 16, 53–63. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R. Durability and leach-ability evaluation of K-based geopolymer concrete in real environmental conditions. Case Stud. Constr. Mater. 2020, 13, e00366. [Google Scholar] [CrossRef]
- Hadi, M.N.; Farhan, N.A.; Sheikh, M.N. Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr. Build. Mater. 2017, 140, 424–431. [Google Scholar] [CrossRef]
- Anuradha, R.; Sreevidya, V.; Venkatasubramani, R.; Rangan, B.V. Modified guidelines for geopolymer concrete mix design using Indian standard. Asian J. Civ. Eng. 2012, 13, 353–364. Available online: http://hdl.handle.net/20.500.11937/38772 (accessed on 29 September 2022).
- Ogheneochuko, D.; Orie, O. Optimization of superplasticized concrete using Taguchi approach: A case study of hydroplast 200. Niger. J. Technol. 2018, 37, 611–618. [Google Scholar] [CrossRef]
- Olivia, M.; Nikraz, H. Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Des. 1980–2015 2012, 36, 191–198. [Google Scholar] [CrossRef]
- Anwar, F.H.; El-Hassan, H.; Hamouda, M.; El-Mir, A.; Mohammed, S.; Mo, K.H. Optimization of Pervious Geopolymer Concrete Using TOPSIS-Based Taguchi Method. Sustainability 2022, 14, 8767. [Google Scholar] [CrossRef]
- Junaid, M.T.; Kayali, O.; Khennane, A.; Black, J. A mix design procedure for low calcium alkali activated fly ash-based concretes. Constr. Build. Mater. 2015, 79, 301–310. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Palomo, A.; Fernández-Jiménez, A. Alkaline activation, procedure for transforming fly ash into new materials. Part I: Applications. In Proceedings of the World of Coal Ash (WOCA) Conference, Denver, CO, USA, 9–12 May 2011; pp. 1–14. Available online: https://www.researchgate.net/publication/303160905_Alkaline_activation_procedure_for_transforming_fly_ash_into_new_materials_Part_1_Applications (accessed on 29 September 2022).
- Glukhovsky, V.D.; Rostovskaya, G.S.; Rumyna, G.V. High strength slag alkali cement. In Proceedings of the 7th International Congress on the Chemistry of Cement, Paris, France, 1–5 July 1980; pp. 164–168. [Google Scholar]
- Davidovits, J. Geopolymer chemistry and applications. A review. In Geopolymer Science and Technics, 3rd ed.; Technical Paper #21; Geopolymer Institute Library: Saint-Quentin, France, 2011; p. 614. [Google Scholar]
- Alonso, S.; Palomo, A.; Sobrados, I.; Sanz, J. Geopolymerisation of Kaolinitic Alumino-Silicate Oxide in Presence of Ca(OH)2. MAS-NMR Studies. In Geopolymers, Green Chemistry and Sustainable Development Solutions; Geopolymer Institute: Saint-Quentin, France, 1999; pp. 81–82. [Google Scholar]
- Aldred, J.; Day, J. Is Geopolymer Concrete a Suitable Alternative to Traditional Concrete? In Proceedings of the 37th Conference on Our World in Concrete & Structures, Singapore, 29–31 August 2012; Cipremier PTE Ltd.: Singapore, 2012; p. 14. [Google Scholar]
- Davidovits, J. Properties of Geopolymer Cements. In Proceedings of the First International Conference on Alkaline Cements and Concrete, Scientific Research Institute on Binders and Materials, Kiev State Technical University, Kiev, Ukraine, 11–14 October 1994; pp. 131–149. [Google Scholar]
- Davidovits, J. 30 Years of Successes and Failures in Geopolymer Applications. Market Trends and Potential Breakthroughs. In Proceedings of the Geopolymer 2002 3rd International Conference, Melbourne, Australia, 28–29 October 2022. [Google Scholar]
- Davidovits, J. Chemistry of Geopolymeric Systems Terminology. In International Conference on Geopolymers; Geopolymer Institute: Saint-Quentin, France, 1999; Volume 1, pp. 9–40. [Google Scholar]
- Davidovits, J. Mineral Polymers and Methods of Making Them. U.S. Patent 4,349,386, 29 August 1982. [Google Scholar]
- Nikoloutsopoulos, N.; Sotiropoulou, A.; Kakali, G.; Tsivilis, S. Physical and Mechanical Properties of Fly Ash Based Geopolymer Concrete Compared to Conventional Concrete. Buildings 2021, 11, 178. [Google Scholar] [CrossRef]
- Sathonsaowaphak, A.; Chindaprasirt, P.; Pimraksa, K. Workability and strength of lignite bottom ash geopolymer mortar. J. Hazard. Mater. 2009, 168, 44–50. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash. Constr. Build. Mater. 2017, 150, 792–807. [Google Scholar] [CrossRef]
- Karakoç, M.B.; Türkmen, İ.; Maraş, M.M.; Kantarci, F.; Demirboğa, R.; Toprak, M.U. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 2014, 72, 283–292. [Google Scholar] [CrossRef]
- Elyamany, H.E.; Elmoaty, A.E.M.A.; Elshaboury, A.M. Setting time and 7-day strength of geopolymer mortar with various binders. Constr. Build. Mater. 2018, 187, 974–983. [Google Scholar] [CrossRef]
- Matalkah, F.; Salem, T.; Shaafaey, M.; Soroushian, P. Drying shrinkage of alkali activated binders cured at room temperature. Constr. Build. Mater. 2019, 201, 563–570. [Google Scholar] [CrossRef]
- Lee, N.; Jang, J.G.; Lee, H.-K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages. Cem. Concr. Compos. 2014, 53, 239–248. [Google Scholar] [CrossRef]
- Singh, B.; Rahman, M.; Paswan, R.; Bhattacharyya, S. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete. Constr. Build. Mater. 2016, 118, 171–179. [Google Scholar] [CrossRef]
- Shekhovtsova, J.; Kearsley, E.P.; Kovtun, M. Effect of activator dosage, water-to-binder-solids ratio, temperature and duration of elevated temperature curing on the compressive strength of alkali-activated fly ash cement pastes. J. S. Afr. Inst. Civ. Eng. 2014, 56, 44–52. Available online: https://www.researchgate.net/publication/268805948_Effect_of_activator_dosage_water-to-binder-solids_ratio_temperature_and_duration_of_elevated_temperature_curing_on_the_compressive_strength_of_alkali-activated_fly_ash_cement_pastes (accessed on 29 September 2022).
- Assi, L.N.; Deaver, E.E.; Ziehl, P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Constr. Build. Mater. 2018, 167, 372–380. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Behnia, A.; Alengaram, U.J.; Jumaat, M.Z. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar. Mater. Des. 2014, 59, 532–539. [Google Scholar] [CrossRef]
- Arellano-Aguilar, R.; Burciaga-Díaz, O.; Gorokhovsky, A.; Escalante-García, J.I. Geopolymer mortars based on a low grade metakaolin: Effects of the chemical composition, temperature and aggregate: Binder ratio. Constr. Build. Mater. 2014, 50, 642–648. [Google Scholar] [CrossRef]
- Ramujee, K.; PothaRaju, M. Mechanical properties of geopolymer concrete composites. Mater. Today Proc. 2017, 4, 2937–2945. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Mandal, S. Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr. Build. Mater. 2014, 70, 453–459. [Google Scholar] [CrossRef]
- Lee, B.; Kim, G.; Kim, R.; Cho, B.; Lee, S.; Chon, C.-M. Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr. Build. Mater. 2017, 151, 512–519. [Google Scholar] [CrossRef]
- Hardjito, D.; Rangan, B.V. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete; Research Report GC1; Curtin University of Technology: Perth, Australia, 2005; Available online: https://www.researchgate.net/publication/228794879_Development_and_Properties_of_Low-calcium_Fly_Ash_Based_Geopolymer_Concrete (accessed on 29 September 2022).
- Farooq, F.; Rahman, S.K.U.; Akbar, A.; Khushnood, R.A.; Javed, M.F.; Alyousef, R.; Alabduljabbar, H.; Aslam, F. A comparative study on performance evaluation of hybrid GNPs/CNTs in conventional and self-compacting mortar. Alex. Eng. J. 2020, 59, 369–379. [Google Scholar] [CrossRef]
- Hung, T.V.; Tien, N.D.; van Dong, D. Experimental study on section curvature and ductility of reinforced geopolymer concrete beams. Sci. J. Transp. 2017, 8, 3–11. Available online: https://sjt.madi.ru/sjt/08/sjt-2017-08_01_p3-11.pdf (accessed on 29 September 2022).
- Albitar, M.; Ali, M.M.; Visintin, P.; Drechsler, M. Durability evaluation of geopolymer and conventional concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Deepak, A.L.; Lakshmi, T.V. Durability properties of geopolymer concrete with flyash and metakaolin. Int. J. Sci. Technol. Res. 2020, 9, 256–260. Available online: https://1library.net/document/qod6rnjz-durability-properties-geopolymer-concrete-flyash-metakaolin.html (accessed on 29 September 2022).
- Luhar, S.; Khandelwal, U. Durability studies of flyash based geopolymer concrete. Int. J. Eng. Res. Appl. 2015, 5, 17–32. Available online: https://www.researchgate.net/publication/303792733_Durability_Studies_of_Fly_Ash_Based_Geopolymer_Concrete (accessed on 29 September 2022).
- Beskopylny, A.; Kadomtseva, E.; Strelnikov, G.; Morgun, L.; Berdnik, Y.; Morgun, V. Model of heterogeneous reinforced fiberfoam concrete in bending. IOP Conf. Ser. Mater. Sci. Eng. 2018, 365, 032023. [Google Scholar] [CrossRef]
- Memon, F.A.; Nuruddin, M.F.; Demie, S.; Shafiq, N. Effect of curing conditions on strength of fly ash-based self-compacting geopolymer concrete. Int. J. Civ. Environ. Eng. 2011, 3, 183–186. [Google Scholar]
- Chindaprasirt, P.; Chareerat, T.; Sirivivatnanon, V. Workability and strength of coarse high calcium fly ash geopolymer. Cem. Concr. Compos. 2007, 29, 224–229. [Google Scholar] [CrossRef]
- Umniati, B.S.; Risdanareni, P.; Zein, F.T.Z. Workability enhancement of geopolymer concrete through the use of retarder. In AIP Conf. Proc. 2017, 1887, 020033. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem. Concr. Compos. 2015, 55, 205–214. [Google Scholar] [CrossRef]
- Silva, S.; Kithalawa Arachchi, J.; Wijewardena, C.; Nanayakkara, S. Development of fly ash based geopolymer concrete. In Proceedings of the Annual Session 2012, Honolulu, HI, USA, 4–8 May 2012. [Google Scholar]
- Temuujin, J.v.; Van Riessen, A.; Williams, R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes. J. Hazard. Mater. 2009, 167, 82–88. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. (1980–2015) 2014, 62, 32–39. [Google Scholar] [CrossRef]
- Krishnan, L.; Karthikeyan, S.; Nathiya, S.; Suganya, K. Geopolymer concrete an eco-friendly construction material. Magnesium 2014, 1, 1. [Google Scholar]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I. The development of compressive strength of ground granulated blast furnace slag-palm oil fuel ash-fly ash based geopolymer mortar. Mater. Des. (1980–2015) 2014, 56, 833–841. [Google Scholar] [CrossRef]
- Cheah, C.B.; Samsudin, M.H.; Ramli, M.; Part, W.K.; Tan, L.E. The use of high calcium wood ash in the preparation of ground granulated blast furnace slag and pulverized fly ash geopolymers: A complete microstructural and mechanical characterization. J. Clean. Prod. 2017, 156, 114–123. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K.; Rangan, V.B. Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing. Procedia Eng. 2015, 125, 601–607. [Google Scholar] [CrossRef]
- Mailyan, L.R.; Stel’makh, S.A.; Shcherban’, E.M.; Khalyushev, A.K.; Smolyanichenko, A.S.; Sysoev, A.K.; Parinov, I.A.; Cherpakov, A.V. Investigation of Integral and Differential Characteristics of Variatropic Structure Heavy Concretes by Ultrasonic Methods. Appl. Sci. 2021, 11, 3591. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D.; Varavka, V. Developing Environmentally Sustainable and Cost-Effective Geopolymer Concrete with Improved Characteristics. Sustainability 2021, 13, 13607. [Google Scholar] [CrossRef]
- Castillo, H.; Droguett, T.; Vesely, M.; Garrido, P.; Palma, S. Simple Compressive Strength Results of Sodium-Hydroxide- and Sodium-Silicate-Activated Copper Flotation Tailing Geopolymers. Appl. Sci. 2022, 12, 5876. [Google Scholar] [CrossRef]
- Słomka-Słupik, B.; Wiśniewska, P.; Bargieł, W. Multicomponent Low Initial Molar Ratio of SiO2/Al2O3 Geopolymer Mortars: Pilot Research. Materials 2022, 15, 5943. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.; Blanco, M. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Compos. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Satpute, S.; Shirasath, M.; Hake, S. Investigation of alkaline activators for fly-ash based geopolymer concrete. Int. J. Adv. Res. Innov. Ideas Educ. 2016, 2, 22–28. Available online: http://ijariie.com/AdminUploadPdf/INVESTIGATION_OF_ALKALINE_ACTIVATORS_FOR_FLY_ASH_BASED_GEO_POLYMER_CONCRETE_ijariie3062.pdf (accessed on 29 September 2022).
- Xie, T.; Ozbakkaloglu, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Al-Shathr, B.; Shamsa, M.; al-Attar, T. Relationship between amorphous silica in source materials and compressive strength of geopolymer concrete. MATEC Web Conf. 2018, 162, 02019. [Google Scholar] [CrossRef]
- Elimbi, A.; Tchakoute, H.K.; Njopwouo, D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 2011, 25, 2805–2812. [Google Scholar] [CrossRef]
- Heath, A.; Paine, K.; McManus, M. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 2014, 78, 75–83. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Ulloa, N.; Baykara, H.; Boero, A.J. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018, 190, 170–177. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Mejía-Arcila, J.; de Gutiérrez, R.M.; Martínez, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 2018, 176, 103–111. [Google Scholar] [CrossRef]
- Ng, T.S.; Voo, Y.L.; Foster, S.J. Sustainability with ultra-high performance and geopolymer concrete construction. In Innovative Materials and Techniques in Concrete Construction; Springer: Berlin/Heidelberg, Germany, 2012; pp. 81–100. [Google Scholar] [CrossRef]
- Abbas, R.; Khereby, M.A.; Ghorab, H.Y.; Elkhoshkhany, N. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol. Environ. Policy 2020, 22, 669–687. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Panda, B.; Unluer, C.; Tan, M.J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem. Concr. Compos. 2018, 94, 307–314. [Google Scholar] [CrossRef]
- Boukhelf, F.; Sebaibi, N.; Boutouil, M.; Yoris-Nobile, A.I.; Blanco-Fernandez, E.; Castro-Fresno, D.; Real-Gutierrez, C.; Herbert, R.J.H.; Greenhill, S.; Reis, B.; et al. On the Properties Evolution of Eco-Material Dedicated to Manufacturing Artificial Reef via 3D Printing: Long-Term Interactions of Cementitious Materials in the Marine Environment. Sustainability 2022, 14, 9353. [Google Scholar] [CrossRef]
- Munir, Q.; Afshariantorghabeh, S.; Kärki, T. Industrial Waste Pretreatment Approach for 3D Printing of Sustainable Building Materials. Urban Sci. 2022, 6, 50. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Korniejenko, K.; Łach, M.; Marzec, W.; Góra, M.; Dziura, P.; Sprince, A.; Szechyńska-Hebda, M.; Hebda, M. Properties of 3D Printed Concrete–Geopolymer Hybrids Reinforced with Aramid Roving. Materials 2022, 15, 6132. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, P.; Wu, J.; Sha, D. Mechanical Properties of Nano-SiO2 Reinforced Geopolymer Concrete under the Coupling Effect of a Wet–Thermal and Chloride Salt Environment. Polymers 2022, 14, 2298. [Google Scholar] [CrossRef] [PubMed]
- Maglad, A.M.; Zaid, O.; Arbili, M.M.; Ascensão, G.; Șerbănoiu, A.A.; Grădinaru, C.M.; García, R.M.; Qaidi, S.M.A.; Althoey, F.; de Prado-Gil, J. A Study on the Properties of Geopolymer Concrete Modified with Nano Graphene Oxide. Buildings 2022, 12, 1066. [Google Scholar] [CrossRef]
- Zhu, X.H.; Kang, X.J.; Yang, K.; Yang, C.H. Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Constr. Build. Mater. 2017, 132, 290–295. [Google Scholar] [CrossRef]
- Ranjbar, N.; Mehrali, M.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z. Graphene nanoplatelet-fly ash based geopolymer composites. Cem. Concr. Res. 2015, 76, 222–231. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, J. Experimental research on the mechanical properties of graphene geopolymer. AIP Adv. 2018, 8, 065209. [Google Scholar] [CrossRef]
- Zhong, J.; Zhou, G.-X.; He, P.-G.; Yang, Z.-H.; Jia, D.-C. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide. Carbon 2017, 117, 421–426. [Google Scholar] [CrossRef]
- Mizerová, C.; Kusák, I.; Topolář, L.; Schmid, P.; Rovnaník, P. Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression. Materials 2021, 14, 4350. [Google Scholar] [CrossRef]
- McAlorum, J.; Perry, M.; Vlachakis, C.; Biondi, L.; Lavoie, B. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Autom. Constr. 2021, 121, 103415. [Google Scholar] [CrossRef]
- Alisha, S.; Rohit, P.; Sachin, K.S.N.; Rajesh Babu, V. Self-Healing Concrete Using Bacteria. Int. J. Anal. Exp. Modal Anal. 2020, 12, 3164–3170. Available online: https://www.researchgate.net/publication/345136205_Self-Healing_Concrete_Using_Bacteria (accessed on 16 May 2023).
- Shadhar, M.H.; Mohammed, M.M.; Abdullah, M.H.; Shather, A.H.; Alawan, H.A. Self-healing of concrete using bacteria: Investigation of the impact of the process’s conditions. Innov. Infrastruct. Solut. 2023, 8, 115. [Google Scholar] [CrossRef]
- Ghosh, S.K. Self-Healing Materials: Fundamentals, Design Strategies, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–28. [Google Scholar] [CrossRef]
- De Belie, N.; Gruyaert, E.; Al-Tabbaa, A.; Antonaci, P.; Baera, C.; Bajare, D.; Darquennes, A.; Davies, R.; Ferrara, L.; Jefferson, T.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar] [CrossRef]
- Algaifi, H.A.; Abu Bakar, S.; Sam, A.R.M.; Abidin, A.R.Z.; Shahir, S.; Al-Towayti, W.A.H. Numerical modeling for crack self-healing concrete by microbial calcium carbonate. Constr. Build. Mater. 2018, 189, 816–824. [Google Scholar] [CrossRef]
- Al-Gemeel, A.N.; Zhuge, Y.; Youssf, O. Use of hollow glass microspheres and hybrid fibres to improve the mechanical properties of engineered cementitious composite. Constr. Build. Mater. 2018, 171, 858–870. [Google Scholar] [CrossRef]
- Li, V.C.; Yang, E.-H. Self healing in concrete materials. In Self Healing Materials; Springer: Dordrecht, The Netherlands, 2007; pp. 161–193. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Z.; Yang, Z. Acoustic characterization of damage and healing of microencapsulation-based self-healing cement matrices. Cem. Concr. Compos. 2017, 84, 48–61. [Google Scholar] [CrossRef]
- White, S.R.; Sottos, N.R.; Geubelle, P.H.; Moore, J.S.; Kessler, M.R.; Sriram, S.R.; Brown, E.N.; Viswanathan, S. Autonomic healing of polymer composites. Nature 2001, 409, 794–797. [Google Scholar] [CrossRef]
- Keane, P.F.; Jacob, R.; Belusko, M.; Bruno, F. Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride. Appl. Sci. 2023, 13, 2615. [Google Scholar] [CrossRef]
Ref. Number | Name of Aluminosilicate Component | SiO2 | Al2O3 | Fe2O3 | CaO | TiO2 | K2O | MgO | Na2O | Loss on Ignition |
---|---|---|---|---|---|---|---|---|---|---|
[64] | Fly ash | 55.90 | 28.10 | 6.97 | 3.84 | 2.21 | 1.55 | - | - | 1.20 |
[65] | 51.11 | 25.56 | 12.48 | 4.30 | 1.32 | 0.70 | - | - | 0.57 | |
[66] | 73.50 | 22.50 | 1.10 | 0.40 | 1.40 | 0.30 | 0.40 | 0.20 | ||
[67] | 44.83 | 29.23 | 4.66 | 4.47 | - | 0.68 | 1.62 | 1.32 | - | |
[68] | 62.19 | 27.15 | 3.23 | 1.97 | 1.06 | 0.89 | 0.40 | 0.30 | 1.75 | |
[69] | 55.00 | 26.00 | 10.17 | 2.09 | - | 1.65 | 0.80 | 0.40 | 3.89 | |
[70] | 49.10 | 34.80 | 4.50 | 4.90 | - | 1.30 | 0.40 | 0.40 | 2.30 | |
[71] | 51.80 | 26.40 | 13.20 | 1.61 | 0.68 | 1.17 | 0.31 | 0.50 | ||
[72] | 52.40 | 18.09 | 0.42 | 0.33 | 4.33 | 0.19 | 0.02 | 0.03 | 20.59 | |
27.35 | 50.85 | 1.88 | 5.41 | 2.57 | 0.35 | 0.02 | 0.05 | 7.74 | ||
[73] | Metakaolin | 51.35 | 44.24 | 0.98 | 0.13 | 0.90 | 0.08 | - | - | 0.72 |
[74] | 59.70 | 34.10 | 0.90 | 0.10 | 1.00 | |||||
[71] | 52.10 | 41.00 | 4.30 | 0.09 | 0.62 | 1.36 | 0.01 | 0.50 | ||
[75] | 48.88 | 43.39 | 3.77 | 0.98 | 2.45 | 0.14 | 0.35 | |||
[76] | 52.80 | 43.70 | 0.60 | 0.50 | 1.20 | 0.20 | ||||
[77] | 54.00 | 47.00 | 0.40 | 0.10 | 0.10 | 0.30 | ||||
[78] | 55.01 | 40.94 | 0.55 | 0.14 | 0.55 | 0.60 | 0.34 | 0.09 | 1.54 | |
[79] | 53.18 | 42.72 | 0.97 | 0.28 | 0.41 | 1.58 | 0.09 | 0.34 | ||
[80] | Rice husk ash | 96.03 | 0.01 | 0.13 | 0.53 | 1.67 | 1.45 | |||
[81] | 86.49 | 0.01 | 0.91 | 0.50 | 2.70 | 0.13 | 0.05 | 8.83 | ||
[82] | 91.60 | 0.09 | 0.64 | 1.38 | 5.14 | 5.43 | ||||
[83] | 90.11 | 1.19 | 0.85 | 0.89 | 3.84 | 0.90 | 4.05 | |||
[84] | 88.90 | 2.50 | 2.19 | 0.22 | 4.01 | |||||
[85] | 83.62 | 3.01 | 1.63 | 2.63 | 4.59 | 0.96 | ||||
[86] | 90.13 | 0.42 | 0.52 | 1.23 | 1.51 | 0.89 | 0.51 | 2.08 | ||
[87] | 91.70 | 0.22 | 0.12 | 1.01 | 2.37 | 0.36 | 0.13 | 3.93 | ||
[88] | 93.30 | 0.58 | 1.82 | 0.88 | 0.28 | 0.19 | 2.25 | |||
[89] | 86.20 | 0.46 | 0.43 | 1.10 | 4.60 | 0.77 | 4.60 | |||
[90] | 83.10 | 2.15 | 1.10 | 4.70 | 2.96 | 1.50 | 0.10 | 1.13 | ||
[91] | Ground granulated blast-furnace slag | 33.78 | 13.97 | 1.44 | 42.85 | 0.40 | ||||
[66] | 30.30 | 12.90 | 0.40 | 47.80 | 47.80 | 0.30 | 4.50 | 0.40 | ||
[70] | 32.60 | 16.40 | 0.40 | 38.70 | 0.30 | 7.10 | 0.30 | 0.50 | ||
[92] | 32.70 | 8.30 | 43.80 | 3.70 | - | - | 0.40 | - | - | |
[63] | 33.40 | 16.90 | 33.30 | 0.61 | 0.16 | 7.00 | 2.00 | |||
[93] | 34.70 | 14.40 | 0.80 | 42.00 | 6.90 | 1.10 | ||||
[94] | 36.00 | 13.80 | 0.30 | 42.60 | 0.80 | 0.27 | 5.80 | 0.21 | 0.56 | |
[95] | 36.00 | 11.80 | 0.30 | 42.60 | 0.30 | 0.20 | ||||
[96] | 42.47 | 35.17 | 13.93 | 0.58 | 0.46 | 4.12 | 0.15 | 0.18 | ||
[97] | 34.38 | 12.98 | 1.29 | 37.33 | 0.82 | 5.59 | 0.29 | 4.31 |
Ref. Number | Used Activator | Molarity of Hydroxide | The Proportion of Activator and Binder by Weight |
---|---|---|---|
[98] | Na2SiO3 + NaOH | 10 M | - |
[99] | Na2SiO3 + NaOH | 10 M | 0.6 |
[100] | Na2SiO3 + NaOH | 12 M | 0.45 |
[63] | NaOH | 8 M | - |
[101] | Na2SiO3 + NaOH | 6–12 M | - |
[102] | Na2SiO3 + NaOH | 8 M | - |
[103] | Na2SiO3 + NaOH | 14 M | - |
[104] | Na2SiO3 + NaOH | 10–14 M | - |
[105] | Na2SiO3 + NaOH | 12 M | - |
[106] | Na2SiO3 + NaOH | 12 M | 0.5 |
[107] | NaOH + KOH | 4–16 M | 0.5 |
[108] | Na2SiO3 + NaOH | 12 M | 0.429–1.0 |
[109] | Na2SiO3 + NaOH | 8–10 M |
Ref. Number | Precursor | Alcaline Activator | Workability (mm) | Curing Temperature | Initial Setting Time (min) | Final Setting Time (min) | Compressive Strength (MPa) | Tensile Strength (MPa) | Flexural Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|
[164] | Fly Ash | NaOH + Na2SiO3 | 710 | 60–90 °C | - | - | 47.54–53.99 | - | - |
[165] | Fly Ash | NaOH + Na2SiO3 | 110–135 | 75 °C | - | - | 10–65 | - | - |
[166] | Fly Ash | NaOH + Na2SiO3 | 240 | - | 405 | 570 | 47.21 | - | - |
[167] | Fly Ash | NaOH + Na2SiO3 | - | Ambient temperature | 66–112 | 160–245 | 40 | - | - |
[168] | Fly Ash | NaOH + Na2SiO3 | - | 80 °C | - | - | 48 | - | - |
[169] | Fly Ash | NaOH + Na2SiO3 | - | Ambient temperature | - | - | 11.8–29.2 | - | - |
[4] | Fly Ash | NaOH + KOH + Na2SiO3 | - | - | - | - | 24.96–30.11 | 3.72–4.95 | 5.22–6.03 |
[170] | Fly Ash + Slag | NaOH + Na2SiO3 | - | Ambient temperature | - | - | 30.5–80.5 | 8.35 | 17.95 |
[171] | Fly Ash + Slag + Palm oil fuel ash | NaOH + Na2SiO3 | 145–160 | 65 °C | - | - | 66 | - | 7.7 |
[172] | Fly Ash + Slag + High calcium wood ash | NaOH + Na2SiO3 | - | - | 20–280 | 90–360 | 36.56 | - | - |
[173] | Fly Ash + Slag + Portland cement + Calcium hydroxide | NaOH + Na2SiO3 | - | Ambient temperature | 110–607 | 110–607 | 26–58 | - | - |
[174] | Fly Ash + Slag + Nano silica | NaOH + Na2SiO3 | - | Ambient temperature | - | - | 40.28–56.7 | - | - |
Ref. Number | Healing Agent | Addition by Weight of Cement, % | Self-Healing Performance |
---|---|---|---|
[202] | Bacterial spores | 2 | Compressive strength restoration (19.7%); cracks filling |
[203] | Bacterial spores | 15 | Depth of water penetration decrease (59%); cracks filling |
[207] | Hollow fibers | 2 | Compressive strength restoration (33.1%); cracks filling |
[209] | Microcapsules | 4 | Compressive strength restoration (60%); cracks filling; |
[211] | High temperature activated agents | 50 | Cracks filling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Shilov, A.A.; El’shaeva, D.; Shilova, K.; Karalar, M.; Aksoylu, C.; et al. Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials 2023, 16, 3792. https://doi.org/10.3390/ma16103792
Meskhi B, Beskopylny AN, Stel’makh SA, Shcherban’ EM, Mailyan LR, Shilov AA, El’shaeva D, Shilova K, Karalar M, Aksoylu C, et al. Analytical Review of Geopolymer Concrete: Retrospective and Current Issues. Materials. 2023; 16(10):3792. https://doi.org/10.3390/ma16103792
Chicago/Turabian StyleMeskhi, Besarion, Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Levon R. Mailyan, Alexandr A. Shilov, Diana El’shaeva, Karolina Shilova, Memduh Karalar, Ceyhun Aksoylu, and et al. 2023. "Analytical Review of Geopolymer Concrete: Retrospective and Current Issues" Materials 16, no. 10: 3792. https://doi.org/10.3390/ma16103792