Polymer-Cement Composites Containing Waste Perlite Powder
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Scope of Investigation and Materials Used
- Portland cement CEM I 42.5R according to European Standard EN 197-1 “Cement—Part 1: Composition, specifications and conformity criteria for common cements” [30];
- A commercially available polymer modifier—styrene-acrylic co-polymer (SA);
- Waste perlite powder from an expanded perlite production facility;
- CEN standard sand 0–2 mm according to European Standard EN 196-1 “Methods of testing cement—Part 1: Determination of strength” [31];
- Tap water.
2.2. Preparation of Specimens and Methods of Testing
3. Results and Discussion
3.1. Characteristics of the Waste Perlite Powder
3.2. Test Results of the Polymer-Cement Mortars Containing Waste Perlite Powder
3.3. SEM Observations
4. Summary and Conclusions
- replacing up to 15% of the cement (by mass) with perlite powder does not cause significant deterioration in mechanical performance of the PCC;
- replacing part of the cement with perlite powder decreases the density of the composite—the favorably highest ratio of strength to density can be observed at 15% content value of perlite powder, irrespective of polymer content;
- the presence of a polymer modifier makes the microstructure of the composite more homogenous, which can compensate for the delay of pozzolanic action of the mineral addition and foster a rational and efficient utilization of the waste;
- further investigation should be focused on the development of suitable technology of the manufacture of polymer-cement products containing waste perlite powder.
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Sun, X.; Wang, J.; Monteiro, P. Permeability of concrete with recycled concrete aggregate and pozzolanic materials under stress. Materials 2016, 9, 252. [Google Scholar] [CrossRef]
- De Schepper, M.; Van den Heede, P.; Van Driessche, I.; De Belie, N. Life cycle assessment of completely recyclable concrete. Materials 2014, 7, 6010–6027. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, S.; Nikbina, I.; Allahyarib, H.; Habibi, S. Sustainable approach for recycling waste tire rubber and polyethylene terephthalate (PET) to produce green concrete with resistance against sulfuric acid attack. J. Clean. Prod. 2016, 126, 166–177. [Google Scholar] [CrossRef]
- Malhotra, V.; Ramezanianpour, A. Fly Ash in Concrete; CANMET: Ottawa, ON, Canada, 1994. [Google Scholar]
- Deja, J. Freezing and de-icing salt resistance of blast furnace slag concretes. Cem. Concr. Comp. 2003, 25, 357–361. [Google Scholar] [CrossRef]
- Giergiczny, A.; Garbacik, A.; Ostrowski, M. Pozzolanic and hydraulic activity of calcareous fly ash. Roads Bridges Rogi I Mosty 2013, 12, 5–15. [Google Scholar]
- Perlite Institute Inc. Overview of Perlite Concrete. Available online: http:// www.perlite.org (accessed on 20 August 2016).
- Kapeluszna, E.; Kotwica, Ł.; Pichór, W.; Nocuń-Wczelik, W. Study of expanded perlite by-product as the mineral addition to Portland cement. Cem. Wapno Beton 2015, 1, 38–44. [Google Scholar]
- Liu, W.; Apel, D.; Bindiganavile, V. Thermal properties of lightweight dry-mix shotcrete containing expanded perlite aggregate. Cem. Concr. Comp. 2014, 53, 44–51. [Google Scholar] [CrossRef]
- Demirboğa, R.; Örüng, İ.; Gül, R. Effects of expanded perlite and mineral admixtures on the compressive strength of low density concretes. Cem. Concr. Res. 2001, 31, 1627–1632. [Google Scholar] [CrossRef]
- Demirboğa, R.; Gül, R. The effects of expanded perlite, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003, 33, 723–727. [Google Scholar] [CrossRef]
- Anil Dogan, U.; Hulusi Ozkul, M. The effect of cement type on long-term transport properties of self-compacting concretes. Constr. Build. Mater. 2015, 96, 641–647. [Google Scholar] [CrossRef]
- Türkmen, İ.; Kantarc, A. Effects of expanded perlite aggregate and different curing conditions on the physical and mechanical properties of self-compacting concrete. Build. Environ. 2007, 42, 2378–2383. [Google Scholar] [CrossRef]
- Yu, L.-H.; Ou, H.; Lee, L.-L. Investigation on pozzolanic effect of perlite powder in concrete. Cem. Concr. Res. 2003, 33, 73–76. [Google Scholar] [CrossRef]
- Yu, L.-H.; Ou, H.; Zhou, S. Influence of perlite admixture on pore structure of cement paste. Adv. Mater. Res. 2010, 97, 552–555. [Google Scholar] [CrossRef]
- Erdem, T.; Meral, Ç.; Tokyay, M.; Erdoğan, T. Use of perlite as a pozzolanic addition in producing blended cements. Cem. Concr. Comp. 2007, 29, 13–21. [Google Scholar] [CrossRef]
- Erdoğan, S.; Sağlık, A. Early-age activation of cement pastes and mortars containing ground perlite as a pozzolan. Cem. Concr. Comp. 2013, 38, 29–39. [Google Scholar] [CrossRef]
- Bektas, F.; Turanli, L.; Monteiro, P. Use of perlite powder to suppress the alkali-silica reaction. Cem. Concr. Res. 2005, 35, 2014–2017. [Google Scholar] [CrossRef]
- Ramezanianpour, A.; Mahmoud Motahari Karein, S.; Vosoughi, P.; Pilvar, A.; Isapour, S.; Moodi, F. Effects of calcined perlite powder as a SCM on the strength and permeability of concrete. Constr. Build. Mater. 2014, 66, 222–228. [Google Scholar] [CrossRef]
- Vosoughi, V.; Motahari Crin, S.; Eisapour, S. Evaluation of perlite powder performance in concrete to replace part of the cement. Cumhur. Univ. Fac. Sci. Sci. J. (CSJ) 2015, 36, 771–777. [Google Scholar]
- Łukowski, P.; Adamczewski, G. Self-repairing of polymer-cement concrete. Bull. Pol. Acad. Sci. Tech. 2013, 61, 195–200. [Google Scholar] [CrossRef]
- Czarnecki, L.; Łukowski, P. An usability approach to technical evaluation of the polymer coatings for concrete substrate. 2nd International RILEM Symposium on Adhesion between Polymers and Concrete, Dresden, Germany, 1999. RILEM Proc. 1999, 9, 173–180. [Google Scholar]
- Proszek Gorninski, J.; Dal Molin, D.; Kazmierczak, C. Study of the modulus of elasticity of polymer concrete compounds and comparative assessment of polymer concrete and Portland cement concrete. Cem. Concr. Res. 2004, 34, 2091–2095. [Google Scholar] [CrossRef]
- Ozkul, M. Effect of aggregate on the properties of epoxy concrete. In Proceedings of the 8th International Congress on Polymers in Concrete, Oostende, Belgium, 3–5 July 1995.
- Evbuomwan, N. Strengtening effects of microsilica in a polymer modified mortar under different curing regimes. In Proceedings of the 3rd Southern African Conference on Polymers in Concrete, Johannesburg, South Africa, 15–17 July 1997.
- Gao, J.; Qian, C.; Wang, B.; Morino, K. Experimental study on properties of polymer-modified cement mortars with silica fume. Cem. Concr. Res. 2002, 32, 41–45. [Google Scholar] [CrossRef]
- Bonora, V.; Saccani, A.; Sandrolini, F.; Belz, G.; Dinelli, G. Resistance to environmental attacks of polymer modified mortars containing fly ashes. In Proceedings of the International Congress on Polymers in Concrete, Oostende, Belgium, 3–5 July 1995.
- Sikora, P.; Łukowski, P.; Cendrowski, K.; Horszczaruk, E.; Mijowska, E. The effect of nanosilica on the mechanical properties of polymer-cement composites (PCCs). Procedia Eng. 2015, 108, 139–145. [Google Scholar] [CrossRef]
- Jaworska, B.; Sokołowska, J.; Łukowski, P.; Jaworski, J. Waste mineral powders as components of polymer-cement composites. Arch. Civil Eng. 2015, 61, 199–212. [Google Scholar] [CrossRef]
- Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; EN 197-1:2011; BSI Standards Publication: London, UK, 2011.
- Methods of Testing Cements—Part 1: Determination of Strength; EN 196-1:2005; BSI Standards Publication: London, UK, 2005.
- Fly Ash for Concrete—Part 1: Definition, Specifications and Conformity Criteria; EN 450-1:2012; BSI Standards Publication: London, UK, 2012.
- Mortars—Testing of Mechanical Properties; PN-B-04500:1985; Polish Committee for Standardization: Warsaw, Poland, 1985.
- Fontana, J.J.; Alexanderson, C.J.; Bartholomew, J. Standard specification for latex modified concrete (LMC) overlay. ACI Mater. J. 1992, 5, 521–526. [Google Scholar]
- Products and Systems for the Protection and Repair of Concrete Structures—Test Methods—Determination of Compressive Strength of Repair Mortar; EN 12190:1999; BSI Standards Publication: London, UK, 1999.
- Knapen, E.; Van Gemert, D. Polymer film formation in cement mortars modified with water-soluble polymers. Cem. Concr. Comp. 2015, 58, 23–28. [Google Scholar] [CrossRef]
- Ohama, Y. Polymer-based admixtures. Cem. Concr. Comp. 1998, 20, 189–212. [Google Scholar] [CrossRef]
Series | Mix No. | Cement | Water | Sand | Polymer | Waste Perlite |
---|---|---|---|---|---|---|
P0 | 0-1 | 450 | 225 | 1350 | 0 | 0 |
0-2 | 438.75 | 225 | 1350 | 0 | 11.25 | |
0-3 | 427.5 | 225 | 1350 | 0 | 22.5 | |
0-4 | 405 | 225 | 1350 | 0 | 45 | |
0-5 | 382.5 | 225 | 1350 | 0 | 67.5 | |
0-6 | 360 | 225 | 1350 | 0 | 90 | |
0-7 | 337.5 | 225 | 1350 | 0 | 112.5 | |
P5 | 5-1 | 450 | 225 | 1350 | 5 | 0 |
5-2 | 438.75 | 225 | 1350 | 5 | 11.25 | |
5-3 | 427.5 | 225 | 1350 | 5 | 22.5 | |
5-4 | 405 | 225 | 1350 | 5 | 45 | |
5-5 | 382.5 | 225 | 1350 | 5 | 67.5 | |
5-6 | 360 | 225 | 1350 | 5 | 90 | |
5-7 | 337.5 | 225 | 1350 | 5 | 112.5 | |
P10 | 10-1 | 450 | 225 | 1350 | 10 | 0 |
10-2 | 438.75 | 225 | 1350 | 10 | 11.25 | |
10-3 | 427.5 | 225 | 1350 | 10 | 22.5 | |
10-4 | 405 | 225 | 1350 | 10 | 45 | |
10-5 | 382.5 | 225 | 1350 | 10 | 67.5 | |
10-6 | 360 | 225 | 1350 | 10 | 90 | |
10-7 | 337.5 | 225 | 1350 | 10 | 112.5 | |
P20 | 20-1 | 450 | 225 | 1350 | 20 | 0 |
20-2 | 438.75 | 225 | 1350 | 20 | 11.25 | |
20-3 | 427.5 | 225 | 1350 | 20 | 22.5 | |
20-4 | 405 | 225 | 1350 | 20 | 45 | |
20-5 | 382.5 | 225 | 1350 | 20 | 67.5 | |
20-6 | 360 | 225 | 1350 | 20 | 90 | |
20-7 | 337.5 | 225 | 1350 | 20 | 112.5 |
Component | Content in Perlite, Mass % | Content in Cement, Mass % |
---|---|---|
SiO2 | 73.74 | 22.18 |
Al2O3 | 13.12 | 5.98 |
Fe2O3 | 1.25 | 2.82 |
CaO | 1.23 | 61.13 |
MgO | 0.03 | 1.12 |
Na2O | 3.42 | 0.43 |
K2O | 4.20 | 0.22 |
TiO2 | 0.08 | <0.01 |
MnO | 0.02 | <0.01 |
P2O5 | 0.02 | <0.01 |
SO3 | <0.01 | 2.69 |
Cl | 0.07 | 0.04 |
F | 0.05 | <0.01 |
Loss on ignition | 2.70 | 2.61 |
Time of Testing | 28 Days | 90 Days |
---|---|---|
Average compressive strength of the mortar with the binder containing 75% of cement and 25% of the waste perlite powder | 73.74 | 34 MPa |
Average compressive strength of the mortar with the binder containing 100% of cement | 44 MPa | 51 MPa |
Activity index of waste perlite powder | 61% | 67% |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukowski, P. Polymer-Cement Composites Containing Waste Perlite Powder. Materials 2016, 9, 839. https://doi.org/10.3390/ma9100839
Łukowski P. Polymer-Cement Composites Containing Waste Perlite Powder. Materials. 2016; 9(10):839. https://doi.org/10.3390/ma9100839
Chicago/Turabian StyleŁukowski, Paweł. 2016. "Polymer-Cement Composites Containing Waste Perlite Powder" Materials 9, no. 10: 839. https://doi.org/10.3390/ma9100839