Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Bamboo Meal
2.3. Estimating the Content of Lignin and Holocellulose (Klason Lignin and Wise Method)
2.4. Elemental Analysis of Bamboo Using CHN Analyzer
2.5. Liquefaction of Bamboo
2.6. Characterization of the Liquefied Bamboo
2.7. Preparation of Fillers for the Polyurethane Foams (PUF)
2.8. Preparation of Polyurethane Foam (PUF)
2.9. Scanning Electron Microscopy (SEM) of PUF
2.10. Measurement of Water Absorption Rate of PUF
- m1: the sample weight before water soaking (mg)
- m2: the sample weight after water soaking (mg)
- m3: the sample weight after drying (mg)
2.11. Thermal Decomposition
3. Results and Discussion
3.1. Componential Analysis of Moso Bamboo
3.2. Evaluation of Liquefied Products
3.2.1. Optimization of the Bamboo Liquefaction Process
3.2.2. Measurement of the Molecular Weight of the Liquefied Products with Gel Permeation Chromatography (GPC)
3.2.3. Evaluation of the Functional Groups of the Liquefied Products with FT-IR
3.3. Evaluation of Polyurethane Foam Derived from Liquefied Products
3.3.1. Evaluating the Functional Groups of Polyurethane Foams with FT-IR
3.3.2. Morphology of Polyurethane Foams with Scanning Electron Microscopy (SEM)
3.3.3. Thermal Properties of Polyurethane Foam with Fillers
3.3.4. Morphology of Polyurethane Foams with Fillers Shown by Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- What Is the Biomass. Available online: https://www.lib.pref.saitama.jp/item/pdf/1498300635_02.pdf (accessed on 8 May 2024).
- Sherwood, J. The significance of biomass in a circular economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Springsteen, B.; Christofk, T.; Eubanks, S.; Mason, T.; Clavin, C.; Storey, B. Emission Reductions from Woody Biomass Waste for Energy as an Alternative to Open Burning. J. Air Waste Manag. Assoc. 2011, 61, 63–68. [Google Scholar] [CrossRef]
- Tsurugai, M.; Heiho, A.; Hondo, H.; Kudoh, Y. Environmental effects associated with the use of waste biomass: A Case Study of the Miura Biomass Center. J. Jpn. Inst. Energy 2013, 92, 994–1005. [Google Scholar] [CrossRef]
- Ramírez, Á.; Muñoz-Morales, M.; Fernández-Morales, F.J.; Llanos, J. Valorization of polluted biomass waste for manufacturing sustainable cathode materials for the production of hydrogen peroxide. Electrochim. Acta 2023, 456, 142383. [Google Scholar] [CrossRef]
- The Website of Ministry of Agriculture, Forestry and Fisheries of Japan, Trends in Special Forest Products. Available online: https://www.rinya.maff.go.jp/j/kikaku/hakusyo/r4hakusyo/attach/pdf/zenbun-41.pdf (accessed on 8 July 2024).
- Sharma, A.; Singh, G.; Arya, S.K. Biofuel from rice straw. J. Clean. Prod. 2020, 277, 124101. [Google Scholar] [CrossRef]
- Dahiya, S.; Kumar, A.N.; Sravan, J.S.; Chatterjee, S.; Sarkar, O.; Mohan, S.V. Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour. Technol. 2018, 248, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.A.; Aprilia, N.S.; Bhat, A.H.; Jawaid, M.; Paridah, M.T.; Rudi, D. A Jatropha biomass as renewable materials for biocomposites and its applications. Renew. Sustain. Energy Rev. 2013, 22, 667–685. [Google Scholar] [CrossRef]
- Lee, W.-J.; Yu, C.-J.; Chen, Y.-C. Preparation and characteristics of polyurethane made with polyhydric alcohol-liquefied rice husk. J. Appl. Polym. Sci. 2018, 135, 45910. [Google Scholar] [CrossRef]
- Xie, T.; Chen, F. Fast liquefaction of bagasse in ethylene carbonate and preparation of epoxy resin from the liquefied product. J. Appl. Polym. Sci. 2005, 98, 1961–1968. [Google Scholar] [CrossRef]
- Yamada, T.; Ono, H. Rapid liquefaction of lignocellulosic waste by using ethylene carbonate. Bioresour. Technol. 1999, 70, 61–67. [Google Scholar] [CrossRef]
- Nguyen-Ha, T.M.; Nguyen, T.B.; Nguyen, T.A.; Pham, L.H.; Nguyen, D.H.; Nguyen, D.M.; Hoang, D.; Oh, E.; Suhr, J. Novel high-performance sustainable polyurethane nanocomposite foams: Fire resistance, thermal stability, thermal conductivity, and mechanical properties. Chem. Eng. J. 2023, 474, 145585. [Google Scholar] [CrossRef]
- Głowacz-Czerwonka, D.; Zakrzewska, P.; Oleksy, M.; Pielichowska, K.; Kuźnia, M.; Telejko, T. The influence of biowaste-based fillers on the mechanical and fire properties of rigid polyurethane foams. Sustain. Mater. Technol. 2023, 36, e00610. [Google Scholar] [CrossRef]
- Wang, Q.; Kawamura, S. Decayed woody material from mushroom cultivation: Characterization of liquefaction. WIT Trans. Ecol. Environ. 2018, 217, 481–492. [Google Scholar]
- Sampei, Y. CHN Coder. Glob. Sci. 1991, 45, 285–289. [Google Scholar]
- Principle and Application of Fourier Transform Infrared Spectrophotometer—JAIMA Japan Analytical Instruments Manufacturers Association. Available online: https://www.jaima.or.jp/jp/analytical/basic/spectroscopy/ftir/ (accessed on 8 May 2024).
- Wang, Q.; Tuohedi, N. Polyurethane Foams and Bio-Polyols from Liquefied Cotton Stalk Agricultural Waste. Sustainability 2020, 12, 4214. [Google Scholar] [CrossRef]
- Ertas, M.; Fidan, M.S.; Alma, M.H. Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res. 2014, 59, 97–108. [Google Scholar]
- Japanese Industrial Standards K7209; Plastics—Determination of Water Absorption. Japanese Industrial Standards Committee: Tokyo, Japan, 2015.
- TG-DTA—Kankyo Giken Corp. Available online: https://www.get-c.co.jp/research/equipment/tg-dta/ (accessed on 8 May 2024).
- Purbasari, A.; Samadhi, T.W.; Bindar, Y. Thermal and Ash Characterization of Indonesian Bamboo and ItsPotential for Solid Fuel and Waste Valorization. Int. J. Renew. Energy Dev. 2016, 5, 95–100. [Google Scholar] [CrossRef]
- Zhang, H.; Pang, H.; Shi, J.; Fu, T.; Liao, B. Investigation of Liquefied Wood Residues Based on Cellulose, Hemicellulose, and Lignin. J. Appl. Polym. Sci. 2011, 123, 850–856. [Google Scholar] [CrossRef]
- Gosz, K.; Kowalkowska-Zedler, D.; Haponiuk, J.; Piszczyk, Ł. Liquefaction of alder wood as the source of renewable and sustainable polyols for preparation of polyurethane resins. Wood Sci. Technol. 2020, 54, 103–121. [Google Scholar] [CrossRef]
- Jin, Y.; Ruan, X.; Cheng, X.; Lü, Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour. Technol. 2011, 102, 3581–3583. [Google Scholar] [CrossRef]
- do Couto Fraga, A.; de Almeida MB, B.; Sousa-Aguiar, E.F. Hydrothermal liquefaction of cellulose and lignin: A new approach on the investigation of chemical reaction networks. Cellulose 2021, 28, 2003–2020. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, C.-J.; Kim, S.B. Kinetic Study of Recycled Newspaper Liquefaction in Polyol Solvent. Biotechnol. Bioprocess Eng. 2009, 14, 349–353. [Google Scholar] [CrossRef]
- Yu, F.; Liu, Y.; Pan, X.; Lin, X.; Liu, C.; Chen, P.; Ruan, R. Liquefaction of corn stover and preparation of polyester from liquefied polyol. Appl. Biochem. Biotechnol. 2006, 130, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-P.; Li, D.; Wang, L.-J.; Yin, J.; Chen, X.D.; Mao, Z.-H. Effects of CS/EC ratio on structure and properties of polyurethane foams prepared from untreated liquefied corn stover with PAPI. Chem. Eng. Res. Des. 2008, 86, 416–421. [Google Scholar] [CrossRef]
Mixed solvent | Polyethylene glycol 400/glycerol = 7:3 by weight |
Catalyst ratio | Bamboo meal: catalyst = 1, 2, 3% by weight ratio |
Added ethylene carbonate ratio | 10, 20, 30% by weight rate of mixed solvent |
Sample Name | Mixture Ratio | Isocyanate | Liquefied Product | DBTDL | Silicone Surfactant | Water |
---|---|---|---|---|---|---|
[NCO]/[OH] | [g] | [g] | [g] | [g] | [g] | |
STABiO®_15 g | 0.6 | 15 | 15 | 1.0 | 1.0 | 1.0 |
STABiO®_20 g | 0.8 | 20 | 15 | 1.0 | 1.0 | 1.0 |
STABiO®_25 g | 1 | 25 | 15 | 1.0 | 1.0 | 1.0 |
STABiO®_30 g | 1.2 | 30 | 15 | 1.0 | 1.0 | 1.0 |
GPC | Conditions |
---|---|
Mobile phase | Tetrahydrofuran |
Flow rate | 1 mL/min |
Dilute concentration of sample | 0.4 g L−1 |
Tetrahydrofuran column temp. | 40 °C |
Volume of sample loop | 100 μL |
Particle Size | C (%) | H (%) | N (%) | O (%) | Ash (%) |
---|---|---|---|---|---|
100–500 μm | 47 | 6.0 | 0.3 | 46 | 1.0 |
Particle Size | Klason Lignin (%) | Holocellulose (%) | Organic Volatile (%) |
---|---|---|---|
100–500 μm | 28 | 74 | 1.4 |
Time | Mn | Mw | Mw/Mn | Time | Mn | Mw | Mw/Mn |
---|---|---|---|---|---|---|---|
0 | 303 | 340 | 1.12 | 0 | 307 | 391 | 1.27 |
60 | 375 | 585 | 1.56 | 60 | 355 | 586 | 1.65 |
180 | 477 | 946 | 1.98 | 180 | 358 | 551 | 1.54 |
Sample | 5% Weight Loss | 10% Weight Loss | Max DTG Point | 50% Weight Loss |
---|---|---|---|---|
No filler | 237 | 276 | 390 | 395 |
7% bamboo filler | 256 | 291 | 389 | 402 |
13% bamboo filler | 233 | 282 | 381 | 395 |
18% bamboo filler | 251 | 291 | 378 | 403 |
With residue of LW | 249 | 288 | 392 | 400 |
Sample | 5% Weight Loss | 10% Weight Loss | Max DTG Point | 50% Weight Loss |
---|---|---|---|---|
No filler | 237 | 276 | 390 | 395 |
7% Rice husk filler | 236 | 285 | 390 | 403 |
13% Rice husk filler | 251 | 291 | 391 | 409 |
18% Rice husk filler | 261 | 298 | 394 | 419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masuda, G.; Akuta, S.; Wang, W.; Suzuki, M.; Honda, Y.; Wang, Q. Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo. Materials 2024, 17, 3751. https://doi.org/10.3390/ma17153751
Masuda G, Akuta S, Wang W, Suzuki M, Honda Y, Wang Q. Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo. Materials. 2024; 17(15):3751. https://doi.org/10.3390/ma17153751
Chicago/Turabian StyleMasuda, Go, Satoshi Akuta, Weiqian Wang, Miho Suzuki, Yu Honda, and Qingyue Wang. 2024. "Study on Fast Liquefaction and Characterization of Produced Polyurethane Foam Materials from Moso Bamboo" Materials 17, no. 15: 3751. https://doi.org/10.3390/ma17153751