Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Microscopy
2.4. Spectroscopy
3. Results
3.1. Structure of Dorsal Wing Surface and Cover Scales of Male P. icarus Butterflies
3.2. Wax Dissolution in Ethanol and Acetone
3.3. Optical Effect of Wax Removal
3.4. Hyperspectral Characterization
3.5. Ethanol Dissolution of an n-Alkane Mixture
3.6. Cu2O Deposition on Butterfly Wings
3.7. Cu2O Deposition on Glass and Si(100)
3.8. Optical Microscopy and Microspectrophotometry of Butterfly Wings with Deposited Nanoparticles
4. Discussion
4.1. Photonic Nanoarchitectures of P. icarus Butterflies
4.2. Wax Removal
4.3. Cu2O Deposition on Butterfly Wings
4.4. Cu2O Deposition on Glass and Si(100)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, S.; Yadav, R. Future of photovoltaic technologies: A comprehensive review. Sustain. Energy Technol. Assess. 2021, 47, 101410. [Google Scholar] [CrossRef]
- Marques Lameirinhas, R.A.; Torres, J.P.N.; de Melo Cunha, J.P. A Photovoltaic Technology Review: History, Fundamentals and Applications. Energies 2022, 15, 1823. [Google Scholar] [CrossRef]
- Rathore, N.; Panwar, N.L.; Yettou, F.; Gama, A. A comprehensive review of different types of solar photovoltaic cells and their applications. Int. J. Ambient Energy 2021, 42, 1200–1217. [Google Scholar] [CrossRef]
- Green, M.A.; Bremner, S.P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 2017, 16, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P. Application of Plasmonics in Solar Cell Efficiency Improvement: A Brief Review on Recent Progress. Plasmonics 2022, 17, 1247–1267. [Google Scholar] [CrossRef]
- Olaimat, M.M.; Yousefi, L.; Ramahi, O.M. Using plasmonics and nanoparticles to enhance the efficiency of solar cells: Review of latest technologies. J. Opt. Soc. Am. B 2021, 38, 638. [Google Scholar] [CrossRef]
- Utyushev, A.D.; Zakomirnyi, V.I.; Rasskazov, I.L. Collective lattice resonances: Plasmonics and beyond. Rev. Phys. 2021, 6, 100051. [Google Scholar] [CrossRef]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.-Y. Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Zhan, C.; Yi, J.; Hu, S.; Zhang, X.-G.; Wu, D.-Y.; Tian, Z.-Q. Plasmon-mediated chemical reactions. Nat. Rev. Methods Primers 2023, 3, 12. [Google Scholar] [CrossRef]
- Gigli, C.; Leo, G. All-dielectric χ(2) metasurfaces: Recent progress. Opto-Electron. Adv. 2022, 5, 210093. [Google Scholar] [CrossRef]
- Liang, S.; Xu, F.; Li, W.; Yang, W.; Cheng, S.; Yang, H.; Chen, J.; Yi, Z.; Jiang, P. Tunable smart mid infrared thermal control emitter based on phase change material VO2 thin film. Appl. Therm. Eng. 2023, 232, 121074. [Google Scholar] [CrossRef]
- Saeed, M.; Muneer, M.; ul Haq, A.; Akram, N. Photocatalysis: An effective tool for photodegradation of dyes—A review. Environ. Sci. Pollut. Res. Int. 2022, 29, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Al-Nuaim, M.A.; Alwasiti, A.A.; Shnain, Z.Y. The photocatalytic process in the treatment of polluted water. Chem. Pap. 2023, 77, 677–701. [Google Scholar] [CrossRef] [PubMed]
- Prakruthi, K.; Ujwal, M.P.; Yashas, S.R.; Mahesh, B.; Kumara Swamy, N.; Shivaraju, H.P. Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: An overview. Environ. Sci. Pollut. Res. Int. 2022, 29, 4930–4957. [Google Scholar] [CrossRef]
- Wang, H.; Tian, Y.-M.; König, B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat. Rev. Chem. 2022, 6, 745–755. [Google Scholar] [CrossRef]
- Linic, S.; Chavez, S.; Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 2021, 20, 916–924. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, H.; Wu, M.; Van der Schueren, B.; Li, Y.; Deparis, O.; Ye, J.; Ozin, G.A.; Hasan, T.; Su, B.-L. Slow Photons for Photocatalysis and Photovoltaics. Adv. Mater. 2017, 29, 1605349. [Google Scholar] [CrossRef]
- Lonergan, A.; O’Dwyer, C. Many Facets of Photonic Crystals: From Optics and Sensors to Energy Storage and Photocatalysis. Adv. Mater. Technol. 2023, 8, 2201410. [Google Scholar] [CrossRef]
- Piszter, G.; Kertész, K.; Nagy, G.; Baji, Z.; Horváth, Z.E.; Bálint, Z.; Pap, J.S.; Biró, L.P. Spectral tuning of biotemplated ZnO photonic nanoarchitectures for photocatalytic applications. R. Soc. Open Sci. 2022, 9, 220090. [Google Scholar] [CrossRef]
- Piszter, G.; Nagy, G.; Kertész, K.; Baji, Z.; Kovács, K.; Bálint, Z.; Horváth, Z.E.; Pap, J.S.; Biró, L.P. Investigating the Effect of Reflectance Tuning on Photocatalytic Dye Degradation with Biotemplated ZnO Photonic Nanoarchitectures Based on Morpho Butterfly Wings. Materials 2023, 16, 3584. [Google Scholar] [CrossRef]
- Piszter, G.; Kertész, K.; Kovács, D.; Zámbó, D.; Baji, Z.; Illés, L.; Nagy, G.; Pap, J.S.; Bálint, Z.; Biró, L.P. Spectral Engineering of Hybrid Biotemplated Photonic/Photocatalytic Nanoarchitectures. Nanomaterials 2022, 12, 4490. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-H.; Huang, M.H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116. [Google Scholar] [CrossRef]
- Kovács, D.; Deák, A.; Radnóczi, G.Z.; Horváth, Z.E.; Sulyok, A.; Schiller, R.; Czömpöly, O.; Zámbó, D. Position of gold dictates the photophysical and photocatalytic properties of Cu2O in Cu2O/Au multicomponent nanoparticles. J. Mater. Chem. C 2023, 11, 8796–8807. [Google Scholar] [CrossRef]
- Han, Y.; Meng, Z.; Wu, Y.; Zhang, S.; Wu, S. Structural Colored Fabrics with Brilliant Colors, Low Angle Dependence, and High Color Fastness Based on the Mie Scattering of Cu2O Spheres. ACS Appl. Mater. Interfaces 2021, 13, 57796–57802. [Google Scholar] [CrossRef] [PubMed]
- Steinhauer, S.; Versteegh, M.A.M.; Gyger, S.; Elshaari, A.W.; Kunert, B.; Mysyrowicz, A.; Zwiller, V. Rydberg excitons in Cu2O microcrystals grown on a silicon platform. Commun. Mater. 2020, 1, 11. [Google Scholar] [CrossRef]
- Wick, R.; Tilley, S.D. Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O. J. Phys. Chem. C 2015, 119, 26243–26257. [Google Scholar] [CrossRef]
- Sawant, S.S.; Bhagwat, A.D.; Mahajan, C.M. Synthesis of Cuprous Oxide (Cu2O) Nanoparticles—A Review. J. Nano-Electron. Phys. 2016, 8, 01035-1–01035-5. [Google Scholar] [CrossRef]
- Rybin, M.V.; Koshelev, K.L.; Sadrieva, Z.F.; Samusev, K.B.; Bogdanov, A.A.; Limonov, M.F.; Kivshar, Y.S. High-Q Supercavity Modes in Subwavelength Dielectric Resonators. Phys. Rev. Lett. 2017, 119, 243901. [Google Scholar] [CrossRef]
- Xiong, L.; Yu, H.; Ba, X.; Zhang, W.; Yu, Y. Cu2O-Based Nanocomposites for Environmental Protection. In Nanomaterials for Environmental Protection; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014; pp. 41–70. [Google Scholar] [CrossRef]
- Giraldo, M.A.; Yoshioka, S.; Liu, C.; Stavenga, D.G. Coloration mechanisms and phylogeny of Morpho butterflies. J. Exp. Biol. 2016, 219, 3936–3944. [Google Scholar] [CrossRef]
- Wilts, B.D.; Michielsen, K.; De Raedt, H.; Stavenga, D.G. Iridescence and spectral filtering of the gyroid-type photonic crystals in Parides sesostris wing scales. Interface Focus 2012, 2, 681–687. [Google Scholar] [CrossRef]
- Mouchet, S.R.; Vukusic, P. Chapter One-Structural Colours in Lepidopteran Scales. Adv. Insect Physiol. 2018, 54, 1–53. [Google Scholar] [CrossRef]
- Kinoshita, S.; Yoshioka, S.; Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: Cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B 2002, 269, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Biró, L.P.; Vigneron, J.P. Photonic nanoarchitectures in butterflies and beetles: Valuable sources for bioinspiration. Laser Photon. Rev. 2011, 5, 27–51. [Google Scholar] [CrossRef]
- Kertész, K.; Piszter, G.; Bálint, Z.; Biró, L.P. Biogeographical patterns in the structural blue of male Polyommatus icarus butterflies. Sci. Rep. 2019, 9, 2338. [Google Scholar] [CrossRef]
- Piszter, G.; Kertész, K.; Sramkó, G.; Krízsik, V.; Bálint, Z.; Biró, L.P. Concordance of the spectral properties of dorsal wing scales with the phylogeographic structure of European male Polyommatus icarus butterflies. Sci. Rep. 2021, 11, 16498. [Google Scholar] [CrossRef]
- Piszter, G.; Bálint, Z.; Kertész, K.; Szatmári, L.; Sramkó, G.; Biró, L.P. Breeding Polyommatus icarus Serves as a Large-Scale and Environmentally Friendly Source of Precisely Tuned Photonic Nanoarchitectures. Insects 2023, 14, 716. [Google Scholar] [CrossRef]
- The Global Silk Industry: Perception of European Operators toward Thai Natural & Organic Silk Fabric and Final Products. Available online: https://www.fibre2fashion.com/industry-article/6015/the-global-silk-industry (accessed on 4 December 2023).
- Czaplicki, Z.; Gliścińska, E.; Machnowski, W. Natural Silk–An Unusual Fibre: Origin, Processing and World Production. Fibres Text. East. Eur. 2021, 29, 22–28. [Google Scholar] [CrossRef]
- Statistics of the Global Silk Industry. Available online: https://inserco.org/en/statistics (accessed on 4 December 2023).
- Ghiradella, H. Structure of butterfly scales: Patterning in an insect cuticle. Microsc. Res. Tech. 1994, 27, 429–438. [Google Scholar] [CrossRef]
- Wagner, T.; Neinhuis, C.; Barthlott, W. Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures. Acta Zool. 2016, 77, 213–225. [Google Scholar] [CrossRef]
- Nishimoto, S.; Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 2013, 3, 671–690. [Google Scholar] [CrossRef]
- Han, Z.; Fu, J.; Wang, Z.; Wang, Y.; Li, B.; Mu, Z.; Zhang, J.; Niu, S. Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids Surf. A Physicochem. Eng. Asp. 2017, 518, 139–144. [Google Scholar] [CrossRef]
- Heuskin, S.; Vanderplanck, M.; Bacquet, P.; Holveck, M.-J.; Kaltenpoth, M.; Engl, T.; Pels, C.; Taverne, C.; Lognay, G.; Nieberding, C.M. The composition of cuticular compounds indicates body parts, sex and age in the model butterfly Bicyclus anynana (Lepidoptera). Front. Ecol. Environ. 2014, 2, 37. [Google Scholar] [CrossRef]
- Pomerantz, A.F.; Siddique, R.H.; Cash, E.I.; Kishi, Y.; Pinna, C.; Hammar, K.; Gomez, D.; Elias, M.; Patel, N.H. Developmental, cellular and biochemical basis of transparency in clearwing butterflies. J. Exp. Biol. 2021, 224, jeb237917. [Google Scholar] [CrossRef] [PubMed]
- Archana, B.; Sharmila, E.J.; Snegapriya, M.; Rangesh, K.; Susaritha, S. Fourier transform infra-red (FTIR) spectrochemical analyses of Pieridae butterfly wings. Entomon 2022, 47, 103–112. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, G.; Wang, T.; Cong, Q.; Ren, L. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin. Sci. Bull. 2007, 52, 711–716. [Google Scholar] [CrossRef]
- Jennings, D.W.; Weispfennig, K. Experimental solubility data of various n-alkane waxes: Effects of alkane chain length, alkane odd versus even carbon number structures, and solvent chemistry on solubility. Fluid Phase Equilib. 2005, 227, 27–35. [Google Scholar] [CrossRef]
- Diekmann, S.; Dederer, E.; Charmeteau, S.; Wagenfeld, S.; Kiefer, J.; Schröer, W.; Rathke, B. Revisiting the Liquid–Liquid Phase Behavior of n-Alkanes and Ethanol. J. Phys. Chem. B 2020, 124, 156–172. [Google Scholar] [CrossRef]
- Thomas, J.; Lewington, J. The Butterflies of Britain & Ireland; Bloomsbury Publishing: London, UK, 2010; 288p. [Google Scholar]
- Rivest, S.A.; Kharouba, H.M. Anthropogenic disturbance promotes the abundance of a newly introduced butterfly, the European common blue (Polyommatus icarus; Lepidoptera: Lycaenidae), in Canada. Can. J. Zool. 2021, 99, 642–652. [Google Scholar] [CrossRef]
- Piszter, G.; Kertész, K.; Bálint, Z.; Biró, L.P. Variability of the Structural Coloration in Two Butterfly Species with Different Prezygotic Mating Strategies. PLoS ONE 2016, 11, e0165857. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Madasu, M.; Huang, M.H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122, 13027–13033. [Google Scholar] [CrossRef]
- Kertész, K.; Piszter, G.; Beck, A.; Horváth, A.; Nagy, G.; Molnár, G.; Radnóczi, G.Z.; Horváth, Z.E.; Illés, L.; Biró, L.P. Hybrid Bio-Nanocomposites by Integrating Nanoscale Au in Butterfly Scales Colored by Photonic Nanoarchitectures. Photonics 2023, 10, 1275. [Google Scholar] [CrossRef]
- Kertész, K.; Bálint, Z.; Piszter, G.; Horváth, Z.E.; Biró, L.P. Multi-instrumental techniques for evaluating butterfly structural colors: A case study on Polyommatus bellargus (Rottemburg, 1775) (Lepidoptera: Lycaenidae: Polyommatinae). Arthropod Struct. Dev. 2021, 61, 101010. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.H.; Lin, P.-H. Shape-Controlled Synthesis of Polyhedral Nanocrystals and Their Facet-Dependent Properties. Adv. Funct. Mater. 2012, 22, 14–24. [Google Scholar] [CrossRef]
- Huang, W. Oxide Nanocrystal Model Catalysts. Acc. Chem. Res. 2016, 49, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.B.; Xiao, M.; Hwang, V.; Qu, L.; Odorisio, P.A.; Burke, M.; Task, K.; Deisenroth, T.; Barkley, S.; Darji, R.H.; et al. Predicting the Structural Colors of Films of Disordered Photonic Balls. ACS Photonics 2023, 10, 58–70. [Google Scholar] [CrossRef]
- Leertouwer, H.L.; Wilts, B.D.; Stavenga, D.G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 2011, 19, 24061. [Google Scholar] [CrossRef]
- Azofeifa, D.E.; Arguedas, H.J.; Vargas, W.E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. 2012, 35, 175–183. [Google Scholar] [CrossRef]
- Ehlers, S.; Schulz, S. The scent chemistry of butterflies. Nat. Prod. Rep. 2023, 40, 794–818. [Google Scholar] [CrossRef]
- Liu, Y.L.; Liu, Y.C.; Mu, R.; Yang, H.; Shao, C.L.; Zhang, J.Y.; Lu, Y.M.; Shen, D.Z.; Fan, X.W. The structural and optical properties of Cu2O films electrodeposited on different substrates. Semicond. Sci. Technol. 2005, 20, 44–49. [Google Scholar] [CrossRef]
- Gevorkyan, V.A.; Reymers, A.E.; Nersesyan, M.N.; Arzakantsyan, M.A. Characterization of Cu2O thin films prepared by evaporation of CuO powder. J. Phys. Conf. Ser. 2012, 350, 012027. [Google Scholar] [CrossRef]
- Sugimoto, H.; Fujii, M. Colloidal Mie Resonators for All-Dielectric Metaoptics. Adv. Photon. Res. 2021, 2, 2000111. [Google Scholar] [CrossRef]
- Sugimoto, H.; Fujii, M. Colloidal Dispersion of Subquarter Micrometer Silicon Spheres for Low-Loss Antenna in Visible Regime. Adv. Opt. Mater. 2017, 5, 1700332. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, R.; Xie, Y.-M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.-Q. Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, H.; Lai, Y.; Chen, H.; Wang, J. Substrate-Modulated Electromagnetic Resonances in Colloidal Cu2O Nanospheres. Part. Part. Syst. Charact. 2020, 37, 2000106. [Google Scholar] [CrossRef]
- van de Groep, J.; Polman, A. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express 2013, 21, 26285. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, H.; Hinamoto, T.; Fujii, M. Forward to Backward Scattering Ratio of Dielectric–Metal Heterodimer Suspended in Almost Free-Space. Adv. Opt. Mater. 2019, 7, 1900591. [Google Scholar] [CrossRef]
- Wood, T.; Naffouti, M.; Berthelot, J.; David, T.; Claude, J.-B.; Métayer, L.; Delobbe, A.; Favre, L.; Ronda, A.; Berbezier, I.; et al. All-Dielectric Color Filters Using SiGe-Based Mie Resonator Arrays. ACS Photon. 2017, 4, 873–883. [Google Scholar] [CrossRef]
- Bi, J.; Wu, Y.; Li, L.; Zhang, S.; Wu, S. Asymmetric structural colors based on monodisperse single-crystal Cu2O spheres. Nanoscale 2020, 12, 3220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piszter, G.; Kertész, K.; Kovács, D.; Zámbó, D.; Cadena, A.; Kamarás, K.; Biró, L.P. Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications. Materials 2024, 17, 4575. https://doi.org/10.3390/ma17184575
Piszter G, Kertész K, Kovács D, Zámbó D, Cadena A, Kamarás K, Biró LP. Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications. Materials. 2024; 17(18):4575. https://doi.org/10.3390/ma17184575
Chicago/Turabian StylePiszter, Gábor, Krisztián Kertész, Dávid Kovács, Dániel Zámbó, Ana Cadena, Katalin Kamarás, and László Péter Biró. 2024. "Integrating Cu2O Colloidal Mie Resonators in Structurally Colored Butterfly Wings for Bio-Nanohybrid Photonic Applications" Materials 17, no. 18: 4575. https://doi.org/10.3390/ma17184575