Manufacturing of Ni-Co-Fe-Cr-Al-Ti High-Entropy Alloy Using Directed Energy Deposition and Evaluation of Its Microstructure, Tensile Strength, and Microhardness
Abstract
:1. Introduction
2. Phase Analysis
3. Experimental Procedure
3.1. Experimental Setup and Materials
3.2. DED Method and Conditions
4. Results and Discussion
4.1. XRD Analysis
4.2. SEM and EDS Analysis
4.3. Tensile Strength
4.4. Microhardness
5. Conclusions
- As a result of the phase analysis of the Ni-Co-Fe-Cr-Al-Ti HEA, the γ phase of the FCC structure appeared as a matrix phase in the Ni-Co-Fe-Cr-Al-Ti HEA, and the γ′ phase of the ordered FCC structure additionally appeared. In addition, the Ni-Co-Fe-Cr-Al-Ti HEA, designed with optimal values, was found to not appear in the precipitated phases other than the γ + γ′ phase.
- The matrix phase of the Ni-Co-Fe-Cr-Al-Ti HEA appeared as the γ phase of the FCC structure, and the γ′ phase of the aligned FCC structure was confirmed to be widely dispersed in the form of dots similar to pores. Furthermore, the SEM pictures showed no more precipitated phases, and the coarse grain size of the γ phase was verified.
- The tensile test of the Ni-Co-Fe-Cr-Al-Ti HEA exhibited a yield strength of 514 MPa and an ultimate tensile strength of 631 MPa, using ASTM E8/E8M-18 standard specimens. The Ni-Co-Fe-Cr-Al-Ti HEA’s tensile strength was lower than Inconel 718 due to microstructural coarsening. However, post-processing treatments like heat treatment are expected to improve the mechanical properties.
- The Ni-Co-Fe-Cr-Al-Ti HEA deposited via DED exhibited a consistent microhardness of approximately 370 HV, and no hardness change with height was observed. This surpassed the 350 HV of machined Inconel 718. Despite its coarse particle size, it exhibited high hardness, and its mechanical properties are expected to be improved through post-treatment heat treatment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeh, J.W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-Component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Poletti, M.G.; Fiore, G.; Gili, F.; Mangherini, D.; Battezzati, L. Development of a New High Entropy Alloy for Wear Resistance: FeCoCrNiW0.3 and FeCoCrNiW0.3 + 5 at.% of C. Mater. Des. 2017, 115, 247–254. [Google Scholar] [CrossRef]
- Ye, Y.F.; Wang, Q.; Lu, J.; Liu, C.T.; Yang, Y. High-Entropy Alloy: Challenges and Prospects. Materials Today; Elsevier B.V.: Amsterdam, The Netherlands, 2016; pp. 349–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 1–93. [Google Scholar] [CrossRef]
- Tang, K.; Chen, L.B.; Wang, S.; Wei, R.; Yang, Z.Y.; Jiang, F.; Sun, J. Development of a Large Size FCC High-Entropy Alloy with Excellent Mechanical Properties. Mater. Sci. Eng. A 2019, 761, 138039. [Google Scholar] [CrossRef]
- Han, Z.H.; Liang, S.; Yang, J.; Wei, R.; Zhang, C.J. A Superior Combination of Strength-Ductility in CoCrFeNiMn High-Entropy Alloy Induced by Asymmetric Rolling and Subsequent Annealing Treatment. Mater. Charact. 2018, 145, 619–626. [Google Scholar] [CrossRef]
- Han, Z.; Ren, W.; Yang, J.; Du, Y.; Wei, R.; Zhang, C.; Chen, Y.; Zhang, G. The Deformation Behavior and Strain Rate Sensitivity of Ultra-Fine Grained CoNiFeCrMn High-Entropy Alloys at Temperatures Ranging from 77 K to 573 K. J. Alloys Compd. 2019, 791, 962–970. [Google Scholar] [CrossRef]
- Wang, Z.; Baker, I.; Cai, Z.; Chen, S.; Poplawsky, J.D.; Guo, W. The Effect of Interstitial Carbon on the Mechanical Properties and Dislocation Substructure Evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 High Entropy Alloys. Acta Mater. 2016, 120, 228–239. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E.P. The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy. Acta Mater. 2013, 61, 5743–5755. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, W.; Wen, H.; Zhang, D.; Chen, Z.; Zheng, B.; Zhou, Y.; Lavernia, E.J. Microstructure and Strengthening Mechanisms in an FCC Structured Single-Phase Nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 High-Entropy Alloy. Acta Mater. 2016, 107, 59–71. [Google Scholar] [CrossRef]
- Gali, A.; George, E.P. Tensile Properties of High- and Medium-Entropy Alloys. Intermetallics 2013, 39, 74–78. [Google Scholar] [CrossRef]
- Rieger, T.; Joubert, J.M.; Laurent-Brocq, M.; Perrière, L.; Guillot, I.; Couzinié, J.P. Study of the FCC+L12 Two-Phase Region in Complex Concentrated Alloys Based on the Al–Co–Cr–Fe–Ni–Ti System. Materialia 2020, 14, 100905. [Google Scholar] [CrossRef]
- Joseph, J.; Senadeera, M.; Chao, Q.; Shamlaye, K.F.; Rana, S.; Gupta, S.; Venkatesh, S.; Hodgson, P.; Barnett, M.; Fabijanic, D. Computational Design of Thermally Stable and Precipitation-Hardened Al–Co–Cr–Fe–Ni–Ti High Entropy Alloys. J. Alloys Compd. 2021, 888, 161496. [Google Scholar] [CrossRef]
- Joseph, J.; Annasamy, M.; Kada, S.R.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. Optimising the Al and Ti Compositional Window for the Design of γ’ (L12)-Strengthened Al–Co–Cr–Fe–Ni–Ti High Entropy Alloys. Mater. Sci. Eng. A 2022, 835, 142620. [Google Scholar] [CrossRef]
- Wang, F.; Inoue, A.; Kong, F.L.; Han, Y.; Zhu, S.L.; Shalaan, E.; Al-Marouki, F. Formation, Thermal Stability and Mechanical Properties of High Entropy (Fe,Co,Ni,Cr,Mo)-B Amorphous Alloys. J. Alloys Compd. 2018, 732, 637–645. [Google Scholar] [CrossRef]
- Adil, S.; Suraj, M.V.; Pillari, L.K.; Sridar, S.; Nagini, M.; Pradeep, K.G.; Murty, B.S. On the Effect of Fe in L12 Strengthened Al–Co–Cr–Fe–Ni–Ti Complex Concentrated Alloy. Materialia 2020, 14, 100909. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Otto, F.; Dlouhý, A.; Pradeep, K.G.; Kuběnová, M.; Raabe, D.; Eggeler, G.; George, E.P. Decomposition of the Single-Phase High-Entropy Alloy CrMnFeCoNi after Prolonged Anneals at Intermediate Temperatures. Acta Mater. 2016, 112, 40–52. [Google Scholar] [CrossRef]
- Kozak, R.; Sologubenko, A.; Steurer, W. Single-Phase High-Entropy Alloys—An Overview. Z. Für Krist. Cryst. Mater. 2015, 230, 55–68. [Google Scholar] [CrossRef]
- Jeong, H.I.; Kim, D.H.; Lee, C.M. Multi-Material Deposition of Inconel 718 and Ti–6Al–4V Using the Ti–Nb–Cr–V–Ni High Entropy Alloy Intermediate Layer. J. Mater. Res. Technol. 2024, 29, 3217–3227. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Xi, S.; Chen, Z.; Wei, P.; He, C.; Li, T.; Gao, Y.; Wu, H. Additively Manufactured Fine Grained Ni6Cr4WFe9Ti High Entropy Alloys with High Strength and Ductility. Mater. Sci. Eng. A 2019, 767, 138394. [Google Scholar] [CrossRef]
- Zhang, H.X.; Dai, J.J.; Sun, C.X.; Li, S.Y. Microstructure and Wear Resistance of TiAlNiSiV High-Entropy Laser Cladding Coating on Ti-6Al-4V. J. Mater. Process Technol. 2020, 282, 116671. [Google Scholar] [CrossRef]
- Chen, S.; Tong, Y.; Liaw, P.K. Additive Manufacturing of High-Entropy Alloys: A Review. Entropy 2018, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Ostovari Moghaddam, A.; Shaburova, N.A.; Samodurova, M.N.; Abdollahzadeh, A.; Trofimov, E.A. Additive Manufacturing of High Entropy Alloys: A Practical Review. Journal of Materials Science and Technology. Chin. Soc. Met. 2021, 77, 131–162. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, C.M.; Kim, D.H. Repair of Damaged Parts Using Wire Arc Additive Manufacturing in Machine Tools. J. Mater. Res. Technol. 2022, 16, 13–24. [Google Scholar] [CrossRef]
- Zhang, H.; He, Y.Z.; Pan, Y.; Pei, L.Z. Phase Selection, Microstructure and Properties of Laser Rapidly Solidified FeCoNiCrAl2Si Coating. Intermetallics 2011, 19, 1130–1135. [Google Scholar] [CrossRef]
- Zheng, M.; Li, C.; Zhang, X.; Ye, Z.; Yang, X.; Gu, J. The Influence of Columnar to Equiaxed Transition on Deformation Behavior of FeCoCrNiMn High Entropy Alloy Fabricated by Laser-Based Directed Energy Deposition. Addit. Manuf. 2021, 37, 101660. [Google Scholar] [CrossRef]
- Torralba, J.M.; Campos, M. High Entropy Alloys Manufactured by Additive Manufacturing. Metals 2020, 10, 639. [Google Scholar] [CrossRef]
- Guo, Y.; Su, H.; Yang, P.; Zhao, Y.; Shen, Z.; Liu, Y.; Zhao, D.; Jiang, H.; Zhang, J.; Liu, L.; et al. A Review of Emerging Metallic System for High-Energy Beam Additive Manufacturing: Al–Co–Cr–Fe–Ni High Entropy Alloys. Acta Metall. Sin. (Engl. Lett.) 2022, 35, 1407–1423. [Google Scholar] [CrossRef]
- Kim, E.J.; Lee, C.M.; Kim, D.H. The Effect of Post-Processing Operations on Mechanical Characteristics of 304L Stainless Steel Fabricated Using Laser Additive Manufacturing. J. Mater. Res. Technol. 2021, 15, 1370–1381. [Google Scholar] [CrossRef]
- Ermakova, A.; Braithwaite, J.; Razavi, N.; Ganguly, S.; Berto, F.; Mehmanparast, A. The Influence of Laser Shock Peening on Corrosion-Fatigue Behaviour of Wire Arc Additively Manufactured Components. Surf. Coat. Technol. 2023, 456, 129262. [Google Scholar] [CrossRef]
- Hwang, T.; Woo, Y.Y.; Han, S.W.; Moon, Y.H. Functionally Graded Properties in Directed-Energy-Deposition Titanium Parts. Opt. Laser Technol. 2018, 105, 80–88. [Google Scholar] [CrossRef]
- Ruiz, J.E.; Arrizubieta, J.I.; Lamikiz, A.; Ostolaza, M. Non-Symmetrical Design of Coaxial Nozzle for Minimal Gas Consumption on L-DED Process for Ti6Al4V Reactive Alloy. J. Manuf. Process. 2022, 78, 218–230. [Google Scholar] [CrossRef]
- Khodashenas, H.; Mirzadeh, H. Post-Processing of Additively Manufactured High-Entropy Alloys—A Review. J. Mater. Res. Technol. 2022, 21, 3795–3814. [Google Scholar] [CrossRef]
- Liu, S.; Grohol, C.M.; Shin, Y.C. High Throughput Synthesis of CoCrFeNiTi High Entropy Alloys via Directed Energy Deposition. J. Alloys Compd. 2022, 916, 165469. [Google Scholar] [CrossRef]
- ASTM E8/E8M; Standard Test Methods for Tensile Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2019.
- Lv, Y.; Guo, Y.; Zhang, J.; Lei, Y.; Song, P.; Chen, J. Improving Mechanical Properties of Co-Cr-Fe-Ni High Entropy Alloy via C and Mo Microalloying. Materials 2024, 17, 529. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, H.; Meng, F.; Tong, Y.; Liaw, P.K.; Yang, X.; Zhao, L.; Wang, H.; Gao, Y.; Chen, S. Magnificent Tensile Strength and Ductility Synergy in a NiCoCrAlTi High-Entropy Alloy at Elevated Temperature. J. Mater. Res. Technol. 2024, 28, 522–532. [Google Scholar] [CrossRef]
- Amato, K.N.; Gaytan, S.M.; Murr, L.E.; Martinez, E.; Shindo, P.W.; Hernandez, J.; Collins, S.; Medina, F. Microstructures and Mechanical Behavior of Inconel 718 Fabricated by Selective Laser Melting. Acta Mater. 2012, 60, 2229–2239. [Google Scholar] [CrossRef]
- Malatji, N.; Lengopeng, T.; Pityana, S.; Popoola, A.P.I. Effect of Heat Treatment on the Microstructure, Microhardness, and Wear Characteristics of AlCrFeCuNi High-Entropy Alloy. Int. J. Adv. Manuf. Technol. 2020, 111, 2021–2029. [Google Scholar] [CrossRef]
Element (at%) | Ni | Co | Fe | Cr | Al | Ti |
---|---|---|---|---|---|---|
45.0 | 20.0 | 10.0 | 10.0 | 7.5 | 7.5 |
Process Parameter | Value |
---|---|
Laser power (W) | 1000 |
Laser velocity (mm/s) | 10 |
Powder feed rate (g/min) | 7 |
Hatch spacing (mm) | 1.0 |
Argon gas flow (L/min) | 20 |
Nitrogen gas flow (L/min) | 5 |
Element, at% | Ni | Co | Fe | Cr | Al | Ti |
---|---|---|---|---|---|---|
Designed | 45.0 | 20.0 | 10.0 | 10.0 | 7.5 | 7.5 |
γ phase | 49.3 | 24.3 | 9.4 | 8.8 | 4.5 | 3.7 |
γ′ phase | 44.8 | 20.4 | 8.2 | 8.5 | 6.8 | 11.3 |
Area | 46.3 | 20.5 | 9.8 | 9.1 | 7.1 | 7.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, H.-I.; Kim, J.-H.; Lee, C.-M. Manufacturing of Ni-Co-Fe-Cr-Al-Ti High-Entropy Alloy Using Directed Energy Deposition and Evaluation of Its Microstructure, Tensile Strength, and Microhardness. Materials 2024, 17, 4297. https://doi.org/10.3390/ma17174297
Jeong H-I, Kim J-H, Lee C-M. Manufacturing of Ni-Co-Fe-Cr-Al-Ti High-Entropy Alloy Using Directed Energy Deposition and Evaluation of Its Microstructure, Tensile Strength, and Microhardness. Materials. 2024; 17(17):4297. https://doi.org/10.3390/ma17174297
Chicago/Turabian StyleJeong, Ho-In, Jae-Hyun Kim, and Choon-Man Lee. 2024. "Manufacturing of Ni-Co-Fe-Cr-Al-Ti High-Entropy Alloy Using Directed Energy Deposition and Evaluation of Its Microstructure, Tensile Strength, and Microhardness" Materials 17, no. 17: 4297. https://doi.org/10.3390/ma17174297