Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models
Abstract
:1. Introduction
Approach | Typical Performance & Observations | References |
---|---|---|
CNN-Based (e.g., YOLO, VGG19, Mask R-CNN, ...) | Generally, achieves ~80–99% accuracy for defect detection or classification in various industrial domains (aero-engine blades, strip steel, weld radiography, etc.). Performance benefits greatly from transfer learning, data augmentation, and proper hyperparameter tuning. CNNs are often faster to train but can miss subtle defects if not carefully fine-tuned or if data are limited. | [14,15,26,28,29,30,31,41,42,43,45,53,56,57,58,59,60,63,64,67] |
Transformer-Based (e.g., DETR, vision transformer) | Commonly yields ~90–99% accuracy due to the self-attention mechanism’s strength in capturing global context and fine-grained details. Particularly advantageous for large, high-resolution images and diverse defect types. However, these methods can be more resource-intensive, requiring greater computational power for training and inference. | [27,32,33,34,35,36,37,39,40,44,61,62,66] |
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schobeiri, M.T. Gas Turbine Design, Components and System Design Integration: Second Revised and Enhanced Edition; Springer Nature: Berlin/Heidelberg, Germany, 2019; p. 25. [Google Scholar]
- Huang, X.; Chen, C.; Xuan, H.; Guo, X.; Shan, X.; Hong, W. Fatigue crack propagation analysis in an aero-engine turbine disc using computational methods and spin test. Theor. Appl. Fract. Mech. 2022, 124, 103745. [Google Scholar] [CrossRef]
- Bhaumik, S.K.; Sujata, M.; Venkataswamy, M.A. Fatigue failure of aircraft components. Eng. Fail. Anal. 2008, 15, 675–694. [Google Scholar] [CrossRef]
- Tavares, S.M.; De Castro, P.M. Damage Tolerance of Metallic Aircraft Structures: Materials and Numerical Modelling; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- De Giorgi, M.G.; Ciccarella, G.; Ficarella, A.; Fontanarosa, D.; Pescini, E. Effect of jet-A1 emulsified fuel on aero-engine per-formance and emissions. AIP Conf. Proc. 2019, 2191, 020058. Available online: https://pubs.aip.org/aip/acp/article/2191/1/020058/1007411/Effect-of-jet-A1-emulsified-fuel-on-aero-engine (accessed on 20 October 2024).
- Fleming, G.G. Environmental Trends in Aviation to 2050 Environmental Trends in Aviation to 2050 Background. Available online: https://www.icao.int/sustainability/Pages/Post-Covid-Forecasts-Scenarios.aspx (accessed on 20 October 2024).
- De Giorgi, M.G.; Menga, N.; Ficarella, A. Exploring Prognostic and Diagnostic Techniques for Jet Engine Health Monitoring: A Review of Degradation Mechanisms and Advanced Prediction Strategies. Energies 2023, 16, 2711. [Google Scholar] [CrossRef]
- Arrieta, M.d.J.G.; Botez, R.M.; Lasne, A. An Engine Deterioration Model for Predicting Fuel Consumption Impact in a Regional Aircraft. Aerospace 2024, 11, 426. [Google Scholar] [CrossRef]
- Tong, M.T. Machine Learning-Based Predictive Analytics for Aircraft Engine Conceptual Design. 2020. Available online: http://www.sti.nasa.gov (accessed on 20 October 2024).
- Yang, P.; Yue, W.; Li, J.; Bin, G.; Li, C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022, 140, 106570. [Google Scholar] [CrossRef]
- Kasaei, A.; Yang, W.; Wang, Z.; Yan, J. Advancements and applications of rim-driven fans in aerial vehicles: A comprehensive review. Appl. Sci. 2023, 13, 12502. [Google Scholar] [CrossRef]
- Chowdhury, T.S.; Mohsin,, F.T.; Tonni, M.M.; Mita, M.N.; Ehsan, M.M. A critical review on gas turbine cooling performance and failure analysis of turbine blades. Int. J. Thermofluids 2023, 18, 100329. [Google Scholar] [CrossRef]
- Lakshmi, M.R.; Mondal, A.K.; Jadhav, C.K.; Dutta, B.V.; Sreedhar, S. Overview of NDT methods applied on an aero engine turbine rotor blade. Insight Non-Destr. Test. Cond. Monit. 2013, 55, 482–486. [Google Scholar] [CrossRef]
- Plastropoulos, A.; Bardis, K.; Yazigi, G.; Avdelidis, N.P.; Droznika, M. Aircraft Skin Machine Learning-Based Defect Detection and Size Estimation in Visual Inspections. Technologies 2024, 12, 158. [Google Scholar] [CrossRef]
- Khanam, R.; Hussain, M.; Hill, R.; Allen, P. A Comprehensive Review of Convolutional Neural Networks for Defect Detection in Industrial Applications. IEEE Access 2024, 12, 94250–94295. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Dhouib, R.; Ibrahim, H.; Adda, M.; Karganroudi, S.S.; Ziane, K.; Aminzadeh, A. Predictive Maintenance and Fault Monitoring Enabled by Machine Learning: Experimental Analysis of a TA-48 Multistage Centrifugal Plant Compressor. Appl. Sci. 2023, 13, 1790. [Google Scholar] [CrossRef]
- Mohammadi, S.; Karganroudi, S.S.; Rahmanian, V. Advancements in Smart Nondestructive Evaluation of Industrial Machines: A Comprehensive Review of Computer Vision and AI Techniques for Infrastructure Maintenance. Machines 2024, 13, 11. [Google Scholar] [CrossRef]
- Dimitrova, M.; Aminzadeh, A.; Meiabadi, M.S.; Karganroudi, S.S.; Taheri, H.; Ibrahim, H. A Survey on Non-Destructive Smart Inspection of Wind Turbine Blades Based on Industry 4.0 Strategy. Appl. Mech. 2022, 3, 1299–1326. [Google Scholar] [CrossRef]
- Aminzadeh, A.; Dimitrova, M.; Meiabadi, M.S.; Karganroudi, S.S.; Taheri, H.; Ibrahim, H.; Wen, Y. Non-Contact Inspection Methods for Wind Turbine Blade Maintenance: Techno–Economic Review of Techniques for Integration with Industry 4.0. J. Nondestruct. Eval. 2023, 42, 1–20. [Google Scholar] [CrossRef]
- Karganroudi, S.S.; Cuillière, J.-C.; François, V.; Tahan, S.-A. Assessment of the Robustness of a Fixtureless Inspection Method for Nonrigid Parts Based on a Verification and Validation Approach. J. Verif. Valid. Uncertain. Quantif. 2017, 2, 041002. [Google Scholar] [CrossRef]
- Houban, I.; Aminzadeh, A.; Sattarpanah Karganroudi, S.; Barka, N. Smart Inspection; Conceptual Framework, Industrial Sce-narios, and Sustainability Perspectives. In Sustainable Manufacturingin Industry 4.0: Pathways and Practices; Springer: Singapore, 2023; pp. 125–142. Available online: https://link.springer.com/chapter/10.1007/978-981-19-7218-8_7 (accessed on 29 November 2024).
- Hadjadji, A.; Sattarpanah Karganroudi, S.; Barka, N.; Echchakoui, S. Advances in Smart Maintenance for Sustainable Manufac-turing in Industry 4.0. In Sustainable Manufacturingin Industry 40: Pathways and Practices; Springer: Singapore, 2023; pp. 97–123. Available online: https://link.springer.com/chapter/10.1007/978-981-19-7218-8_6 (accessed on 29 November 2024).
- Karganroudi, S.S.; Cuillière, J.-C.; Francois, V.; Tahan, S.-A. Automatic fixtureless inspection of non-rigid parts based on filtering registration points. Int. J. Adv. Manuf. Technol. 2016, 87, 687–712. [Google Scholar] [CrossRef]
- Jaber, A.; Karganroudi, S.S.; Meiabadi, M.S.; Aminzadeh, A.; Ibrahim, H.; Adda, M.; Taheri, H. On Smart Geometric Non-Destructive Evaluation: Inspection Methods, Overview, and Challenges. Materials 2022, 15, 7187. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Ju, H.; Li, Z. Surface Defect Detection Model for Aero-Engine Components Based on Improved YOLOv5. Appl. Sci. 2022, 12, 7235. [Google Scholar] [CrossRef]
- Shang, H.; Wu, J.; Sun, C.; Liu, J.; Chen, X.; Yan, R. Global Prior Transformer Network in Intelligent Borescope Inspection for Surface Damage Detection of Aeroengine Blade. IEEE Trans. Ind. Inform. 2022, 19, 8865–8877. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Wan, X.; Liu, L.; Wang, S.; Wang, Y. A Transfer Learning Strip Steel Surface Defect Recognition Network Based on VGG19. In Advanced Manufacturing and Automation IX. IWAMA 2019; Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; Volume 634, pp. 333–341. Available online: https://link.springer.com/chapter/10.1007/978-981-15-2341-0_41 (accessed on 10 August 2024).
- Thakkallapally, B.C. Defect Classification from Weld Radiography Images Using VGG-19 Based Convolutional Neural Network. 2019. Available online: http://www.ndt.net/?id=25712 (accessed on 10 August 2024).
- Durmusoglu, A.; Kahraman, Y. Detection of Fabric Defects Using Convolutional Networks. In Proceedings of the 2021 Innovations in Intelligent Systems and Applications Conference (ASYU 2021), Elazig, Turkey, 6–8 October 2021. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Trans-formers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles, A.; Jégou, H. Training data-efficient image transformers & distillation through attention. arXiv 2020, arXiv:2012.12877. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Seg-Mentation. arXiv 2021, arXiv:2102.04306. [Google Scholar]
- Xie, X.; Liu, H.; Na, Z.; Luo, X.; Wang, D.; Leng, B. DPiT: Detecting Defects of Photovoltaic Solar Cells With Image Transformers. IEEE Access 2021, 9, 154292–154303. [Google Scholar] [CrossRef]
- An, K.; Zhang, Y. LPViT: A Transformer Based Model for PCB Image Classification and Defect Detection. IEEE Access 2022, 10, 42542–42553. [Google Scholar] [CrossRef]
- Wang, W.; Su, C. Automatic Classification of Reinforced Concrete Bridge Defects Using the Hybrid Network. Arab. J. Sci. Eng. 2022, 47, 5187–5197. [Google Scholar] [CrossRef]
- Wang, J.; Ma, S.; An, Y.; Dong, R. A Comparative Study of Vision Transformer and Convolutional Neural Network Models in Geological Fault Detection. IEEE Access 2024, 12, 136148–136159. [Google Scholar] [CrossRef]
- Sarmadi, A.; Razavi, Z.S.; van Wijnen, A.J.; Soltani, M. Comparative analysis of vision transformers and convolutional neural networks in osteoporosis detection from X-ray images. Sci. Rep. 2024, 14, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wan, X.; Ye, F.; Guan, X.; Liu, S. Deep Learning based Framework for Automatic Damage Detection in Aircraft Engine Borescope Inspection. In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; pp. 1005–1010. [Google Scholar]
- Abdulrahman, Y.; Eltoum, M.M.; Ayyad, A.; Moyo, B.; Zweiri, Y. Aero-engine Blade Defect Detection: A Systematic Review of Deep Learning Models. IEEE Access 2023, 11, 53048–53061. [Google Scholar] [CrossRef]
- Zubayer, H.; Zhang, C.; Liu, W.; Wang, Y.; Imdadul, H.M. Automatic Defect Detection of Jet Engine Turbine and Compressor Blade Surface Coatings Using a Deep Learning-Based Algorithm. Coatings 2024, 14, 501. [Google Scholar] [CrossRef]
- Zhang, H.-B.; Zhang, C.-Y.; Cheng, D.-J.; Zhou, K.-L.; Sun, Z.-Y. Detection Transformer with Multi-Scale Fusion Attention Mechanism for Aero-Engine Turbine Blade Cast Defect Detection Considering Comprehensive Features. Sensors 2024, 24, 1663. [Google Scholar] [CrossRef] [PubMed]
- Shang, H.; Sun, C.; Liu, J.; Chen, X.; Yan, R. Deep learning-based borescope image processing for aero-engine blade in-situ damage detection. Aerosp. Sci. Technol. 2022, 123, 107473. [Google Scholar] [CrossRef]
- Uzun, İ. Damage Detection in Aircraft Engine Borescope Inspection Using Deep Learning. 16 January 2023. Available online: http://acikerisim.aksaray.edu.tr/xmlui/handle/20.500.12451/10763 (accessed on 27 December 2024).
- Shang, H.; Yang, Q.; Sun, C.; Chen, X.; Yan, R. Superpixel perception graph neural network for intelligent defect detection of aero-engine blade. J. Manuf. Syst. 2024, 77, 112–126. [Google Scholar] [CrossRef]
- Fumagalli, L.; Peron, M.; Aust, J.; Pons, D. Comparative Analysis of Human Operators and Advanced Technologies in the Visual Inspection of Aero Engine Blades. Appl. Sci. 2022, 12, 2250. [Google Scholar] [CrossRef]
- Aust, J.; Shankland, S.; Pons, D.; Mukundan, R.; Mitrovic, A. Automated Defect Detection and Decision-Support in Gas Turbine Blade Inspection. Aerospace 2021, 8, 30. [Google Scholar] [CrossRef]
- Aust, J.; Pons, D. Methodology for Evaluating Risk of Visual Inspection Tasks of Aircraft Engine Blades. Aerospace 2021, 8, 117. [Google Scholar] [CrossRef]
- Sun, J.; Yan, Z.; Han, Y.; Zhu, X.; Yang, C. Deep learning framework for gas turbine performance digital twin and degradation prognostics from airline operator perspective. Reliab. Eng. Syst. Saf. 2023, 238, 109404. [Google Scholar] [CrossRef]
- Ezhilarasu, C.M.; Skaf, Z.; Jennions, I.K. A Generalised Methodology for the Diagnosis of Aircraft Systems. IEEE Access 2021, 9, 11437–11454. [Google Scholar] [CrossRef]
- Doğru, A.; Bouarfa, S.; Arizar, R.; Aydoğan, R. Using Convolutional Neural Networks to Automate Aircraft Maintenance Visual Inspection. Aerospace 2020, 7, 171. [Google Scholar] [CrossRef]
- Min, A.T.W.; Sagarna, R.; Gupta, A.; Ong, Y.-S.; Goh, C.K. Knowledge Transfer Through Machine Learning in Aircraft Design. IEEE Comput. Intell. Mag. 2017, 12, 48–60. [Google Scholar] [CrossRef]
- Hsu, C.S.; Jiang, J.R. Remaining useful life estimation using long short-term memory deep learning. In Proceedings of the 4th IEEE In-ternational Conference on Applied System Innovation 2018 (ICASI 2018), Chiba, Japan, 13–17 April 2018; pp. 58–61. [Google Scholar]
- Li, D.; Li, Y.; Xie, Q.; Wu, Y.; Yu, Z.; Wang, J. Tiny Defect Detection in High-Resolution Aero-Engine Blade Images via a Coarse-to-Fine Framework. IEEE Trans. Instrum. Meas. 2021, 70, 3512712. [Google Scholar] [CrossRef]
- Liu, J.; Guo, F.; Gao, H.; Li, M.; Zhang, Y.; Zhou, H. Defect detection of injection molding products on small datasets using transfer learning. J. Manuf. Process. 2021, 70, 400–413. [Google Scholar] [CrossRef]
- Ferguson, M.; Ak, R.; Lee, Y.-T.T.; Law, K.H. Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning. Smart Sustain. Manuf. Syst. 2018, 2, 137–164. [Google Scholar] [CrossRef] [PubMed]
- Abu, M.; Amir, A.; Lean, Y.H.; Zahri, N.A.H.; A Azemi, S. The Performance Analysis of Transfer Learning for Steel Defect Detection by Using Deep Learning. J. Phys. Conf. Ser. 2021, 1755, 012041. [Google Scholar] [CrossRef]
- Madhavan, S.; Sridharan, N.V.; Mahanta, T.K.; Vaithiyanathan, S. Diagnosis of Surface Defects in Hot-Rolled Steel from Deep Learning Features Using Machine Learning Algorithms. Arab. J. Sci. Eng. 2024, 1–21. [Google Scholar] [CrossRef]
- Sun, X.; Song, K.; Wen, X.; Wang, Y.; Yan, Y. SDD-DETR: Surface Defect Detection for No-Service Aero-Engine Blades With Detection Transformer. IEEE Trans. Autom. Sci. Eng. 2024, 1–14. [Google Scholar] [CrossRef]
- Vasan, V.; Sridharan, N.V.; Vaithiyanathan, S.; Aghaei, M. Detection and classification of surface defects on hot-rolled steel using vision transformers. Heliyon 2024, 10, e38498. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Tzani, M.A. Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 10263–10276. [Google Scholar] [CrossRef]
- Apostolopoulos, I.D.; Tzani, M. Industrial object, machine part and defect recognition towards fully automated industrial mon-itoring employing deep learning. The case of multilevel VGG19. arXiv 2020, arXiv:2011.11305. [Google Scholar]
- Eltouny, K.; Sajedi, S.; Liang, X. High-resolution vision transformers for pixel- level identification of structural components and damage. In Proceedings of the Structural Health Monitoring 2023, Hangzhou, China, 19–22 October 2023. [Google Scholar]
- Eltouny, K.; Sajedi, S.; Liang, X. Dmg2Former-AR: Vision Transformers with Adaptive Rescaling for High-Resolution Structural Visual Inspection. Sensors 2024, 24, 6007. [Google Scholar] [CrossRef]
- Khan, S.M.; Ahmed, M.; Rasel, R.Z.; Khan, M.M. Cataract Detection Using Convolutional Neural Network with VGG-19 Model. In Proceedings of the 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021; pp. 209–212. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Available online: http://image-net.org/challenges/LSVRC/2015/ (accessed on 29 November 2019).
- Zhang, J.; Li, W.; Ogunbona, P.; Xu, D. Recent advances in transfer learning for cross-dataset visual recognition: A problem-oriented perspective. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2018, 15, 2446–2455. [Google Scholar] [CrossRef]
- Hutchinson, M.L.; Antono, E.; Gibbons, B.M.; Paradiso, S.; Ling, J.; Meredig, B. Overcoming data scarcity with transfer learning. arXiv 2017, arXiv:1711.05099. [Google Scholar]
- Ahmed, R.; El Sayed, M.; Gadsden, S.A.; Tjong, J.; Habibi, S. Automotive Internal-Combustion-Engine Fault Detection and Classification Using Artificial Neural Network Techniques. IEEE Trans. Veh. Technol. 2014, 64, 21–33. [Google Scholar] [CrossRef]
- Brunton, S.L.; Kutz, J.N.; Manohar, K.; Aravkin, A.Y.; Morgansen, K.; Klemisch, J.; Goebel, N.; Buttrick, J.; Poskin, J.; Blom-Schieber, A.W.; et al. Data-Driven Aerospace Engineering: Reframing the Industry with Machine Learning. AIAA J. 2021, 59, 1–26. [Google Scholar] [CrossRef]
- Buda, M.; Maki, A.; Mazurowski, M.A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018, 106, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern. Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Bergstra, J.; Ca, J.B.; Ca, Y.B. Random Search for Hyper-Parameter Optimization Yoshua Bengio. J. Mach. Learn. Res. 2012, 13, 281–305. Available online: http://scikit-learn.sourceforge.net (accessed on 14 August 2024).
- Kohavi, R.K.; Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Available online: http://robotics.stanford.edu/~ronnyk (accessed on 14 August 2024).
Main Subject/Focus | References |
---|---|
Cracks and Fuel Efficiency Discusses how minor imperfections (e.g., cracks) in aero-engine components increase fuel consumption and emissions and emphasizes the need for early detection to mitigate performance losses. | [1,2,3,4,5,6,7,8,9,10,12] |
Traditional vs. Automated NDI Compares conventional nondestructive inspection (NDI) techniques (eddy current, ultrasonic, and radiography) with automated or AI-based methods, highlighting the limitations of manual approaches. | [13,14,15,18,19,25,26,27,41,42,43,44,45] |
Predictive Maintenance and Industry 4.0 Covers real-time monitoring, Industry 4.0 frameworks, fixtureless inspection methods, and smart inspection systems that reduce downtime, extend equipment life, and enhance sustainability. | [16,17,18,19,20,21,22,23,24,25] |
Deep Learning Approaches (CNN and Transformers) Demonstrates the use of CNNs (e.g., VGG19) and transformer-based models (e.g., ViT, DeiT) for detecting micro-level defects in various domains, including aero-engine components. | [14,15,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] |
Advanced Aero-Engine Defect Detection Focuses on specialized models (FCN, YOLO, and Global Prior Transformer) and case studies for high-accuracy defect detection and smart borescope inspections, showing how these methods improve reliability and reduce fuel consumption. | [26,27,41,42,43,44,45] |
Hyperparameter | Search Area | Best Value |
---|---|---|
Weight Decay | [1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2] | 1 × 10−5 |
Learning Rate (lr) | [0.001, 0.01, 0.1] | 0.01 |
Hidden Size 1 | [64, 128, 256] | 128 |
Hidden Size 2 | [128, 256, 512] | 256 |
Dropout Rate | [0.2, 0.3, 0.5] | 0.5 |
Model | Epoch | Loss (Train/Val) | Accuracy (Train/Val) | Precision (Train/Val) | Recall (Train/Val) |
---|---|---|---|---|---|
VGG19 | 1 | 1.7957/1.0539 | 0.3136/0.4185 | 0.4698/0.6847 | 0.3136/0.4185 |
VGG19 | 10 | 0.3541/0.5902 | 0.8049/0.7340 | 0.8498/0.7962 | 0.8049/0.7340 |
DeiT | 1 | 1.0906/0.6063 | 0.5977/0.7883 | 0.6849/0.8314 | 0.5977/0.7883 |
DeiT | 10 | 0.2037/0.2438 | 0.8819/0.8771 | 0.9110/0.9142 | 0.8819/0.8771 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammadi, S.; Rahmanian, V.; Sattarpanah Karganroudi, S.; Adda, M. Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models. Machines 2025, 13, 49. https://doi.org/10.3390/machines13010049
Mohammadi S, Rahmanian V, Sattarpanah Karganroudi S, Adda M. Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models. Machines. 2025; 13(1):49. https://doi.org/10.3390/machines13010049
Chicago/Turabian StyleMohammadi, Samira, Vahid Rahmanian, Sasan Sattarpanah Karganroudi, and Mehdi Adda. 2025. "Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models" Machines 13, no. 1: 49. https://doi.org/10.3390/machines13010049
APA StyleMohammadi, S., Rahmanian, V., Sattarpanah Karganroudi, S., & Adda, M. (2025). Smart Defect Detection in Aero-Engines: Evaluating Transfer Learning with VGG19 and Data-Efficient Image Transformer Models. Machines, 13(1), 49. https://doi.org/10.3390/machines13010049