Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials
Abstract
:1. Introduction
- (A)
- Discovering the governing equations with ML [28] (Figure 1). Active ML can “interrogate” complex processes, which is “particularly useful for the analysis of highly heterogeneous, anisotropic materials, where idealized descriptions often fail”. Multi-dimensional, ill-posed problems are where machine learning often excels. Dealing with the uncertainty of the material’s structure remains a major challenge that seems unsurmountable at present: one must deal with many different realizations of the same process using different possible material structures that fall within the same description, and somehow ensure that the structure chosen for modeling is representative (computational costs are disregarded for the moment). The alternative is a physics-based homogenized model, which devalues the entire data-driven approach. Positive examples mentioned by D’Elia [28] do not involve heterogeneous porous materials. Unfortunately, in the current review, we have not found any papers that seem promising in terms of discovering the governing equations.
- (B)
- Data-driven acceleration of simulations in complex, multi-scale porous media [34] is certainly a promising and already fruitful direction. The main goal of ML is to optimize material structure/chemistry, etc. Due to difficulties in generalizing simulation results due to data navigation challenges, we need fast and computationally efficient tools to simulate processes of interest in various structural realizations. Surrogate data-based models outperform traditional ODE/PDE solvers in many cases, from fluid flow [35] to chemical kinetics [36]. Multi-physics phenomena involving drastically different spatial and temporal scales are especially problematic. At smaller scales, ML can reasonably replace physics-based modeling. Furthermore, the rapid development of physics-informed ML (PIML) [37] allows for the integration of physics and data-driven approaches. PIML is expanding to new types of systems and media, and its scope is already wide enough to allow for the design and optimization of disordered porous materials.
- (C)
- Machine learning structure–property relationships [38]. This field has already been well established. Numerous studies have focused on predicting the transport and mechanical properties of disordered porous materials using microscopic images. However, current practices show that these predictions are usually specific to a particular material, and the results obtained for one group of materials can’t be generalized to other groups, making it challenging to develop a more general approach. Physics-based modeling, such as Lattice-Boltzmann (LB) simulations for permeability [39] and finite element analyses (FEM) for elastic moduli, often serve as ground truth for these predictions. Nevertheless, obtaining representative samples for learning databases remains challenging. For example, rock physics data models are often based on a small number of samples that are cut and shifted using a sliding window technique to increase the training set size.
- (D)
- ML of property–property relationships. That is, the properties that can be easily measured are related to those that are difficult to determine experimentally or costly to model. For instance, the reconstruction of physical fields from real-time observations at a few locations has a long history (a brief review can be found in ref. [40]). Additionally, PIML enables the relationship between different physical fields to be established. This review contains a few useful examples.
- (E)
- Linking the initial formulations and synthesis condition to structural parameters of the resulting materials. The review below demonstrates that this is the most active area of application of ML techniques to disordered nanoporous materials at present (as expected, given that such relationships are complex, nonlinear, and almost impossible to model based on chemistry/physics alone).
- (i)
- general approaches: what exactly is targeted currently and why (research driven by practical needs vs. research driven by methodological interest)
- (ii)
- material types
- (iii)
- data sources
- (iv)
- ML methods and optimization techniques applied in the studies of interest
- (v)
- achievements and problems
2. ML in Characterization of Disordered Porous Materials
3. ML in Design, Optimization, and Screening of Active Carbons
4. Molecular Design of Microporous Glassy Polymers for Gas Separation Membranes Using Generative Neural Networks
5. ML in Synthesis and Optimization of Disordered Mesoporous Materials
6. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Short Summary of Select Published Papers on Data-Driven Design and Optimization of Disordered Porous Materials
Material | Porosity Type | Goal | Dataset (Source & Size) | ML Methods | Ref. |
Active carbons | |||||
Granular active carbons | Toxic chemicals sorption in disordered microporosity, breakthrough | Relating early breakthrough time to easily measurable carbon characteristics air-hexadecane partition coefficient, hydrogen bond acidity | 400 breakthrough curves for 18 carbons from literature, various pollutants | DTE | [86] |
Granular active carbons | Disordered microporosity | Build correlation between source biomass, activation chemical, synthesis procedure and IAN | 108 carbons, all sythesized in the authors lab | ANN, DTE | [86] |
Activated carbons | Disordered microporosity | Build correlation between source biomass, synthesis procedure and yield + BET SSA | 1500+ carbons from literature, all literature data | DTE | [65] |
Activated carbons | H2 adsorption in disordered microporosity | Choosing best carbons for H2 adsorption, optimization of carbons | 1700+ data points on H2 sorption on 68 carbons at 77 K and different p, features include composition, BET surface area, literature data | ANN | [77] |
Activated carbons | H2 adsorption in disordered microporosity | Choosing best carbons for H2 adsorption, optimization of carbons | 2072 data points on H2 sorption on 68 carbons at 77 K and different p, features include composition, BET surface area, literature data | DTE | [78] |
Activated carbons | disordered micro- and meso-porosity | Examining the correlation between the electric double layer capacitance and the pore structure of active carbon | 70 carbon samples from the literature; micro and meso pore SSA as features, capacitance as output at scan rates between 1 and 100 mV/s | DTE, ANN | [77,89] |
Activated carbon and carbon molecular sieve | disordered micro- and meso-porosity | Building a surrogate model to predict sorption isotherms | 1200+ measurements of N2, O2 and N2O adsorption | ANN | [85] |
Carbide-derived active carbonds | disordered micro- and meso-porosity | Correlation ciprofloxacin sorption capacity to strutural parameters (SSA, average pore size, total pore volume, micropore volme, called “texture”, their origin unfortunately unclear) | 87 different carbon samples, ciprofloxacin adsorption capacity | Linear model | [131] |
Activated carbons | disordered micro- and meso-porosity | Examining the correlation between the electric double layer capacitance and the pore structure of active carbon | 70 carbon samples from the literature; micro and meso pore SSA as features, capacitance as output at scan rates between 1 and 100 mV/s | DTE, ANN | [77,89] |
Mesoporous materials | |||||
Porous Al2O3/SiC ceramic cakes | Irregular nanoporosity, honeycomb-like structure | Linking synthesis conditions to porosity and Al2O3 content | 50 samples, all experimentally obtained in the same work | ANN | [132] |
Nanostructured hydrogel | Interstitial (semi-regular, formed via amphiphilic segregation) | Optimization of printing parameters | Experiment, from the same work, 12 points | SVM | [133] |
polyimide based aerogels | Disordered mesoporosity, highly porous medium | Optimization of reactant formulation and synthesis conditions to obtain best performing material | 60 different hydrogels, all measured in the same paper | ANN | [116] |
SiO2-Al2O3 porous ceramics | Irregular mesoporosity | Optimization of reactant formulation and synthesis conditions to obtain best performing material | 77 samples, all from the same study | Diffe-rent me-thods | [111] |
Simulated aerogels | Far goal—optimize pore structure; near—predict Df on simulations parameters | 3125 simulated aggregates of spherical particles, 3 features | ANN | [120] | |
polyurethane aerogel, silica–resorcinol formalde-hyde aerogel | Irregular mesoporosity | Link gel density, solid phase density & conductivity to everall thermal conductivity | Several dozen, all synthesiszed in the same study | KNN, GPR | [118] |
silica xerogels | Disordered mesoporosity | Optimize reactants compositions, synthesis procedure was adjusted to optimize the yield and silanol group surface concentration | 36 synthesized samples. All from the same work | SVM | [112] |
Cellulose, chitosan and graphene based aerogels with microporous additives | Disordered mesoporosity, in some samples ordered microporosity | Evaluation of different factors influencing; Aerogels Efficiency towards Ion Removal | 17 samples, from literature | PCA | [115] |
Aerogel incorporated concrete | Disordered mesoporosity, disordered macroporosity | Elucidating factors determining thermal conductivity, mechanical properties | 660 samples, experimentally studied | DTE | [117] |
Appendix B. Lay Person Overview of the Main Machine Learning Methods Applied in Data-Driven Design, Characterization and Optimization of Disordered Porous Materials
Appendix B.1. Supervised Learning Methods
Appendix B.2. Unsupervised Learning Methods
References
- Van Der Voort, P.; Leus, K.; De Canck, E. Introduction to Porous Materials; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Earl, D.; Deem, M.; Peierls, R. Toward a Database of Hypothetical Zeolite Structures. Ind. Eng. Chem. Res. 2006, 45, 5449–5454. [Google Scholar] [CrossRef]
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Yuan, D.; Zhao, D.; Schilling, C.; Plietzsch, O.; Muller, T.; Bräse, S.; Guenther, J.; Blümel, J.; Krishna, R.; et al. Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation. Chem. Mater. 2010, 22, 5964–5972. [Google Scholar] [CrossRef]
- Nandy, A.; Duan, C.; Kulik, H.J. Audacity of huge: Overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery. Curr. Opin. Chem. Eng. 2022, 36, 100778. [Google Scholar] [CrossRef]
- Allmann, R.; Hinek, R. The introduction of structure types into the Inorganic Crystal Structure Database ICSD. Acta Crystallogr. Sect. A Found. Crystallogr. 2007, 63, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Vaitkus, A.; Merkys, A.; Sander, T.; Quirós, M.; Thiessen, P.A.; Bolton, E.E.; Gražulis, S. A workflow for deriving chemical entities from crystallographic data and its application to the Crystallography Open Database. J. Cheminform. 2023, 15, 123. [Google Scholar] [CrossRef] [PubMed]
- Kabekkodu, S.N.; Dosen, A.; Blanton, T.N. 5+: A comprehensive powder diffraction file™ for materials characterization. In Powder Diffraction; Cambridge University Press: Cambridge, UK, 2024; pp. 1–13. [Google Scholar]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Struct. Sci. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Chung, Y.; Haldoupis, E.; Bucior, B.; Haranczyk, M.; Lee, S.; Vogiatzis, K.; Ling, S.; Milisavljevic, M.; Zhang, H.; Camp, J. Computation-Ready Experimental Metal-Organic Framework (CoRE MOF) 2019 Dataset. Available online: https://zenodo.org/records/3677685 (accessed on 29 December 2024).
- Bucior, B.J.; Rosen, A.S.; Haranczyk, M.; Yao, Z.; Ziebel, M.E.; Farha, O.K.; Hupp, J.T.; Siepmann, J.I.; Aspuru-Guzik, A.; Snurr, R.Q. Identification schemes for metal–organic frameworks to enable rapid search and cheminformatics analysis. Cryst. Growth Des. 2019, 19, 6682–6697. [Google Scholar] [CrossRef]
- Martin, R.L.; Simon, C.M.; Medasani, B.; Britt, D.K.; Smit, B.; Haranczyk, M. In silico design of three-dimensional porous covalent organic frameworks via known synthesis routes and commercially available species. J. Phys. Chem. C 2014, 118, 23790–23802. [Google Scholar] [CrossRef]
- Demir, H.; Daglar, H.; Gulbalkan, H.C.; Aksu, G.O.; Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 2023, 484, 215112. [Google Scholar] [CrossRef]
- Jablonka, K.M.; Ongari, D.; Moosavi, S.M.; Smit, B. Big-data science in porous materials: Materials genomics and machine learning. Chem. Rev. 2020, 120, 8066–8129. [Google Scholar] [CrossRef] [PubMed]
- Jensen, Z.; Olivetti, E. Machine Learning in Porous Materials. In Computer Simulation of Porous Materials: Current Approaches and Future Opportunities; The Royal Society of Chemistry: London, UK, 2021; p. 13. [Google Scholar]
- Sastre, G.; Daeyaert, F. AI-guided Design and Property Prediction for Zeolites and Nanoporous Materials; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Schwalbe-Koda, D.; Gómez-Bombarelli, R. Generating, Managing, and Mining Big Data in Zeolite Simulations. In AI-Guided Design and Property Prediction for Zeolites and Nanoporous Materials; Massachusetts Institute of Technology: Cambridge, MA, USA, 2023; pp. 81–111. [Google Scholar]
- Wang, J.; Tian, K.; Li, D.; Chen, M.; Feng, X.; Zhang, Y.; Wang, Y.; Van der Bruggen, B. Machine learning in gas separation membrane developing: Ready for prime time. Sep. Purif. Technol. 2023, 313, 123493. [Google Scholar] [CrossRef]
- Miao, C.; Wang, L.; Zhou, S.; Yu, D.; Zhang, C.; Gao, S.; Yu, X.; Zhao, Z. Preparation of Mesoporous Zeolites and Their Applications in Catalytic Elimination of Atmospheric Pollutants. Catalysts 2024, 14, 75. [Google Scholar] [CrossRef]
- Gregg, S.J.; Sing, K.S.W.; Salzberg, H. Adsorption surface area and porosity. J. Electrochem. Soc. 1967, 114, 279Ca. [Google Scholar] [CrossRef]
- Ciesla, U.; Schüth, F. Ordered mesoporous materials. Microporous Mesoporous Mater. 1999, 27, 131–149. [Google Scholar] [CrossRef]
- Ongari, D.; Talirz, L.; Smit, B. Too many materials and too many applications: An experimental problem waiting for a computational solution. ACS Cent. Sci. 2020, 6, 1890–1900. [Google Scholar] [CrossRef]
- Chu, T.; Park, S.; Fu, K. 3D printing-enabled advanced electrode architecture design. Carbon Energy 2021, 3, 424–439. [Google Scholar] [CrossRef]
- Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S.; Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 2013, 3, 2810. [Google Scholar] [CrossRef]
- Deshwal, A.; Simon, C.M.; Doppa, J.R. Bayesian optimization of nanoporous materials. Mol. Syst. Des. Eng. 2021, 6, 1066–1086.27. [Google Scholar] [CrossRef]
- D’Elia, M.; Deng, H.; Fraces, C.; Garikipati, K.; Graham-Brady, L.; Howard, A.; Karniadakis, G.; Keshavarzzadeh, V.; Kirby, R.M.; Kutz, N. Machine learning in heterogeneous porous materials. arXiv 2022, arXiv:2202.04137. [Google Scholar]
- D’Elia, M.; Howard, A.; Kirby, R.M.; Kutz, N.; Tartakovsky, A.; Viswanathan, H. Discovering new governing equations using ML. In Machine Learning in Heterogeneous Porous Materials; The University of Utah: Salt lake City, UT, USA, 2022. [Google Scholar]
- Lee, M.-T.; Vishnyakov, A.; Neimark, A.V. Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation. J. Chem. Theory Comput. 2015, 11, 4395–4403. [Google Scholar] [CrossRef]
- Lee, M.-T.; Vishnyakov, A.; Neimark, A.V. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane. J. Chem. Phys. 2016, 144, 014902. [Google Scholar] [CrossRef] [PubMed]
- Vishnyakov, A.; Neimark, A.V. Self-Assembly in Nafion Membranes upon Hydration: Water Mobility and Adsorption Isotherms. J. Phys. Chem. B 2014, 118, 11353–11364. [Google Scholar] [CrossRef]
- Iriarte, D.; Andrada, H.; Maldonado Ochoa, S.A.; Silva, O.F.; Vaca Chávez, F.; Carreras, A. Effect of acid treatment on the physico-chemical properties of Nafion 117 membrane. Int. J. Hydrogen Energy 2022, 47, 21253–21260. [Google Scholar] [CrossRef]
- Salam, M.; Habib, M.; Arefin, P.; Ahmed, K.; Uddin, S.; Hossain, T.; Papri, N. Effect of Temperature on the Performance Factors and Durability of Proton Exchange Membrane of Hydrogen Fuel Cell: A Narrative Review. Mater. Sci. Res. India 2020, 17, 179–191. [Google Scholar] [CrossRef]
- Lu, H.; Fraces, C.; Tchelepi, H.; Tartakovsky, D.M. Multi-scale modeling in heterogeneous porous materials via ML. In Machine Learning in Heterogeneous Porous Materials; The University of Utah: Salt lake City, UT, USA, 2022; pp. 23–40. [Google Scholar]
- Kochkov, D.; Smith, J.A.; Alieva, A.; Wang, Q.; Brenner, M.P.; Hoyer, S. Machine learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. USA 2021, 118, e2101784118. [Google Scholar] [CrossRef] [PubMed]
- Akeweje, E.; Vanovskiy, V.; Vishnyakov, A. Surrogate Models of Hydrogen Oxidation Kinetics based on Deep Neural Networks. Theor. Found. Chem. Eng. 2023, 57, 196–204. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Garikipati, K.; Graham-Brady, L.; Keshavarzzadeh, V.; Li, C.; Liu, X.; Zarzycki, P. ML in predicting material properties. In Machine Learning in Heterogeneous Porous Materials; The University of Utah: Salt lake City, UT, USA, 2022. [Google Scholar]
- Olhin, A.; Vishnyakov, A. Pore Structure and Permeability of Tight-Pore Sandstones: Quantitative Test of the Lattice–Boltzmann Method. Appl. Sci. 2023, 13, 9112. [Google Scholar] [CrossRef]
- Akeweje, E.; Olhin, A.; Avilkin, V.; Vishnyakov, A.; Panov, M. Real-Time Reconstruction of Complex Flow in Nanoporous Media: Linear vs Non-linear Decoding. In Computational Science—ICCS 2023; Springer Nature: Cham, Switzerland, 2023; pp. 580–594. [Google Scholar]
- Delpisheh, M.; Ebrahimpour, B.; Fattahi, A.; Siavashi, M.; Mir, H.; Mashhadimoslem, H.; Abdol, M.A.; Ghorbani, M.; Shokri, J.; Niblett, D. Leveraging machine learning in porous media. J. Mater. Chem. A 2024, 12, 20717–20782. [Google Scholar] [CrossRef]
- Osman, A.I.; Nasr, M.; Farghali, M.; Bakr, S.S.; Eltaweil, A.S.; Rashwan, A.K.; Abd El-Monaem, E.M. Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environ. Chem. Lett. 2024, 22, 505–560. [Google Scholar] [CrossRef]
- Namdeo, S.; Srivastava, V.C.; Mohanty, P. Machine learning implemented exploration of the adsorption mechanism of carbon dioxide onto porous carbons. J. Colloid Interface Sci. 2023, 647, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Sun, K.; Bao, W. Recent advance on machine learning of MXenes for energy storage and conversion. Int. J. Energy Res. 2022, 46, 21511–21522. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Yang, F.; Wang, C.; Yang, M.; Yu, J. How Machine learning boosts the understanding of organic pollutant adsorption on carbonaceous Materials: A comprehensive review with statistical insights. Sep. Purif. Technol. 2024, 350, 127790. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Li, B.; Xu, H.-Y. Machine learning screening of biomass precursors to prepare biomass carbon for organic wastewater purification: A review. Chemosphere 2024, 362, 142597. [Google Scholar] [CrossRef]
- Tassiopoulou, S.; Koukiou, G.; Anastassopoulos, V. Algorithms in Tomography and Related Inverse Problems—A Review. Algorithms 2024, 17, 71. [Google Scholar] [CrossRef]
- Mehmet, S.; Bülent, S. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–165. [Google Scholar] [CrossRef]
- Fager, C.; Röding, M.; Olsson, A.; Lorén, N.; von Corswant, C.; Särkkä, A.; Olsson, E. Optimization of FIB–SEM Tomography and Reconstruction for Soft, Porous, and Poorly Conducting Materials. Microsc. Microanal. 2020, 26, 837–845. [Google Scholar] [CrossRef]
- Čalkovský, M.; Müller, E.; Meffert, M.; Firman, N.; Mayer, F.; Wegener, M.; Gerthsen, D. Comparison of segmentation algorithms for FIB-SEM tomography of porous polymers: Importance of image contrast for machine learning segmentation. Mater. Charact. 2021, 171, 110806. [Google Scholar] [CrossRef]
- Sardhara, T.; Shkurmanov, A.; Li, Y.; Riedel, L.; Shi, S.; Cyron, C.J.; Aydin, R.C.; Ritter, M. Enhancing 3D Reconstruction Accuracy of FIB Tomography Data Using Multi-voltage Images and Multimodal Machine Learning. Nanomanuf. Metrol. 2024, 7, 4. [Google Scholar] [CrossRef]
- Sardhara , T.; Aydin , R.C.; Li , Y.; Piché , N.; Gauvin , R.; Cyron , C.J.; Ritter , M. Training Deep Neural Networks to Reconstruct Nanoporous Structures From FIB Tomography Images Using Synthetic Training Data. Front. Mater. 2022, 9, 837006. [Google Scholar] [CrossRef]
- Li, Y.; Dinh Ngô, B.-N.; Markmann, J.; Weissmüller, J. Datasets for the microstructure of nanoscale metal network structures and for its evolution during coarsening. Data Brief 2020, 29, 105030. [Google Scholar] [CrossRef] [PubMed]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Shkurmanov, A.; Krekeler, T.; Ritter, M. Slice Thickness Optimization for the Focused Ion Beam-Scanning Electron Microscopy 3D Tomography of Hierarchical Nanoporous Gold. Nanomanuf. Metrol. 2022, 5, 112–118. [Google Scholar] [CrossRef]
- Sardhara, T.; Shkurmanov, A.; Li, Y.; Shi, S.; Cyron, C.; Aydin, R.; Ritter, M. Role of slice thickness quantification in the 3D reconstruction of FIB tomography data of nanoporous materials. Ultramicroscopy 2023, 256, 113878. [Google Scholar] [CrossRef]
- Gidley, D.; Peng, H.-G.; Vallery, R. Positron annihilation as a method to characterize porous materials. Annu. Rev. Mater. Res 2006, 36, 49–79. [Google Scholar] [CrossRef]
- Pietrow, M.; Miaskowski, A. Artificial neural network as an effective tool to calculate parameters of positron annihilation lifetime spectra. J. Appl. Phys. 2023, 134, 114902. [Google Scholar] [CrossRef]
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Harris, P.J.; Liu, Z.; Suenaga, K. Imaging the atomic structure of activated carbon. J. Phys. Condens. Matter 2008, 20, 362201. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Terzyk, A.P.; Gauden, P.A.; Furmaniak, S.; Wiśniewski, M.; Burian, A.; Hawelek, L.; Kaneko, K.; Neimark, A.V. Carbon molecular sieves: Reconstruction of atomistic structural models with experimental constraints. J. Phys. Chem. C 2014, 118, 12996–13007. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Vishnyakov, A.; Russo, R.; Neimark, A.V. Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms. Langmuir 2000, 16, 2311–2320. [Google Scholar] [CrossRef]
- Mehdipour-Ataei, S.; Aram, E. Mesoporous Carbon-Based Materials: A Review of Synthesis, Modification, and Applications. Catalysts 2023, 13, 2. [Google Scholar] [CrossRef]
- Massaoudi, A.; Echouchene, F.; Ben Ayed, M.; Berguiga, A.; Harchay, A.; Al-Ghamdi, S.; Belmabrouk, H. Machine learning models for modeling the biosorption of Fe (III) ions by activated carbon from olive stone. Neural Comput. Appl. 2024, 36, 13357–13372. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, W.; Jiang, G.; Zhang, T.; He, K.; Mu, L.; Zhu, J.; Huang, D.; Qian, H.; Lu, X. Machine Learning Prediction of the Yield and BET Area of Activated Carbon Quantitatively Relating to Biomass Compositions and Operating Conditions. Ind. Eng. Chem. Res. 2023, 62, 11016–11031. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Kaneko, K.; Ishii, C.; Ruike, M.; kuwabara, H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon 1992, 30, 1075–1088. [Google Scholar] [CrossRef]
- Chang, J.; Lee, J.-Y. Machine Learning-Based Prediction of the Adsorption Characteristics of Biochar from Waste Wood by Chemical Activation. Materials 2024, 17, 5359. [Google Scholar] [CrossRef]
- Juhola, A. Iodine adsorption and structure of activated carbons. Carbon 1975, 13, 437–442. [Google Scholar] [CrossRef]
- Lai, X.; Zhou, P.; Kong, Y.; Wu, B.; Zhang, Q.; Cui, X. A machine learning and experimental-based model for prediction of soil sorption capacity toward phenanthrene. Environ. Res. 2024, 244, 117898. [Google Scholar] [CrossRef]
- Jiang, W.; Xing, X.; Li, S.; Zhang, X.; Wang, W. Synthesis, characterization and machine learning based performance prediction of straw activated carbon. J. Clean. Prod. 2018, 212, 1210–1223. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z.; Shao, S.; Cai, Y. Machine learning prediction of physical properties and nitrogen content of porous carbon from agricultural wastes: Effects of activation and doping process. Fuel 2024, 356, 129623. [Google Scholar] [CrossRef]
- Wang, T.; Pan, R.; Martins, M.L.; Cui, J.; Huang, Z.; Thapaliya, B.P.; Do-Thanh, C.-L.; Zhou, M.; Fan, J.; Yang, Z. Machine-learning-assisted material discovery of oxygen-rich highly porous carbon active materials for aqueous supercapacitors. Nat. Commun. 2023, 14, 4607. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, C.; He, S.; Jiang, D.; Cao, B.; Wang, S. Machine learning prediction of specific capacitance in biomass derived carbon materials: Effects of activation and biochar characteristics. Fuel 2023, 331, 125718. [Google Scholar] [CrossRef]
- Bouchelkia, N.; Tahraoui, H.; Amrane, A.; Belkacemi, H.; Bollinger, J.-C.; Bouzaza, A.; Zoukel, A.; Zhang, J.; Mouni, L. Jujube stones based highly efficient activated carbon for methylene blue adsorption: Kinetics and isotherms modeling, thermodynamics and mechanism study, optimization via response surface methodology and machine learning approaches. Process Saf. Environ. Prot. 2023, 170, 513–535. [Google Scholar] [CrossRef]
- Zhao, H.; Lyu, Y.; Hu, J.; Li, M.; Chen, H.; Jiang, Y.; Tang, M.; Wu, Y.; Sun, W. Reveal the major factors controlling quinolone adsorption on mesoporous carbon: Batch experiment, DFT calculation, MD simulation, and machine learning modeling. Chem. Eng. J. 2023, 463, 142486. [Google Scholar] [CrossRef]
- Kusdhany, M.I.M.; Lyth, S.M. New insights into hydrogen uptake on porous carbon materials via explainable machine learning. Carbon 2021, 179, 190–201. [Google Scholar] [CrossRef]
- Davoodi, S.; Vo Thanh, H.; Wood, D.A.; Mehrad, M.; Al-Shargabi, M.; Rukavishnikov, V.S. Machine-learning models to predict hydrogen uptake of porous carbon materials from influential variables. Sep. Purif. Technol. 2023, 316, 123807. [Google Scholar] [CrossRef]
- Kevin, D.A.; Aimikhe, V.J.; Ikeokwu, C.C. A Machine Learning Approach to Determining the CO2 Adsorption Capacity of Coconut Shell-Derived Activated Carbon. In Proceedings of the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, 5–7 August 2024; p. D022S025R008. [Google Scholar]
- Zhang, J.; Zhang, X.; Li, X.; Song, Z.; Shao, J.; Zhang, S.; Yang, H.; Chen, H. Prediction of CO2 adsorption of biochar under KOH activation via machine learning. Carbon Capture Sci. Technol. 2024, 13, 100309. [Google Scholar] [CrossRef]
- Yuan, X.; Suvarna, M.; Low, S.; Dissanayake, P.D.; Lee, K.B.; Li, J.; Wang, X.; Ok, Y.S. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons. Environ. Sci. Technol. 2021, 55, 11925–11936. [Google Scholar] [CrossRef]
- Kowalczyk, P.; Terzyk, A.P.; Erwardt, P.; Hough, M.; Deditius, A.P.; Gauden, P.A.; Neimark, A.V.; Kaneko, K. Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions. Carbon 2022, 198, 371–381. [Google Scholar] [CrossRef]
- Palle, K.; Vunguturi, S.; Gayatri, S.N.; Rao, K.S.; Babu, P.R.; Vijay, R. The prediction of CO2 adsorption on rice husk activated carbons via deep learning neural network. MRS Commun. 2022, 12, 434–440. [Google Scholar] [CrossRef]
- Vishnyakov, A.; Ravikovitch, P.I.; Neimark, A.V. Molecular Level Models for CO2 Sorption in Nanopores. Langmuir 1999, 15, 8736–8742. [Google Scholar] [CrossRef]
- Mashhadimoslem, H.; Ghaemi, A. Machine learning analysis and prediction of N2, N2O, and O2 adsorption on activated carbon and carbon molecular sieve. Environ. Sci. Pollut. Res. 2023, 30, 4166–4186. [Google Scholar] [CrossRef]
- Koyama, Y. Machine Learning Models to Predict Early Breakthrough of Recalcitrant Organic Micropollutants in Granular Activated Carbon Treatment of Water; North Carolina State University: Raleigh, NC, USA, 2021. [Google Scholar]
- Koyama, Y.; Fasaee, M.A.K.; Berglund, E.Z.; Knappe, D.R.U. Machine Learning Models to Predict Early Breakthrough of Recalcitrant Organic Micropollutants in Granular Activated Carbon Adsorbers. Environ. Sci. Technol. 2024, 58, 17114–17124. [Google Scholar] [CrossRef] [PubMed]
- Sontheimer, H.; Crittenden, J.C.; Summers, R.S. Activated Carbon for Water Treatment; DVGW-Forschungsstelle, Engler-Bunte-Institut, Universitat Karlsruhe (TH): Karlsruhe, Germany, 1988. [Google Scholar]
- Zhou, M.; Gallegos, A.; Liu, K.; Dai, S.; Wu, J. Insights from machine learning of carbon electrodes for electric double layer capacitors. Carbon 2020, 157, 147–152. [Google Scholar] [CrossRef]
- Neimark, A.V.; Ravikovitch, P.I.; Vishnyakov, A. Bridging scales from molecular simulations to classical thermodynamics: Density functional theory of capillary condensation in nanopores. J. Phys. Condens. Matter 2003, 15, 347. [Google Scholar] [CrossRef]
- Ravikovitch, P.I.; Vishnyakov, A.; Neimark, A.V.; Ribeiro Carrott, M.M.L.; Russo, P.A.; Carrott, P.J. Characterization of Micro-Mesoporous Materials from Nitrogen and Toluene Adsorption: Experiment and Modeling. Langmuir 2006, 22, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Arya, R.K.; Thapliyal, D.; Sharma, J.; Verros, G.D. Glassy Polymers—Diffusion, Sorption, Ageing and Applications. Coatings 2021, 11, 1049. [Google Scholar] [CrossRef]
- Buonomenna, M.G. Microporous Polymers for Gas Separation Membranes: Overview and Advances. In Handbook of Polymer and Ceramic Nanotechnology; Hussain, C.M., Thomas, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–29. [Google Scholar] [CrossRef]
- Luo, S.; Han, T.; Wang, C.; Sun, Y.; Zhang, H.; Guo, R.; Zhang, S. Hierarchically microporous membranes for highly energy-efficient gas separations. Ind. Chem. Mater. 2023, 1, 376–387. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef]
- Grosberg, A.Y.; Khokhlov, A.R. Giant Molecules: Here, There, and Everywhere; World Scientific: Singapore, 2010. [Google Scholar]
- Barnett, J.W.; Bilchak, C.R.; Wang, Y.; Benicewicz, B.C.; Murdock, L.A.; Bereau, T.; Kumar, S.K. Designing exceptional gas-separation polymer membranes using machine learning. Sci. Adv. 2020, 6, eaaz4301. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Longo, M.; Thornton, A.W.; McKeown, N.B.; Comesana-Gandara, B.; Jansen, J.C.; Jelfs, K.E. Imputation of missing gas permeability data for polymer membranes using machine learning. J. Membr. Sci. 2021, 627, 119207. [Google Scholar] [CrossRef]
- Yang, J.; Tao, L.; He, J.; McCutcheon, J.R.; Li, Y. Machine learning enables interpretable discovery of innovative polymers for gas separation membranes. Sci. Adv. 2022, 8, eabn9545. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- Zimmerman, C.M.; Koros, W.J. Comparison of gas transport and sorption in the ladder polymer BBL and some semi-ladder polymers. Polymer 1999, 40, 5655–5664. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V. Molecular Descriptors for Chemoinformatics. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9783527628766 (accessed on 2 November 2024).
- Basdogan, Y.; Pollard, D.R.; Shastry, T.; Carbone, M.R.; Kumar, S.K.; Wang, Z.-G. Machine learning-guided discovery of polymer membranes for CO2 separation with genetic algorithm. J. Membr. Sci. 2024, 712, 123169. [Google Scholar] [CrossRef]
- Jia, Y.; Lu, Y.; Yang, H.; Chen, Y.; Hillman, F.; Wang, K.; Liang, C.Z.; Zhang, S. Control of Microporous Structure in Conjugated Microporous Polymer Membranes for Post-Combustion Carbon Capture. Adv. Funct. Mater. 2024, 34, 2407499. [Google Scholar] [CrossRef]
- Xu, J.; Suleiman, A.; Liu, G.; Perez, M.; Zhang, R.; Jiang, M.; Guo, R.; Luo, T. Superior Polymeric Gas Separation Membrane Designed by Explainable Graph Machine Learning. arXiv 2024, arXiv:2404.10903. [Google Scholar] [CrossRef]
- Cheun, J.-Y.; Liew, J.-Y.-L.; Tan, Q.-Y.; Chong, J.-W.; Ooi, J.; Chemmangattuvalappil, N.G. Design of polymeric membranes for air separation by combining machine learning tools with computer aided molecular design. Processes 2023, 11, 2004. [Google Scholar] [CrossRef]
- Chen, L.; Liu, G.; Zhang, Z.; Wang, Y.; Yang, Y.; Li, J. Machine learning and molecular design algorithm assisted discovery of gas separation membranes exceeding the CO2/CH4 and CO2/N2 upper bounds. Chem. Eng. Sci. 2024, 291, 119952. [Google Scholar] [CrossRef]
- Glass, S.; Schmidt, M.; Merten, P.; Abdul Latif, A.; Fischer, K.; Schulze, A.; Friederich, P.; Filiz, V. Design of Modified Polymer Membranes Using Machine Learning. ACS Appl. Mater. Interfaces 2024, 16, 20990–21000. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Hu, N.; Ke, L.; Lv, Y.; Liu, Y.; Bai, Y.; Ou, Z.; Li, J. Machine learning-assisted design of Al2O3–SiO2 porous ceramics based on few-shot datasets. Ceram. Int. 2023, 49, 29400–29408. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Q.; Wang, J.; Zhao, J.; Wan, X.; Guo, Z.; Yang, Y. Application of support vector machine on controlling the silanol groups of silica xerogel with the aid of segmented continuous flow reactor. Chem. Eng. Sci. 2019, 199, 486–495. [Google Scholar] [CrossRef]
- Hrubesh, L.W. Aerogel applications. J. Non-Cryst. Solids 1998, 225, 335–342. [Google Scholar] [CrossRef]
- Rong, C.; Zhou, L.; Zhang, B.; Xuan, F.-Z. Machine learning for mechanics prediction of 2D MXene-based aerogels. Compos. Commun. 2023, 38, 101474. [Google Scholar] [CrossRef]
- Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-Samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 304. [Google Scholar] [CrossRef] [PubMed]
- Tafreshi, O.A.; Saadatnia, Z.; Ghaffari-Mosanenzadeh, S.; Okhovatian, S.; Park, C.B.; Naguib, H.E. Machine learning-based model for predicting the material properties of nanostructured aerogels. SPE Polym. 2023, 4, 24–37. [Google Scholar] [CrossRef]
- Han, F.; Lv, Y.; Liu, Y.; Zhang, X.; Yu, W.; Cheng, C.; Yang, W. Exploring interpretable ensemble learning to predict mechanical strength and thermal conductivity of aerogel-incorporated concrete. Constr. Build. Mater. 2023, 392, 131781. [Google Scholar] [CrossRef]
- Valipour Goodarzi, B.; Bahramian, A. Applying machine learning for predicting thermal conductivity coefficient of polymeric aerogels. J. Therm. Anal. Calorim. 2021, 147, 6227–6238. [Google Scholar] [CrossRef]
- Paul, J.; Ahankari, S.S. Nanocellulose-based aerogels for water purification: A review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef]
- Abdusalamov, R.; Pandit, P.; Milow, B.; Itskov, M.; Rege, A. Machine learning-based structure–property predictions in silica aerogels. Soft Matter 2021, 17, 7350–7358. [Google Scholar] [CrossRef]
- Pandit, P.; Abdusalamov, R.; Itskov, M.; Milow, B.; Rege, A. Data-driven inverse design and optimisation of silica aerogel model networks. PAMM 2023, 23, e202200329. [Google Scholar] [CrossRef]
- Neimark, A. A new approach to the determination of the surface fractal dimension of porous solids. Phys. A Stat. Mech. Its Appl. 1992, 191, 258–262. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S. Stochastic uncertainty-based optimisation on an aerogel glazing building in China using supervised learning surrogate model and a heuristic optimisation algorithm. Renew. Energy 2020, 155, 810–826. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, S. Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization. Renew. Energy 2020, 153, 375–391. [Google Scholar] [CrossRef]
- Shrestha, S.; Barvenik, K.J.; Chen, T.; Yang, H.; Li, Y.; Kesavan, M.M.; Little, J.M.; Whitley, H.C.; Teng, Z.; Luo, Y. Machine intelligence accelerated design of conductive MXene aerogels with programmable properties. Nat. Commun. 2024, 15, 4685. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251. [Google Scholar] [CrossRef]
- Chen, Z.; Fu, X.; Liu, R.; Song, Y.; Yin, X. Fabrication, Performance, and Potential Applications of MXene Composite Aerogels. Nanomaterials. 2023, 13, 2048. [Google Scholar] [CrossRef]
- Corapcioglu, M.O.; Huang, C.P. The surface acidity and characterization of some commercial activated carbons. Carbon 1987, 25, 569–578. [Google Scholar] [CrossRef]
- Korolev, V.; Mitrofanov, A.; Korotcov, A.; Tkachenko, V. Graph Convolutional Neural Networks as “General-Purpose” Property Predictors: The Universality and Limits of Applicability. J. Chem. Inf. Model. 2020, 60, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Shapeev, A.V. Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials. Multiscale Model. Simul. 2016, 14, 1153–1173. [Google Scholar] [CrossRef]
- Käärik, M.; Krjukova, N.; Maran, U.; Oja, M.; Piir, G.; Leis, J. Nanomaterial Texture-Based Machine Learning of Ciprofloxacin Adsorption on Nanoporous Carbon. Int. J. Mol. Sci. 2024, 25, 11696. [Google Scholar] [CrossRef] [PubMed]
- Altinkok, N.; Koker, R. Mixture and pore volume fraction estimation in Al2O3/SiC ceramic cake using artificial neural networks. Mater. Des. 2005, 26, 305–311. [Google Scholar] [CrossRef]
- Fu, Z.; Angeline, V.; Sun, W. Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation. Int. J. Bioprinting 2021, 7, 434. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd international conference on document analysis and recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS 2014), Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Cohn, D.; Atlas, L.; Ladner, R. Improving generalization with active learning. Mach. Learn. 1994, 15, 201–221. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Groth, D.; Hartmann, S.; Klie, S.; Selbig, J. Principal components analysis. Comput. Toxicol. Vol. II 2013, 930, 527–547. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vishnyakov, A. Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials. Materials 2025, 18, 534. https://doi.org/10.3390/ma18030534
Vishnyakov A. Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials. Materials. 2025; 18(3):534. https://doi.org/10.3390/ma18030534
Chicago/Turabian StyleVishnyakov, Aleksey. 2025. "Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials" Materials 18, no. 3: 534. https://doi.org/10.3390/ma18030534
APA StyleVishnyakov, A. (2025). Machine Learning in Computational Design and Optimization of Disordered Nanoporous Materials. Materials, 18(3), 534. https://doi.org/10.3390/ma18030534