Experimental Study on the Fracture Toughness of Bamboo Scrimber
Abstract
:1. Introduction
2. Tensile and Compressive Fracture Toughness Tests
2.1. Specimen Design and Manufacture
2.2. Fracture Toughness Tests
2.2.1. Test Method
2.2.2. Calculation of Tensile Fracture Toughness
2.2.3. The Theory of Compressive Fracture Toughness
2.3. Experiment Results
2.3.1. Experiment Results of Tensile Fracture Toughness
2.3.2. Test Results of Compressive Fracture Toughness
3. Simulation and Experimental Verification
3.1. Three-Point Bending Tests
3.2. Numerical Results
3.3. Comparison of Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.T.; Cai, X.F.; Lu, Y.B.; Noori, A.; Chen, F.M.; Chen, L.B.; Jiang, X.Q.; Liu, J.Q. Tensile mechanical properties and failure mechanism of bamboo scrimber under different strain rates. Constr. Build. Mater. 2021, 299, 15. [Google Scholar] [CrossRef]
- Huang, Y.X.; Ji, Y.H.; Yu, W.J. Development of bamboo scrimber: A literature review. J. Wood Sci. 2019, 65, 10. [Google Scholar] [CrossRef] [Green Version]
- Kadivar, M.; Gauss, C.; Ghavami, K.; Savastano, H. Densification of Bamboo: State of the Art. Materials 2020, 13, 4346. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.S.; Bian, Y.L.; Zhou, A.P.; Sheng, B.L. Experimental study on stress-strain relationships and failure mechanisms of parallel strand bamboo made from phyllostachys. Constr. Build. Mater. 2015, 77, 130–138. [Google Scholar] [CrossRef]
- Sharma, B.; Gatoo, A.; Bock, M.; Ramage, M. Engineered bamboo for structural applications. Constr. Build. Mater. 2015, 81, 66–73. [Google Scholar] [CrossRef]
- Huang, D.S.; Zhou, A.P.; Li, H.T.; Su, Y.; Chen, G. Experimental Study on the Tensile Properties of Bamboo Related to Its Distribution of Vascular Bundles. In Proceedings of the 13th International Conference on Non-Conventional Materials and Technologies, Changsha, China, 22–24 September 2012; pp. 112–117. [Google Scholar]
- Muhammad, A.; Rahman, M.R.; Hamdan, S.; Sanaullah, K. Recent developments in bamboo fiber-based composites: A review. Polym. Bull. 2019, 76, 2655–2682. [Google Scholar] [CrossRef]
- Kumar, A.; Vlach, T.; Laiblova, L.; Hrouda, M.; Kasal, B.; Tywoniak, J.; Hajek, P. Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Constr. Build. Mater. 2016, 127, 815–827. [Google Scholar] [CrossRef]
- Fadlelmola, A.; Chen, Z.H.; Du, Y.S.; Ma, R.; Ma, J. Experimental investigations and design method on a lightweight bamboo-concrete sandwich panel under axial load. J. Build. Eng. 2021, 42, 17. [Google Scholar] [CrossRef]
- Javadian, A.; Smith, I.F.C.; Hebel, D.E. Application of Sustainable Bamboo-Based Composite Reinforcement in Structural-Concrete Beams: Design and Evaluation. Materials 2020, 13, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Z.H.; Wu, J.; Zhang, X.M. Influence of Moisture Content on Mechanical Properties of Bamboo Scrimber. J. Mater. Civ. Eng. 2019, 31, 9. [Google Scholar] [CrossRef]
- Wei, Y.; Tang, S.F.; Ji, X.W.; Zhao, K.; Li, G.F. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression. Eng. Struct. 2020, 209, 13. [Google Scholar] [CrossRef]
- Shukla, S.R.; Kelkar, B.U.; Yadav, S.M.; Bijila, A. Studies on laminated and scrimber composites produced from thermally modified D. strictus bamboo bonded with melamine-based adhesive. Ind. Crop. Prod. 2022, 188, 11. [Google Scholar] [CrossRef]
- Yu, W.; Jiang, Z.; Ye, K. Characteristics Research of Bamboo and Its Development. World For. Res. 2002, 15, 50–55. [Google Scholar]
- Tan, C.; Li, H.T.; Wei, D.D.; Lorenzo, R.; Yuan, C.G. Mechanical performance of parallel bamboo strand lumber columns under axial compression: Experimental and numerical investigation. Constr. Build. Mater. 2020, 231, 8. [Google Scholar] [CrossRef]
- De, J.; Baxi, R.N. Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite. In Proceedings of the International Conference on Materials, Alloys and Experimental Mechanics (ICMAEM), Secunderabad, India, 3–4 July 2017. [Google Scholar]
- Kumar, S.; Shamprasad, M.S.; Varadarajan, Y.S.; Sangamesha, M.A. Coconut coir fiber reinforced polypropylene composites: Investigation on fracture toughness and mechanical properties. In Proceedings of the 2nd International Conference on Smart and Sustainable Developments in Materials, Manufacturing and Energy Engineering (SME), Nitte, India, 22–23 December 2021; pp. 2471–2476. [Google Scholar]
- Kiran, M.D.; Govindaraju, H.K.; Lokesh Yadhav, B.R.; Kumar, N. Effect of various parameters on fracture toughness of polymer composites: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- He, W.C.; Evans, P.D. Adhesive Through-Reinforcement Improves the Fracture Toughness of a Laminated Birch Wood Composite. Adv. Mater. Sci. Eng. 2017, 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.P.; Bian, Y.L. Experimental Study on the Flexural Performance of Parallel Strand Bamboo Beams. Sci. World J. 2014, 2014, 181627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Sheng, B.L.; Huang, D.S.; Zhou, A.P. Mode-I interlaminar fracture behavior of laminated bamboo composites. Adv. Struct. Eng. 2021, 24, 733–741. [Google Scholar] [CrossRef]
- Ortega, A.; Maimi, P.; Gonzalez, E.V.; de Aja, J.R.S.; de la Escalera, P.M.; Cruz, P. Translaminar fracture toughness of interply hybrid laminates under tensile and compressive loads. Compos. Sci. Technol. 2017, 143, 1–12. [Google Scholar] [CrossRef]
- He, R.; Gao, Y.D.; Cheng, L.F.; Cui, H.; Li, Y.L. Fracture toughness for longitudinal compression failure of laminated composites at high loading rate. Compos. Part A Appl. Sci. Manuf. 2022, 156, 11. [Google Scholar] [CrossRef]
- Li, H.F.; Wei, J.L.; Yang, S.P.; Liu, Y.Q. The relationship between fracture toughness and tensile property in high-strength steels. Eng. Fail. Anal. 2022, 131, 10. [Google Scholar] [CrossRef]
- He, S.; Xu, J.; Wu, Z.X.; Yu, H.; Chen, Y.H.; Song, J.G. Effect of bamboo bundle knitting on enhancing properties of bamboo scrimber. Eur. J. Wood Wood Prod. 2018, 76, 1071–1078. [Google Scholar] [CrossRef]
- Wu, G.F.; Zhong, Y.; Gong, Y.C.; Ren, H.Q. Mode II Fracture Toughness of Bamboo Scrimber with Compact Shear Specimen. BioResources 2018, 13, 477–486. [Google Scholar] [CrossRef]
- ASTM E399-12; Standard Test Method for Facing Properties of Sandwich Constructions by Long Beam Flexure. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM E 1820–08a; Standard Test Method for Measurement of Fracture Toughness. ASTM International: West Conshohocken, PA, USA, 2019.
- Chaouadi, R.; Gerard, R. Development of a method for extracting fracture toughness from instrumented Charpy impact tests in the ductile and transition regimes. Theor. Appl. Fract. Mech. 2021, 115, 19. [Google Scholar] [CrossRef]
- Zhang, X.P.; Dorn, L.; Shi, Y.W. Correlation of the microshear toughness and fracture toughness for pressure vessel steels and structural steels. Int. J. Pressure Vessels Pip. 2002, 79, 445–450. [Google Scholar] [CrossRef]
- Nadeem, M.; Ahmed, F.; ul Haq, E.; Zain-ul-Abdein, M.; Raza, A.; Afzal, U.; Bibi, S.; Deen, Z.S. Improved compressive strength and fracture toughness analysis of natural soil based geopolymer. J. Build. Eng. 2021, 44, 8. [Google Scholar] [CrossRef]
- Bok, G.; Lim, G.; Park, K.; Kim, Y. Mechanical properties and fracture toughness of fumed silica epoxy composites containing glycidyl terminated polysiloxanes. Ceram. Int. 2021, 47, 25738–25743. [Google Scholar] [CrossRef]
- Shih, C.F.; Moran, B.; Nakamura, T. Energy-Release Rate along A 3-Dimensional Crack Front in a Thermally Stressed Body. Int. J. Fract. 1986, 30, 79–102. [Google Scholar] [CrossRef]
- Lei, Y. J-integral evaluation for cases involving non-proportional stressing. Eng. Fract. Mech. 2005, 72, 577–596. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.T.; Gao, L.; Xu, W.; Lorenzo, R.; Gaff, M. A Review of Experimental Research on the Mode I Fracture Behavior of Bamboo. J. Renew. Mater. 2023, 11, 2787–2808. [Google Scholar] [CrossRef]
- Qianhong Bao, D.H. Stress-strain relationship and strength criterion of parallel strand bamboo. J. Nanjing For. Univ. Nat. 2015, 2. [Google Scholar]
- Kozar, I.; Bede, N.; Mrakovcic, S.; Bozic, Z. Verification of a fracture model for fiber reinforced concrete beams in bending. Eng. Fail. Anal. 2022, 138, 10. [Google Scholar] [CrossRef]
- GB/T 1936.1-2009; Method of Testing in Bending Strength of Wood. Standards Press of China: Beijing, China, 2009.
- Kadivar, M.; Gauss, C.; Marmol, G.; de Sa, A.D.; Fioroni, C.; Ghavami, K.; Savastano, H. The influence of the initial moisture content on densification process of D. asper bamboo: Physical-chemical and bending characterization. Constr. Build. Mater. 2019, 229, 12. [Google Scholar] [CrossRef]
- Zhou, S.R.; Shi, L.L.; Xiong, G.; Kang, S.B.; Qin, Y.L.; Yan, H.Q. Global buckling behaviour of bamboo scrimber box columns under axial compression: Experimental tests and numerical modelling. J. Build. Eng. 2023, 63, 15. [Google Scholar] [CrossRef]
- Chow, A.; Ramage, M.H.; Shah, D.U. Optimising ply orientation in structural laminated bamboo. Constr. Build. Mater. 2019, 212, 541–548. [Google Scholar] [CrossRef]
Number | Failure Loading (N) | Bending Strength (MPa) |
---|---|---|
QW-1 | 2445.84 | 136.10 |
QW-2 | 2481.94 | 139.57 |
QW-3 | 2753.35 | 151.44 |
QW-4 | 2370.31 | 134.33 |
QW-5 | 2709.09 | 152.47 |
Average | 2552.11 | 142.78 |
G12 (MPa) | G13 (MPa) | G23 (MPa) |
---|---|---|
1418 | 1418 | 749 |
Longitudinal | Transverse | ||||
---|---|---|---|---|---|
Ultimate Tensile Strength | Compressive Strength | Ultimate Shear Strength | Ultimate TENSILE Strength | Compressive Strength | Ultimate Shear Strength |
113.86 MPa | 63.14 MPa | 4.80 MPa | 21.51 MPa | 8.19 MPa | 24.25 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Hou, Y.; Lu, Y.; Wang, M. Experimental Study on the Fracture Toughness of Bamboo Scrimber. Materials 2023, 16, 4880. https://doi.org/10.3390/ma16134880
Zhang K, Hou Y, Lu Y, Wang M. Experimental Study on the Fracture Toughness of Bamboo Scrimber. Materials. 2023; 16(13):4880. https://doi.org/10.3390/ma16134880
Chicago/Turabian StyleZhang, Kairan, Yubo Hou, Yubin Lu, and Mingtao Wang. 2023. "Experimental Study on the Fracture Toughness of Bamboo Scrimber" Materials 16, no. 13: 4880. https://doi.org/10.3390/ma16134880