Impact of SiO2 and TiO2 Nanoparticles on the Elasticity and Aging Resistance of Polyvinyl Acetate (PVAc) Adhesive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paper
2.2. Nanoparticles
2.3. Adhesives
2.4. Testing of PVAc Adhesive’s Elasticity
2.4.1. Tensile Properties and Test Procedures
2.4.2. Sample Preparation for Tensile Testing
2.5. Testing of PVAc Aging Resistance
2.5.1. Sample Preparation for Adhesive Aging Resistance Testing
2.5.2. FTIR Spectroscopy
2.5.3. Adhesive’s Resistance to UV Radiation
2.6. Statistical Analysis
3. Results
3.1. PVAc Adhesive’s Elasticity
3.2. PVAc Adhesive’s Aging Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laskowska, A.; Kozakiewicz, P. Surface Wettability of Wood Species from Tropical and Temperate Zones by Polar and Dispersive Liquids. Drv. Ind. 2017, 68, 299–306. [Google Scholar] [CrossRef]
- Bardak, T.; Tankut, A.N.; Tankut, N.; Sozen, E.; Aydemir, D. The Effect of Nano-TiO2 and SiO2 on Bonding Strength and Structural Properties of Poly (Vinyl Acetate) Composites. Measurement 2016, 93, 80–85. [Google Scholar] [CrossRef]
- Tankut, N.; Bardak, T.; Sozen, E.; Tankut, A.N. The Effect of Different Nanoparticles and Open Time on Bonding Strength of Poly (Vinyl Acetate) Adhesive. Measurement 2016, 81, 80–84. [Google Scholar] [CrossRef]
- Aydemir, D.; Gündüz, G.; Aşık, N.; Wang, A. The Effects of Poly(Vinyl Acetate) Filled with Nanoclay and Cellulose Nanofibrils on Adhesion Strength of Poplar and Scots Pine Wood. Drv. Ind. 2016, 67, 17–24. [Google Scholar] [CrossRef]
- Chaabouni, O.; Boufi, S. Cellulose Nanofibrils/Polyvinyl Acetate Nanocomposite Adhesives with Improved Mechanical Properties. Carbohydr. Polym. 2017, 156, 64–70. [Google Scholar] [CrossRef]
- Silvestre, J.; Silvestre, N.; Brito, J. De Polymer Nanocomposites for Structural Applications: Recent Trends and New Perspectives. Mech. Adv. Mater. Struct. 2016, 23, 1263–1277. [Google Scholar] [CrossRef]
- Wen, N.; Tang, Q.; Chen, M.; Wu, L. Synthesis of PVAc/SiO2 Latices Stabilized by Silica Nanoparticles. J. Colloid Interface Sci. 2008, 320, 152–158. [Google Scholar] [CrossRef]
- Ahmad, J.; Deshmukh, K.; Hägg, M.B.; Habib, M.; Hägg, M.B. Influence of TiO2 Nanoparticles on the Morphological, Thermal and Solution Properties of PVA/TiO2 Nanocomposite Membranes. Arab. J. Sci. Eng. 2014, 39, 6805–6814. [Google Scholar] [CrossRef]
- Moya, R.; Rodríguez-Zúñiga, A.; Vega-Baudrit, J.; Álvarez, V. Effects of Adding Nano-Clay (Montmorillonite) on Performance of Polyvinyl Acetate (PVAc) and Urea-Formaldehyde (UF) Adhesives in Carapa Guianensis, a Tropical Species. Int. J. Adhes. Adhes. 2015, 59, 62–70. [Google Scholar] [CrossRef]
- Bonnefond, A.; Reyes, Y.; Perruzo, P.; Ronne, E.; Fare, J.; Paulis, M. Leiza Effect of the Incorporation of Modified Silicas on the Final Properties of Wood Adhesives. Macromol. React. Eng. 2013, 7, 527–537. [Google Scholar] [CrossRef]
- Petrie, E.M. Bookbinding Adhesives. Available online: https://www.adhesivesmag.com/articles/87133-bookbinding-adhesives (accessed on 11 February 2019).
- Ebnesajjad, S. (Ed.) Adhesives Technology Handbook, 2nd ed.; William Andrew: Norwich, NY, USA, 2008; ISBN 978-0-8155-1533-3. [Google Scholar]
- Pasanec Preprotić, S.; Vukoje, M.; Petković, G.; Rožić, M. Novel Approaches to Enhancing Sustainable Adhesive System Solutions in Contemporary Book Binding: An Overview. Heritage 2023, 6, 628–646. [Google Scholar] [CrossRef]
- Jović, M.; Buhin, Z.; Krobot, I.; Lučić Blagojević, S. Analiza Okolišne Održivosti Tehnologije Adheziva. Kem. u Ind. 2011, 60, 269–276. [Google Scholar]
- Bigianti, M.; Lanter, A. Digital Printing Leads to Print Finishing Opportunities. Available online: https://postpressmag.com/uncategorized/2014/digital-printing-leads-to-print-finishing-opportunities/ (accessed on 3 November 2018).
- Sattar, A.A.; Mydin, M.A.O.; Omar, R. Influence of Titanium Dioxide (TiO2) Nanoparticles on Durability Properties of Lightweight Foamed Concrete. J. Adv. Res. Appl. Mech. 2023, 109, 122–136. [Google Scholar] [CrossRef]
- Wu, X. Applications of Titanium Dioxide Materials; IntechOpen: London, UK, 2021. [Google Scholar]
- Gadhave, R.V.I.; Dhawale, P.V. State of Research and Trends in the Development of Polyvinyl Acetate-Based Wood Adhesive. Open J. Polym. Chem. 2022, 12, 13–42. [Google Scholar] [CrossRef]
- Hong, W.; Meng, M.; Xie, J.; Gao, D.; Xian, M.; Wen, S.; Huang, S.; Kang, C. Properties and Thermal Analysis Study of Modified Polyvinyl Acetate (PVA) Adhesive. J. Adhes. Sci. Technol. 2018, 32, 2180–2194. [Google Scholar] [CrossRef]
- Vineeth, S.K.; Gadhave, R.V.; Gadekar, P.T. Polyvinyl Alcohol–Cellulose Blend Wood Adhesive Modified by Citric Acid and Its Effect on Physical, Thermal, Mechanical and Performance Properties. Polym. Bull. 2023, 80, 8013–8030. [Google Scholar] [CrossRef]
- Gadhave, R.V. Polyvinyl Acetate Wood Adhesive Stabilized with Hydroxyethyl Cellulose: Synthesis and Characterizations. J. Adhes. Sci. Technol. 2024, 38, 1–25. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Vineeth, S.K. Synthesis and Characterization of Xanthan Gum Stabilized Polyvinyl Acetate-Based Wood Adhesive. Polym. Bull. 2024, 81, 7423–7440. [Google Scholar] [CrossRef]
- Gadhave, R.V.I.; Gadhave, C.R. Adhesives for the Paper Packaging Industry: An Overview. Open J. Polym. Chem. 2022, 12, 55–79. [Google Scholar] [CrossRef]
- IBookBinding. Book Binding Tutorial: Glues—Tips, Techniques, Types & Recipes. Available online: https://www.ibookbinding.com/blog/bookbinding-gluing-tips-techniques-types-info/ (accessed on 9 August 2018).
- Kim, S.; Kim, H.; Choi, Y.M.; Jang, S. Characteristics of Non-Plasticizer PVAc Resin for Wood Products. Mokchae Konghak 2007, 35, 61–68. [Google Scholar]
- Rebsamen, W. Adhesive Binding Library Books; Mekatronics: Washington, NY, USA, 1983. [Google Scholar]
- Salvini, A.; Saija, L.M.; Finocchiaro, S.; Gianni, G.; Giannelli, C.; Tondi, G. A New Methodology in the Study of PVAc-Based Adhesive Formulations. J. Appl. Polym. Sci. 2009, 114, 3841–3854. [Google Scholar] [CrossRef]
- Šedivka, P.; Bomba, J.; Böhm, M.; Boška, P. Influence of Temperature on the Strength of Bonded Joints. BioResources 2015, 10, 3999–4010. [Google Scholar] [CrossRef]
- Paris, J. Adhesives for Paper, Board and Foils. Int. J. Adhes. Adhes. 2000, 20, 89–90. [Google Scholar] [CrossRef]
- Petković, G.; Mirković, I.B.; Preprotić, S.P. Čvrstoća Adhezijskih Nano-Modificiranih Polivinil-Acetatnih Spojeva Uslijed Promjene Temperature i Vlage. In Proceedings of the Book of Abstracts/20th International Conference on Materials MATRIB 2019; Šolić, A., Schauperl, Z., Pugar, D., Eds.; Hrvatsko Društvo za Materijale i Tribologiju: Vela Luka, Croatia, 2019; pp. 247–256. [Google Scholar]
- Petković, G.; Vukoje, M.; Bota, J.; Preprotić, S.P. Enhancement of Polyvinyl Acetate (PVAc) Adhesion Performance by SiO2 and TiO2 Nanoparticles. Coatings 2019, 9, 707. [Google Scholar] [CrossRef]
- Petković, G.; Pasanec Preprotić, S.; Vukoje, M. The Quality Assessment of Bookbinding Strength for Polyvinyl Acetate Adhesive (PVAc) and Nano-Modified PVAc Adhesives. In Proceedings of the 9th International Symposium on Graphic Engineering and Design, Faculty of Technical Sciences, Novi Sad, Serbia, 14–16 November 2018; pp. 109–119. [Google Scholar]
- Petković, G.; Vukoje, M.; Pasanec Preprotić, S.; Kulčar, R. Changes in Color and Drying Time of Modified Polyvinyl Acetate Adhesive with Nanoparticles. Istanb. (Turk.) EJSDR 2021, 5, 48–54. [Google Scholar]
- Erhardt, D.; Mecklenburg, M.F. Accelerated vs Natural Aging: Effect of Aging Conditions on the Aging Process of Cellulose. Mat. Res. Soc. Symp. Proc. 1995, 352, 247–270. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Przybysz, P. Accelerated Ageing of Paper: Effect of Lignin Content and Humidity on Tensile Properties. Herit. Sci. 2021, 9, 132. [Google Scholar] [CrossRef]
- Area, M.C.; Cheradame, H. Paper Aging and Degradation: Recent Findings and Research Methods. BioResources 2011, 6, 5307–5337. [Google Scholar] [CrossRef]
- Małachowska, E.; Dubowik, M.; Boruszewski, P.; Łojewska, J.; Przybysz, P. Influence of Lignin Content in Cellulose Pulp on Paper Durability. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Coppola, F.; Modelli, A. Oxidative Degradation of Non-Recycled and Recycled Paper. Cellulose 2020, 27, 8977–8987. [Google Scholar] [CrossRef]
- Geffertova, J.; Geffert, A.; Deliiski, N. The Effect of Light on the Changes of White Office Paper. Key Eng. Mater. 2016, 688, 104–111. [Google Scholar] [CrossRef]
- Evonik Industries. Product Information AEROSIL R 8200; Evonik Industries: Essen, Germany, 2013. [Google Scholar]
- Evonik Industries. Product Information AEROXIDE P25; Evonik Industries: Essen, Germany, 2017. [Google Scholar]
- Signoplast. Sigurnosno-Tehnički List Za Kemijske Proizvode: Signokol L; Signoplast: Zagreb, Croatia, 2011. [Google Scholar]
- ISO 527-3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2018.
- ISO 187:1990; Paper, Bord and Pulps—Standard Atmosphere for Conditioning and Testing and Procedure for Monitoring the Atmosphere and Conditioning of Samples. ISO: Geneva, Switzerland, 1990.
- ISO 9142:2003; Adhesives—Guide to the Election of Standard Laboratory Ageing Conditions for Testing Bonded Joints. ISO: Geneva, Switzerland, 2019.
- Dolčić, I. Mehanička Svojstva Polimera. Bachelor’s Thesis, University of Zagreb Faculty of Chemical Engineering and Technology, Zagreb, Croatia, 2015. [Google Scholar]
- Da Silva, L.F.M.; Rodrigues, T.N.S.S.; Figueiredo, M.A.V.; de Moura, M.F.S.F.; Chousal, J.A.G. Effect of Adhesive Type and Thickness on the Lap Shear Strength. J. Adhes. 2006, 82, 1091–1115. [Google Scholar] [CrossRef]
- Proniewicz, L.M.; Paluszkiewicz, C.; Wesełucha-Birczyńska, A.; Majcherczyk, H.; Barański, A.; Konieczna, A. FT-IR and FT-Raman Study of Hydrothermally Degradated Cellulose. J. Mol. Struct. 2001, 596, 163–169. [Google Scholar] [CrossRef]
- Ferreira, P.J.; Gamelas, A.; Moutinho, I.M.; Ferreira, A.G.; Go, N.; Molleda, C.; Figueiredo, M.M. Application of FT-IR-ATR Spectroscopy to Evaluate the Penetration of Surface Sizing Agents into the Paper Structure. Ind. Eng. Chem. Res. 2009, 48, 3867–3872. [Google Scholar] [CrossRef]
- Tkalčec, M.M.; Bistričić, L.; Leskovac, M. Influence of Adhesive Layer on the Stability of Kozo Paper. Cellulose 2016, 23, 853–872. [Google Scholar] [CrossRef]
- Itrić, K.; Džimbeg-Malčić, V.; Modrić, D. Optical Deterioration of Coated Wrapping Paper. Acta Graph. 2015, 26, 5–10. [Google Scholar]
- Grilj, S.; Klanjšek Gunde, M.; Szentgyörgyvölgyi, R.; Gregor-Svetec, D. FT-IR and UV/VIS Analysis of Classic and Recycled Papers. Papíripar 2012, 56, 7–13. [Google Scholar]
- Łojewski, T.; Miśkowiec, P.; Missori, M.; Lubańska, A.; Proniewicz, L.M.; Łojewska, J. FTIR and UV/Vis as Methods for Evaluation of Oxidative Degradation of Model Paper: DFT Approach for Carbonyl Vibrations. Carbohydr. Polym. 2010, 82, 370–375. [Google Scholar] [CrossRef]
- Łojewska, J.; Miśkowiec, P.; Łojewski, T.; Proniewicz, L.M. Cellulose Oxidative and Hydrolytic Degradation: In Situ FTIR Approach. Polym. Degrad. Stab. 2005, 88, 512–520. [Google Scholar] [CrossRef]
- Lojewska, J.; Lubanska, A.; Miśkowiec, P.; Łojewski, T.; Proniewicz, L.M. FTIR in Situ Transmission Studies on the Kinetics of Paper Degradation via Hydrolytic and Oxidative Reaction Paths. Appl. Phys. A Mater. Sci. Process. 2006, 83, 597–603. [Google Scholar] [CrossRef]
- Pal, M.K.; Gautam, J. Effects of Inorganic Nanofillers on the Thermal Degradation and UV-Absorbance Properties of Polyvinyl Acetate. J. Therm. Anal. Calorim. 2013, 111, 689–701. [Google Scholar] [CrossRef]
- Wei, S.; Pintus, V.; Schreiner, M. Photochemical Degradation Study of Polyvinyl Acetate Paints Used in Artworks by Py-GC/MS. J. Anal. Appl. Pyrolysis 2012, 97, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.M.; Goudini, L.; Piri, F.; Zamani, A.; Saadati, F. Molecular Imprinting Method for Fabricating Novel Glucose Sensor: Polyvinyl Acetate Electrode Reinforced by MnO2/CuO Loaded on Graphene Oxide Nanoparticles. Food Chem. 2016, 194, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jermann, P. Reflections on Book Structure—Part 2; Temper Productions: Olean, NY, USA, 2004. [Google Scholar]
- Bronzato, M.; Calvini, P.; Federici, C.; Bogialli, S.; Favaro, G.; Meneghetti, M.; Mba, M.; Brustolon, M.; Zoleo, A. Degradation Products from Naturally Aged Paper Leaves of a 16th-Century-Printed Book: A Spectrochemical Study. Chem.-A Eur. J. 2013, 19, 9569–9577. [Google Scholar] [CrossRef]
- De Sá, S.F.; Viana, C.; Ferreira, J.L. Tracing Poly(Vinyl Acetate) Emulsions by Infrared and Raman Spectroscopies: Identification of Spectral Markers. Polymers 2021, 13, 3609. [Google Scholar] [CrossRef]
Paper Sample | Woodfree Uncoated | Woodfree Coated | Bulky (Containing Wood) | Office Paper (Virgin Fibers) | Office Paper (Recycled Fibers) |
---|---|---|---|---|---|
Abbreviation | WFU | WFC | CW | WFoffice | CRoffice |
Grammage [g/m2] | 100 | 115 | 90 | 80 | 80 |
Roughness (Bendtsen) [mL/min] | 160 | 80 | 300 | 120 | 225 |
[N/mm2] | |||
---|---|---|---|
PVAc (Mean ± SD) | Nano-SiO2 PVAc (Mean ± SD) | Nano-TiO2 PVAc (Mean ± SD) | |
80 | 3.826 ± 0.050 | 3.701 ± 0.048 | 3.918 ± 0.018 |
90 | 4.304 ± 0.056 | 4.164 ± 0.054 | 4.408 ± 0.020 |
100 | 4.783 ± 0.062 | 4.627 ± 0.060 | 4.898 ± 0.022 |
110 | 5.261 ± 0.068 | 5.089 ± 0.066 | 5.388 ± 0.025 |
120 | 5.739 ± 0.075 | 5.552 ± 0.072 | Break |
130 | Break | 6.015 ± 0.078 | Break |
[unitless] | |||
---|---|---|---|
PVAc (Mean ± SD) | Nano-SiO2 PVAc (Mean ± SD) | Nano-TiO2 PVAc (Mean ± SD) | |
80 | 0.160 ± 0.044 | 0.307 ± 0.044 | 0.113 ± 0.045 |
90 | 0.387 ± 0.062 | 0.833 ± 0.079 | 0.227 ± 0.049 |
100 | 1.493 ± 0.077 | 2.153 ± 0.088 | 0.827 ± 0.085 |
110 | 2.187 ± 0.045 | 2.487 ± 0.054 | 1.393 ± 0.065 |
120 | 2.560 ± 0.077 | 2.867 ± 0.076 | Break |
130 | Break | 2.980 ± 0.081 | Break |
Parameter | PVAc (Mean ± SD) | Nano-SiO2 PVAc (Mean ± SD) | Nano-TiO2 PVAc (Mean ± SD) |
---|---|---|---|
[GPa] | 0.031 ± 0.011 | 0.015 ± 0.003 | 0.043 ± 0.020 |
[MPa] | 5.739 ± 0.075 | 6.015 ± 0.078 | 5.420 ± 0.048 |
[%] | 256.0 ± 7.71 | 298.0 ± 8.04 | 139.3 ± 6.47 |
[MPa] | 11.672 ± 0.239 | 12.740 ± 0.311 | 6.481 ± 0.074 |
Source of Variation | SS | df | MS | Fstatistic | p-Value | Fcritical |
---|---|---|---|---|---|---|
Between Groups | 112.114 | 2 | 56.057 | 269.501 | 1.067 × 10−13 | 3.885 |
Within Groups | 2.496 | 12 | 0.208 |
Groups | p-Value (t Test) | Significant? |
---|---|---|
PVAc v nano-SiO2 PVAc | 0.0122 | Yes |
Nano-SiO2 PVAc v nano-TiO2 PVAc | 1.577 × 10−8 | Yes |
Nano-TiO2 PVAc v PVAc | 3.065 × 10−8 | Yes |
Paper–Adhesive Sample | p-Value |
---|---|
WFU + PVAc | 0.1934 |
WFC + PVAc | 0.7013 |
CW + PVAc | 0.4866 |
WFoffice + PVAc | 0.7815 |
CRoffice + PVAc | 0.0669 |
WFU + nano-SiO2 PVAc | 0.0645 |
WFC + nano-SiO2 PVAc | 0.5631 |
CW + nano-SiO2 PVAc | 0.1177 |
WFoffice + nano-SiO2 PVAc | 0.5664 |
CRoffice + nano-SiO2 PVAc | 0.5123 |
WFU + nano-TiO2 PVAc | 0.5222 |
WFC + nano-TiO2 PVAc | 0.9378 |
CW + nano-TiO2 PVAc | 0.4579 |
WFoffice + nano-TiO2 PVAc | 0.2361 |
CRoffice + nano-TiO2 PVAc | 0.1284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petković, G.; Pasanec Preprotić, S.; Vukoje, M.; Bolanča Mirković, I. Impact of SiO2 and TiO2 Nanoparticles on the Elasticity and Aging Resistance of Polyvinyl Acetate (PVAc) Adhesive. Materials 2024, 17, 5957. https://doi.org/10.3390/ma17235957
Petković G, Pasanec Preprotić S, Vukoje M, Bolanča Mirković I. Impact of SiO2 and TiO2 Nanoparticles on the Elasticity and Aging Resistance of Polyvinyl Acetate (PVAc) Adhesive. Materials. 2024; 17(23):5957. https://doi.org/10.3390/ma17235957
Chicago/Turabian StylePetković, Gorana, Suzana Pasanec Preprotić, Marina Vukoje, and Ivana Bolanča Mirković. 2024. "Impact of SiO2 and TiO2 Nanoparticles on the Elasticity and Aging Resistance of Polyvinyl Acetate (PVAc) Adhesive" Materials 17, no. 23: 5957. https://doi.org/10.3390/ma17235957
APA StylePetković, G., Pasanec Preprotić, S., Vukoje, M., & Bolanča Mirković, I. (2024). Impact of SiO2 and TiO2 Nanoparticles on the Elasticity and Aging Resistance of Polyvinyl Acetate (PVAc) Adhesive. Materials, 17(23), 5957. https://doi.org/10.3390/ma17235957