The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Texture After Normalized Annealing, Cold Rolling, and Recrystallization
3.2. Inclusion After Primary Recrystallization
3.3. Microstructure and Texture During Grain Growth
3.4. Magnetic Property During Grain Growth
4. Discussion
4.1. Multiple Effects of RE Elements on Microstructure and Texture
4.2. Effects of Multiple Metallurgical Parameters on Iron Loss
4.2.1. Hysteresis Loss
4.2.2. Abnormal Loss
5. Conclusions
- The RE-rich inclusion particles preferentially form and adsorb other fine particles smaller than 1 μm to transform into spherical or ellipsoidal composites in the case of trace addition RE elements (0.004–0.030%). Consequently, the larger grain size can be obtained at lower annealing temperatures. However, a higher content of RE elements (0.072%) leads to finer and more stable RE-rich particles.
- Recrystallization texture is improved in terms of increased λ fiber and reduced γ fiber by trace RE elements (0.004–0.030%) due to the advantages in grain size and quantity of λ fiber during nucleation, which results from the grain boundary segregation of RE elements and the heterogeneity in microstructure and texture of cold-rolled sheets. In contrast, a higher content of RE elements (0.072%) leads to strong recrystallization γ fiber.
- The enhanced magnetic properties of higher B50 and lower P15/50 are achieved at lower annealing temperature ranges through trace addition of RE elements (0.004%). The trace mixed RE elements exhibit a great potential to enhance magnetic properties in a lower carbon emission approach by multiple effects on the microstructure, texture, and inclusion in non-oriented silicon steel.
- An iron loss calculation model that incorporates multiple factors including grain size, texture, and inclusions is proposed. The iron loss calculation model can provide guidance for the design of high-grade non-orientated silicon steel based on the multiple effects of inclusions, grain size, and texture.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nakayama, T.; Honjou, N.; Minaga, T.; Yashiki, H. Effects of manganese and sulfur contents and slab reheating temperatures on the magnetic properties of non-oriented semi-processed electrical steel shee. J. Magn. Magn. Mater. 2001, 234, 55–61. [Google Scholar] [CrossRef]
- Nakayama, T.; Noriyuki, H. Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. J. Magn. Magn. Mater. 2000, 213, 87–94. [Google Scholar] [CrossRef]
- de Araujo Cardoso, R.F.; Cunha, M.A.d.; Brandão, L.P.M. Optimization of the magnetic losses of electrical steels through addition of Al and Si using a hot dipping process. J. Mater. Res. Technol. 2013, 2, 276–281. [Google Scholar] [CrossRef]
- Ivo, R.F.; de Araújo Rodrigues, D.; dos Santos, J.C.; Freitas, F.N.; Herculano, L.F.; de Abreu, H.F.; Reboucas Filho, P.P. Study and classification of the crystallographic orientation distribution Function of a non-grain oriented electrical steel using computer vision system. J. Mater. Res. Technol. 2019, 8, 1070–1083. [Google Scholar] [CrossRef]
- Cheng, L.; Yang, P.; Fang, Y.P.; Mao, W.M. Preparation of non-oriented silicon steel with high magnetic induction using columnar grains. J. Magn. Magn. Mater. 2012, 324, 4068–4072. [Google Scholar] [CrossRef]
- Tomida, T. Decarburization of 3%Si-1.1%Mn-0.05%C steel sheets by silicon dioxide and development of {100}<012> texture. Mater. Trans. 2003, 44, 1096–1105. [Google Scholar]
- Tomida, T.; Tanaka, T. Development of (100) texture in silicon steel sheets by removal of manganese and decarburization. ISIJ Int. 1995, 35, 548–556. [Google Scholar] [CrossRef]
- Liu, H.T.; Liu, Z.Y.; Sun, Y.; Qiu, Y.Q.; Li, C.G.; Cao, G.M.; Hong, B.D.; Kim, S.H.; Wang, G.D. Formation of {001}<510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel. Mater. Lett. 2012, 81, 65–68. [Google Scholar]
- Zhang, Y.X.; Xu, Y.B.; Liu, H.T.; Li, C.G.; Cao, G.M.; Liu, Z.Y.; Wang, G.D. Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels. J. Magn. Magn. Mater. 2012, 324, 3328–3333. [Google Scholar] [CrossRef]
- Jiao, H.T.; Xie, X.X.; Hu, Y.; Liu, D.J.; Tang, Y.C.; Zhao, L.Z. Enhanced {100} recrystallization texture in strip-cast nonoriented electrical steel by two-stage annealing. Steel Res. Int. 2023, 94, 2200633. [Google Scholar] [CrossRef]
- Liu, J.L.; Sha, Y.H.; Li, J.; Yao, Y.C.; Zhang, F.; Zuo, L. Optimisation of recrystallisation texture and magnetic properties in Fe-6.5 wt-% Si thin sheets by preannealing method. Mater. Res. Innov. 2014, 18, 615–618. [Google Scholar] [CrossRef]
- Botelho, R.A.; Diniz, S.B.; da Cunha, M.A.; Brandao, L.P. Properties of NGO 3% silicon steel asymmetrically cold rolled. Mater. Res. 2015, 18, 143–147. [Google Scholar] [CrossRef]
- Nam, S.K.; Kim, G.H.; Lee, D.N.; Kim, I. New process for the Goss texture formation and magnetic property in silicon steel sheet by hot asymmetric rolling and annealing. Metall. Mater. Trans. A 2018, 49a, 1841–1850. [Google Scholar] [CrossRef]
- Sha, Y.H.; Zhang, F.; Zhou, S.C.; Pei, W.; Zuo, L. Improvement of recrystallization texture and magnetic property in non-oriented silicon steel by asymmetric rolling. J. Magn. Magn. Mater. 2008, 320, 393–396. [Google Scholar] [CrossRef]
- Yang, H.P.; Sha, Y.H.; Zhang, F.; Zuo, L. Through-thickness shear strain control in cold rolled silicon steel by the coupling effect of roll gap geometry and friction. J. Mater. Process Tech. 2010, 210, 1545–1550. [Google Scholar] [CrossRef]
- Liu, J.L.; Sha, Y.H.; Zhang, F.; Li, J.C.; Yao, Y.C.; Zuo, L. Development of {210}<001> recrystallization texture in Fe-6.5 wt.% Si thin sheets. Scripta Mater. 2011, 65, 292–295. [Google Scholar]
- Liu, J.L.; Sha, Y.H.; Zhang, F.; Yang, H.P.; Zuo, L. Development of strong {001}<210> texture and magnetic properties in Fe-6.5wt.%Si thin sheet produced by rolling method. J. Appl. Phys. 2011, 109, 07A326. [Google Scholar]
- Sha, Y.H.; Sun, C.; Zhang, F.; Patel, D.; Chen, X.; Kalidindi, S.R.; Zuo, L. Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Mater. 2014, 76, 106–117. [Google Scholar] [CrossRef]
- Jiao, H.T.; Xu, Y.B.; Xu, H.J.; Zhang, Y.X.; Xiong, W.; Misra, R.D.K.; Cao, G.M.; Li, J.P.; Jiang, J.X. Influence of hot deformation on texture and magnetic properties of strip cast non-oriented electrical steel. J. Magn. Magn. Mater. 2018, 462, 205–215. [Google Scholar] [CrossRef]
- Jenkins, K.; Lindenmo, M. Precipitates in electrical steels. J. Magn. Magn. Mater. 2008, 320, 2423–2429. [Google Scholar] [CrossRef]
- Turner, S.; Moses, A.; Hall, J.; Jenkins, K. The effect of precipitate size on magnetic domain behavior in grain-oriented electrical steels. J. Appl. Phys. 2010, 107, 09A307. [Google Scholar] [CrossRef]
- Wang, L.; Lin, Q.; Yue, L.; Liu, L.; Guo, F.; Wang, F. Study of application of rare earth elements in advanced low alloy steels. J. Alloy Compd. 2008, 451, 534–537. [Google Scholar] [CrossRef]
- Wang, L.M.; Tan, Q.Y.; Li, N.; Qin, Z.; Qiu, S.C.; Gan, Y. Research progress on rare earth application technology in non-oriented electrical steels. J. Chin. Soc. Rare Earth 2014, 32, 513–533. [Google Scholar]
- Ren, Q.; Hu, Z.; Cheng, L.; Kang, X.; Cheng, Y.; Zhang, L. Modification mechanism of lanthanum on alumina inclusions in a nonoriented electrical steel. Steel Res. Int. 2022, 93, 2200212. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, J.; Hu, H.; Fu, X. Effect of rare-earth Ce on the texture of non-oriented silicon steels. High Temp. Mater. Proc. 2024, 43, 20220321. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Zheng, Y.; Guo, Z.; Zhang, Y.; Sun, H.; Liu, P.; Liu, Y.; Cao, R. Effect of rare earth Y on microstructure and texture of oriented silicon steel during hot rolling and cold rolling processes. High Temp. Mater. Proc. 2022, 41, 621–634. [Google Scholar] [CrossRef]
- He, Z.; Mi, C.; Sha, Y.; Chen, S.; Zhu, X.; Chen, L.; Zuo, L. Enhanced magnetostriction of rolled (Fe81Ga19)99.93Tb0.07 thin sheet by synergy strategy of secondary recrystallization and trace Tb-doping. J. Alloy Compd. 2023, 942, 169108. [Google Scholar] [CrossRef]
- Li, W.; Zhou, L.; He, Z.; Yu, H.; Liu, J.; Hao, H.; Chen, L. Effect of Pr doping on the microstructure, texture and magnetostrictive behavior of polycrystalline Fe81Al19 alloy. IEEE Trans. Magn. 2024, 60, 1–5. [Google Scholar] [CrossRef]
- Takashima, M.; Morito, N.; Honda, A.; Maeda, C. Nonoriented electrical steel sheet with low iron loss for high-efficiency motor cores. IEEE Trans. Magn. 1999, 35, 557–561. [Google Scholar] [CrossRef]
- Hou, C.K.; Liao, C.C. Effect of cerium content on the magnetic properties of non-oriented electrical steels. ISIJ Int. 2008, 48, 531–539. [Google Scholar] [CrossRef]
- Li, N.; Lu, Q.Y.; Wang, Y.Q.; Zhu, Z.H.; Xiang, L.; Qiu, S.T. Effect of Ce on inclusions modification in 2.9%Si-0.8%Al non-oriented electrical steel. J. Iron Steel Res. 2017, 29, 570–576. [Google Scholar]
- Wan, Y.; Chen, W.Q.; Wu, S.J. Effects of lanthanum and boron on the microstructure and magnetic properties of non-oriented electrical steels. High Temp. Mater. Proc. 2014, 33, 115–121. [Google Scholar] [CrossRef]
- Wan, Y.; Chen, W.; Wu, S. Effect of lanthanum content on microstructure and magnetic properties of non-oriented electrical steels. J. Rare Earths 2013, 31, 727–733. [Google Scholar] [CrossRef]
- He, Z.H.; Sha, Y.H.; Gao, Y.K.; Chang, S.T.; Zhang, F.; Zuo, L. Recrystallization texture development in rare-earth (RE)-doped non-oriented silicon steel. J. Iron Steel Res. Int. 2020, 27, 1339–1346. [Google Scholar] [CrossRef]
- Ren, Q.; Hu, Z.; Cheng, L.; Zhang, L. Effect of rare earth elements on magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 2022, 560, 169624. [Google Scholar] [CrossRef]
- Ren, Q.; Hu, Z.-y.; Liu, Y.-x.; Zhang, W.-c.; Gao, Z.-q.; Zhang, L.-f. Effect of lanthanum on inclusions in non-oriented electrical steel slabs. J. Iron Steel Res. Int. 2024, 31, 1680–1691. [Google Scholar] [CrossRef]
- Wang, H.; Niu, Y.; Ling, H.; Qiao, J.; Zhang, Y.; Zhong, W.; Qiu, S. Effects of rare earth La-Ce alloying treatment on modification of inclusions and magnetic properties of W350 non-oriented silicon steel. Metals 2023, 13, 626. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, H.; Wang, D.; Wang, S.; Yang, Y. Effect of Y on recrystallization behavior in non-oriented 4.5 wt% Si steel sheets. Materials 2022, 15, 4227. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhou, Q.; Zhao, H.; Zhao, H. Effects of yttrium on the microstructure, texture, and magnetic properties of non-oriented 6.5 wt% Si steel sheets by a rolling process. Mater. Res. Express 2021, 8, 066103. [Google Scholar] [CrossRef]
- Barnett, M.R.; Kestens, L. Formation of {111}<110> and {111}<112> textures in cold rolled and annealed IF sheet steel. ISIJ Int. 1999, 39, 923–929. [Google Scholar]
- Jonas, J.J. Effects of shear band formation on texture development in warm-rolled IF steels. J. Mater. Process Tech. 2001, 117, 293–299. [Google Scholar] [CrossRef]
- Park, J.T.; Szpunar, J.A. Evolution of recrystallization texture in nonoriented electrical steels. Acta Mater. 2003, 51, 3037–3051. [Google Scholar] [CrossRef]
- Paolinelli, S.D.; da Cunha, M.A.; Cota, A.B. The influence of shear bands on final structure and magnetic properties of 3% Si non-oriented silicon steel. J. Magn. Magn. Mater. 2008, 320, e641–e644. [Google Scholar] [CrossRef]
- He, Z.H.; Sha, Y.H.; Zhang, F.; Lin, F.F.; Zuo, L. Development of strong η fiber recrystallization texture in rolled Fe81Ga19 thin sheet. Metall. Mater. Trans. A 2014, 45, 129–133. [Google Scholar] [CrossRef]
- He, Z.H.; Hao, H.B.; Sha, Y.H.; Li, W.L.; Zhang, F.; Zuo, L. Sharp secondary recrystallization and large magnetostriction in Fe81Ga19 sheet induced by composite nanometer-sized inhibitors. J. Magn. Magn. Mater. 2019, 478, 109–115. [Google Scholar] [CrossRef]
- Fu, Q.; Sha, Y.H.; Zhang, F.; Esling, C.; Zuo, L. Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment. Acta Mater. 2019, 167, 167–180. [Google Scholar] [CrossRef]
- Luo, D.; Lu, D.Y.; Xing, G.H. Investigation of RE segregation at grain boundary in high speed steels. J. Iron Steel Res. 1985, 5, 451. [Google Scholar]
- Bugnet, M.; Kula, A.; Niewczas, M.; Botton, G.A. Segregation and clustering of solutes at grain boundaries in Mg–rare earth solid solutions. Acta Mater. 2014, 79, 66–73. [Google Scholar] [CrossRef]
- Bertotti, G. Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations. J. Appl. Phys. 1985, 57, 2110. [Google Scholar] [CrossRef]
- Bertotti, G.; Fiorillo, F.; Montorsi, A. The role of grain size in the magnetization process of soft magnetic materials. J. Appl. Phys. 1990, 67, 5574–5576. [Google Scholar] [CrossRef]
- Shilling, J.; Houze, G. Magnetic properties and domain structure in grain-oriented 3% Si-Fe. IEEE Trans. Magn. 1974, 10, 195–223. [Google Scholar] [CrossRef]
- de Campos, M.F.; Teixeira, J.C.; Landgraf, F.J.G. The optimum grain size for minimizing energy losses in iron. J. Magn. Magn. Mater. 2006, 301, 94–99. [Google Scholar] [CrossRef]
- Pirgazi, H.; Petrov, R.H.; Kestens, L.A.I. Effect of grain boundary-magnetic domain Interaction on the magnetization behavior of non-oriented electrical steels. Steel Res. Int. 2016, 87, 210–218. [Google Scholar] [CrossRef]
- Qin, J.; Yang, P.; Mao, W.M.; Ye, F. Effect of texture and grain size on the magnetic flux density and core loss of cold-rolled high silicon steel sheets. J. Magn. Magn. Mater. 2015, 393, 537–543. [Google Scholar] [CrossRef]
- Gallaugher, M.; Samimi, A.; Krause, T.W.; Clapham, L.C.; Chromik, R.R. Local magnetic properties in non-oriented electrical steel and their dependence on magnetic easy axis and misorientation parameters. Metall. Mater. Trans. A 2015, 46a, 1262–1276. [Google Scholar] [CrossRef]
- Ghosh, P.; Chromik, R.R.; Vashegi, B.; Knight, A.M. Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 2014, 365, 14–22. [Google Scholar] [CrossRef]
- Dijkstra, L.J.; Martius, U.M. Domain pattern in silicon-Iron under stress. Rev. Mod. Phys. 1953, 25, 146–150. [Google Scholar] [CrossRef]
- de Campos, M.F.; Emura, M.; Landgraf, F.J.G. Consequences of magnetic aging for iron losses in electrical steels. J. Magn. Magn. Mater. 2006, 304, E593–E595. [Google Scholar] [CrossRef]
No. | C | Si | Al | Mn | S | P | Ce | Nd | La | Pr | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.003 | 3.14 | 1.06 | 0.27 | 0.001 | 0.009 | 0 | 0 | 0 | 0 | Bal. |
2 | 0.004 | 3.12 | 1.15 | 0.26 | 0.001 | 0.009 | 0.001 | 0.001 | 0.001 | 0.001 | Bal. |
3 | 0.004 | 3.10 | 1.17 | 0.26 | 0.001 | 0.009 | 0.013 | 0.007 | 0.008 | 0.002 | Bal. |
4 | 0.004 | 3.11 | 1.15 | 0.27 | 0.001 | 0.008 | 0.031 | 0.016 | 0.018 | 0.007 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yang, Y.; He, Z.; Sha, Y. The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel. Materials 2025, 18, 401. https://doi.org/10.3390/ma18020401
Li G, Yang Y, He Z, Sha Y. The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel. Materials. 2025; 18(2):401. https://doi.org/10.3390/ma18020401
Chicago/Turabian StyleLi, Guobao, Yongjie Yang, Zhenghua He, and Yuhui Sha. 2025. "The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel" Materials 18, no. 2: 401. https://doi.org/10.3390/ma18020401
APA StyleLi, G., Yang, Y., He, Z., & Sha, Y. (2025). The Multiple Effects of RE Element Addition in Non-Oriented Silicon Steel. Materials, 18(2), 401. https://doi.org/10.3390/ma18020401