Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19
Abstract
:1. Introduction
- Multi-layer neural network approaches for COVID-19 daily and overall infection rates, fatalities, and recovered cases are described. The proposed TDGRU architecture among DNN is convenient to develop and implement on time-series datasets due to the better learning capability in the nonlinear feature space and generalization ability.
- The performance of TDGRU is superior to overcoming the gradient exploding/vanishing issues and provides faster convergence by exploiting the dropout technique.
- To compare performance on the proposed TDGRU, baseline regressors ARIMA, LR, and deep learning algorithms, such as LSTM, are also implemented on the datasets for COVID-19 prediction.
- The efficiency, accuracy, and robustness of TDGRU are endorsed in terms of MAE, RMSE, R2 and MAPE performance metrics.
2. Materials and Methods
2.1. Data Description and Pre-Processing
2.2. Gated Recurrent Unit
2.3. Long Short Term Memory
2.4. Modeling through ARIMA Model
2.5. Linear Regression
2.6. Evaluation Metrics
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Papastefanopoulos, V.; Linardatos, P.; Kotsiantis, S. COVID-19: A comparison of time series methods to forecast percentage of active cases per population. Appl. Sci. 2020, 10, 3880. [Google Scholar] [CrossRef]
- Killeen, B.D.; Wu, J.Y.; Shah, K.; Zapaishchykova, A.; Nikutta, P.; Tamhane, A.; Chakraborty, S.; Wei, J.; Gao, T.; Thies, M.; et al. A county-level dataset for informing the United States’ response to COVID-19. arXiv 2020, arXiv:2004.00756. [Google Scholar]
- Dey, S.K.; Rahman, M.M.; Siddiqi, U.R.; Howlader, A. Analyzing the epidemiological outbreak of COVID-19: A visual exploratory data analysis approach. J. Med. Virol. 2020, 92, 632–638. [Google Scholar] [CrossRef]
- Arora, P.; Kumar, H.; Panigrahi, B.K. Prediction and analysis of COVID-19 positive cases using deep learning models: A descriptive case study of India. Chaos Solitons Fractals 2020, 139, 110017. [Google Scholar] [CrossRef] [PubMed]
- Al-smadi, A.M.; Abugabah, A.; Smadi, A.A. Evaluation of E-learning Experience in the Light of the Covid-19 in Higher Education. Procedia Comput. Sci. 2022, 201, 383–389. [Google Scholar] [CrossRef]
- Smadi, A.A.; Abugabah, A.; Al-smadi, A.M.; Almotairi, S. SEL-COVIDNET: An intelligent application for the diagnosis of COVID-19 from chest X-rays and CT-scans. Inform. Med. Unlocked 2022, 32, 101059. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, A.; Abugabah, A.; Smadi, A.A.L.; Alkhawaldeh, R. An Intelligent Information System and Application for the Diagnosis and Analysis of COVID-19. In Proceedings of the Intelligent Computing & Optimization, Hua Hin, Thailand, 30–31 December 2021; Springer International Publishing: Cham, Switzerland, 2022; pp. 391–396. [Google Scholar]
- Tashtoush, Y.; Alrababah, B.; Darwish, O.; Maabreh, M.; Alsaedi, N. A Deep Learning Framework for Detection of COVID-19 Fake News on Social Media Platforms. Data 2022, 7, 65. [Google Scholar] [CrossRef]
- Karajeh, O.; Darweesh, D.; Darwish, O.; Abu-El-Rub, N.; Alsinglawi, B.; Alsaedi, N. A classifier to detect informational vs. non-informational heart attack tweets. Future Internet 2021, 13, 19. [Google Scholar] [CrossRef]
- Alsinglawi, B.; Alnajjar, F.; Mubin, O.; Novoa, M.; Karajeh, O.; Darwish, O. Benchmarking predictive models in electronic health records: Sepsis length of stay prediction. In Proceedings of the International Conference on Advanced Information Networking and Applications, Caserta, Italy, 15–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 258–267. [Google Scholar]
- Cooper, I.; Mondal, A.; Antonopoulos, C.G. A SIR model assumption for the spread of COVID-19 in different communities. Chaos Solitons Fractals 2020, 139, 110057. [Google Scholar] [CrossRef]
- Carcione, J.M.; Santos, J.E.; Bagaini, C.; Ba, J. A simulation of a COVID-19 epidemic based on a deterministic SEIR model. Front. Public Health 2020, 8, 230. [Google Scholar] [CrossRef]
- Jeppsson, U.; Pons, M.N. The COST benchmark simulation model—current state and future perspective. Control Eng. Pract. 2004, 12, 299–304. [Google Scholar] [CrossRef]
- Khan, F.; Saeed, A.; Ali, S. Modelling and forecasting of new cases, deaths and recover cases of COVID-19 by using Vector Autoregressive model in Pakistan. Chaos Solitons Fractals 2020, 140, 110189. [Google Scholar] [CrossRef] [PubMed]
- Zeroual, A.; Harrou, F.; Dairi, A.; Sun, Y. Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos Solitons Fractals 2020, 140, 110121. [Google Scholar] [CrossRef] [PubMed]
- Gordeev, D.; Singer, P.; Michailidis, M.; Müller, M.; Ambati, S. Backtesting the predictability of COVID-19. arXiv 2020, arXiv:2007.11411. [Google Scholar]
- Takele, R. Stochastic modelling for predicting COVID-19 prevalence in East Africa Countries. Infect. Dis. Model. 2020, 5, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M. Using the kalman filter with Arima for the COVID-19 pandemic dataset of Pakistan. Data Brief 2020, 31, 105854. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Ji, Y.; Martinez, L.; Zia, U.H.; Javaid, A.; Lu, W.; Wang, J. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect. Drug Resist. 2019, 12, 2311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Tao, H. Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. Int. J. Infect. Dis. 2018, 74, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Earnest, A.; Chen, M.I.; Ng, D.; Sin, L.Y. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore. BMC Health Serv. Res. 2005, 5, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.K.; Kim, N.Y.; Kim, S.S.; Chu, C.; Kee, M.K. Forecasting the number of human immunodeficiency virus infections in the Korean population using the autoregressive integrated moving average model. Osong Public Health Res. Perspect. 2013, 4, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, X.; Jiang, B.; Yang, W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect. Dis. 2011, 11, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anne, W.R.; Jeeva, S.C. ARIMA modelling of predicting COVID-19 infections. medRxiv 2020. [Google Scholar] [CrossRef]
- Singh, R.; Rani, M.; Bhagavathula, A.; Sah, R.; Rodriguez-Morales, A.; Kalita, H.; Kumar, P. The Prediction of COVID-19 Pandemic for top-15 Affected Countries using advance ARIMA model. JMIR Public Health Surveill. 2020, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, A.H.; Saba, A.I.; Abd Elaziz, M.; Lu, S.; Shanmugan, S.; Muthuramalingam, T.; Kumar, R.; Mosleh, A.O.; Essa, F.; Shehabeldeen, T.A. Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. Process Saf. Environ. Prot. 2021, 149, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Chen, Y.H.; Ma, Y.; Kuo, P.H. Multiple-input deep convolutional neural network model for COVID-19 forecasting in china. medRxiv 2020. [Google Scholar] [CrossRef]
- Antink, C.H.; Ferreira, J.C.M.; Paul, M.; Lyra, S.; Heimann, K.; Karthik, S.; Joseph, J.; Jayaraman, K.; Orlikowsky, T.; Sivaprakasam, M.; et al. Fast body part segmentation and tracking of neonatal video data using deep learning. Med. Biol. Eng. Comput. 2020, 58, 3049–3061. [Google Scholar] [CrossRef]
- Zadeh Shirazi, A.; Fornaciari, E.; Bagherian, N.S.; Ebert, L.M.; Koszyca, B.; Gomez, G.A. DeepSurvNet: Deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Med. Biol. Eng. Comput. 2020, 58, 1031–1045. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Xu, T.; Hu, H.; Wang, P.; Bai, Y. Prediction and analysis of corona virus disease 2019. PLoS ONE 2020, 15, e0239960. [Google Scholar] [CrossRef] [PubMed]
- Syeda, H.B.; Syed, M.; Sexton, K.W.; Syed, S.; Begum, S.; Syed, F.; Prior, F.; Yu, F., Jr. Role of machine learning techniques to tackle the COVID-19 crisis: Systematic review. JMIR Med. Inform. 2021, 9, e23811. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short term memory networks for anomaly detection in time series. In Proceedings of the 23rd European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2015, Bruges, Belgium, 22–24 April 2015; Volume 89, pp. 89–94. [Google Scholar]
- Shuja, J.; Alanazi, E.; Alasmary, W.; Alashaikh, A. COVID-19 open source data sets: A comprehensive survey. Appl. Intell. 2021, 51, 1296–1325. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Shastri, S.; Bhadwal, A.S.; Kour, P.; Kumari, M.; Sharma, A.; Mansotra, V. Implementation of exponential smoothing for forecasting time series data. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2019, 8, 1–8. [Google Scholar]
- Evgeniou, T.; Pontil, M. Support vector machines: Theory and applications. In Advanced Course on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 1999; pp. 249–257. [Google Scholar]
- Girin, L.; Leglaive, S.; Bie, X.; Diard, J.; Hueber, T.; Alameda-Pineda, X. Dynamical variational autoencoders: A comprehensive review. arXiv 2020, arXiv:2008.12595. [Google Scholar]
- Fang, W.; Guo, Y.; Liao, W.; Huang, S.; Yang, N.; Liu, J. A Parallel Gated Recurrent Units (P-GRUs) network for the shifting lateness bottleneck prediction in make-to-order production system. Comput. Ind. Eng. 2020, 140, 106246. [Google Scholar] [CrossRef]
- Ahmad, A.; Garhwal, S.; Ray, S.K.; Kumar, G.; Malebary, S.J.; Barukab, O.M. The number of confirmed cases of COVID-19 by using machine learning: Methods and challenges. Arch. Comput. Methods Eng. 2021, 28, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, Y.; Guo, E.; He, L.; Liu, J.; Yang, B.; Li, F.; Wang, Z.; Li, Y.; Xiao, R.; et al. Dynamics and correlation among viral positivity, seroconversion, and disease severity in COVID-19: A retrospective study. Ann. Intern. Med. 2021, 174, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Alakus, T.B.; Turkoglu, I. Comparison of deep learning approaches to predict COVID-19 infection. Chaos Solitons Fractals 2020, 140, 110120. [Google Scholar] [CrossRef] [PubMed]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaos Solitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Bedi, P.; Dhiman, S.; Gole, P.; Gupta, N.; Jindal, V. Prediction of COVID-19 trend in India and its four worst-affected states using modified SEIRD and LSTM models. SN Comput. Sci. 2021, 2, 1–24. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Liu, J.; Li, Y.; Liu, D.; Tong, J.; Li, Z.; Yu, D.; Fan, Y.; Bi, X.; et al. Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models. PLoS ONE 2020, 15, e0238280. [Google Scholar] [CrossRef]
- Kırbaş, İ.; Sözen, A.; Tuncer, A.D.; Kazancıoğlu, F.Ş. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Chaos Solitons Fractals 2020, 138, 110015. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Solitons Fractals 2020, 140, 110212. [Google Scholar] [CrossRef]
- Ibrahim, M.R.; Haworth, J.; Lipani, A.; Aslam, N.; Cheng, T.; Christie, N. Variational-LSTM autoencoder to forecast the spread of coronavirus across the globe. PLoS ONE 2021, 16, e0246120. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Tanha, J. COVID-19 infection forecasting based on deep learning in Iran. medRxiv 2020. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Mariani, V.C.; dos Santos Coelho, L. Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos Solitons Fractals 2020, 135, 109853. [Google Scholar] [CrossRef]
- Chatterjee, A.; Gerdes, M.W.; Martinez, S.G. Statistical explorations and univariate timeseries analysis on COVID-19 datasets to understand the trend of disease spreading and death. Sensors 2020, 20, 3089. [Google Scholar] [CrossRef] [PubMed]
- Shastri, S.; Singh, K.; Kumar, S.; Kour, P.; Mansotra, V. Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study. Chaos Solitons Fractals 2020, 140, 110227. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 11–13 November 2016; pp. 324–328. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. In Advances in Neural Information Processing Systems 9; MIT Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Graves, A.; Jaitly, N.; Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December 2013; pp. 273–278. [Google Scholar] [CrossRef]
- Ediger, V.Ş.; Akar, S. ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007, 35, 1701–1708. [Google Scholar] [CrossRef]
Models | Parameters | Values |
---|---|---|
TDGRU/LSTM | Layers | 2 |
No. of neurons | {64, 128} | |
Learning rate | 0.001 | |
Dropout | 0.3 | |
Optimizer | RMSprop | |
Batch size | 16 | |
Epochs | 250 | |
ARIMA | Timeday | 3 |
(p, d, q) | (2, 1, 2) |
Methods | Data | MAE | RMSE | R | MAPE |
---|---|---|---|---|---|
TDGRU | Daily infected | 0.47 | 0.52 | 0.92 | 0.933 |
Total infected | 21.15 | 24.51 | 0.92 | 0.176 | |
Daily death | 0.011 | 0.012 | 0.99 | 0.33 | |
Total death | 0.33 | 0.41 | 0.99 | 0.053 | |
Daily recovered | 0.26 | 0.61 | 0.99 | 0.271 | |
Total recovered | 8.24 | 9.72 | 0.99 | 0.244 | |
LSTM | Daily infected | 1.63 | 1.98 | 0.92 | 13.76 |
Total infected | 98.83 | 159.7 | 0.91 | 5.10 | |
Daily death | 0.01 | 0.01 | 0.92 | 11.70 | |
Total death | 3.57 | 4.41 | 0.95 | 2.47 | |
Daily recovered | 0.29 | 0.38 | 0.98 | 17.00 | |
Total recovered | 14.9 | 19.4 | 0.96 | 4.487 | |
ARIMA | Daily infected | 226.37 | 282.71 | 1.31 | 26.93 |
Total infected | 52,904.7 | 81,764.59 | 13.59 | 51.9 | |
Daily death | 214.69 | 387.63 | 1.22 | 14.45 | |
Total death | 932.06 | 1060.65 | 0.34 | 44.91 | |
Daily recovered | 284.87 | 372.74 | 1.83 | 38.10 | |
Total recovered | 4340.33 | 5527.53 | 1.86 | 31.5 | |
LR | Daily infected | 155.41 | 190.78 | 0.093 | 67.5 |
Total infected | 15,399.0 | 17,907.21 | 0.24 | 59.6 | |
Daily death | 206.86 | 260.86 | 0.024 | 26.5 | |
Total death | 173.49 | 233.52 | 0.021 | 21.7 | |
Daily recovered | 209.34 | 260.78 | 0.022 | 18.9 | |
Total recovered | 176.15 | 239.77 | 0.173 | 24.8 |
Methods | Data | MAE | RMSE | R | MAPE |
---|---|---|---|---|---|
TDGRU-II | Daily infected | 5.28 | 22.52 | 0.99 | 2.32 |
Total infected | 200.21 | 254.03 | 0.97 | 0.081 | |
Daily death | 0.033 | 0.068 | 0.99 | 0.079 | |
Total death | 4.26 | 5.35 | 0.99 | 0.068 |
Model Prediction | Data | MAE | RMSE | R | MAPE |
---|---|---|---|---|---|
1-day-TDGRU | Daily infected | 0.47 | 0.52 | 0.92 | 0.933 |
Total infected | 21.15 | 24.51 | 0.92 | 0.176 | |
Daily death | 0.011 | 0.012 | 0.99 | 0.33 | |
Total death | 0.33 | 0.41 | 0.99 | 0.053 | |
Daily recovered | 0.13 | 0.17 | 0.99 | 0.271 | |
Total recovered | 8.24 | 9.72 | 0.99 | 0.244 | |
3-days-TDGRU | Daily infected | 34.51 | 55.30 | 0.88 | 9.881 |
Total infected | 986.74 | 1050.5 | 0.97 | 8.52 | |
Daily death | 2.17 | 2.66 | 0.93 | 29.14 | |
Total death | 25.65 | 30.49 | 0.96 | 3.642 | |
Daily recovered | 17.32 | 25.79 | 0.85 | 11.06 | |
Total recovered | 773.9 | 942.1 | 0.91 | 8.47 | |
5-days-TDGRU | Daily infected | 52.83 | 81.67 | 0.75 | 17.43 |
Total infected | 1873.8 | 2324.3 | 0.77 | 5.16 | |
Daily death | 2.01 | 2.48 | 0.96 | 33.45 | |
Total death | 30.21 | 36.15 | 0.94 | 2.03 | |
Daily recovered | 15.39 | 21.29 | 0.86 | 16.93 | |
Total recovered | 927.7 | 1093.5 | 0.85 | 6.22 |
Paired Samples Statistics | ||||||||
Mean | N | Std. Deviation | Sdt. Error Mean | |||||
Pair 1 TDGRU_MAE LSTM_MAE | 3.3516 9.8573 | 20 20 | 0. 69782 1.99366 | 0.15604 0.44580 | ||||
Paired Samples Correlations | ||||||||
N | Correlation | Sig. | ||||||
Pair 1 TDGRU_MAE & LSTM_MAE | 20 | 0.903 | 0.000 | |||||
Paired Samples Test | ||||||||
Paired Differences | ||||||||
Mean | Std. Deviation | Sdt. Error Mean | 95% Confidence Interval of the Difference | t | df | sig. (2-tailod) | ||
Pair 1 TDGRU_MAE- LSTM_MAE | −6.50570 | 1.39635 | 0.31223 | Lower | Upper | −20.836 | 19 | 0.000 |
−7.15921 | −5.85219 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abugabah, A.; Shahid, F. Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19. Mathematics 2023, 11, 1051. https://doi.org/10.3390/math11041051
Abugabah A, Shahid F. Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19. Mathematics. 2023; 11(4):1051. https://doi.org/10.3390/math11041051
Chicago/Turabian StyleAbugabah, Ahed, and Farah Shahid. 2023. "Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19" Mathematics 11, no. 4: 1051. https://doi.org/10.3390/math11041051
APA StyleAbugabah, A., & Shahid, F. (2023). Intelligent Health Care and Diseases Management System: Multi-Day-Ahead Predictions of COVID-19. Mathematics, 11(4), 1051. https://doi.org/10.3390/math11041051