Fast Single-Parameter Energy Function Thresholding for Image Segmentation Based on Region Information
Abstract
:1. Introduction
- (1)
- This paper pre-blocks the input image by SLIC to acquire the super-pixels of the image, which effectively reduces the number of pixels to be calculated and reduces the number of mapping times of an image to IT2FS and improves the efficiency of the algorithm;
- (2)
- The idea of an extended neighborhood is introduced to construct the energy function improved by the super-pixel, which can expand the neighborhood range of super-pixels to the whole homogeneous region and extract the irregular region spatial features of super-pixels without considering the parameter selection of the traditional neighborhood;
- (3)
- Another innovation of this paper lies in the adaptive selection of penalty parameters by using class-uncertainty theory, and the reduction in the subjective impact of manual selection parameters on segmentation performance to improve the adaptability of the algorithm.
2. Basic Theories
2.1. Interval Type-2 Fuzzy Set
2.2. Energy Function Based on Weak Continuity Constraints
3. The Proposed FSEFTISRI Algorithm
3.1. Mapping Image to IT2FS
3.2. Single-Parameter Energy Function Combining with Region Information
3.3. Adaptive Selection of Uncertain Parameters
3.4. The Steps of the Proposed FSEFTISRI Algorithm
Algorithm 1. The proposed FSEFTISRI algorithm. |
FSEFTISRI: A fast single-parameter energy function thresholding for image segmentation based on region information |
Input: The gray level image . Output: Optimal threshold , image segmented by optimal threshold. |
Step 1: Generate super-pixels by SLIC. |
Step 2: Calculate the gray mean of each super-pixel and sort it from small to large. |
Step 3: For each super-pixel value :
|
Step 4: Find for which is minimum is the optimal threshold . |
Step 5: Segment the image by the optimal threshold . |
3.5. Computational Complexity
4. Experimental Results and Analysis
4.1. Comparison Algorithm and Quantitative Evaluation Index
4.2. Experimental Results and Analysis
4.2.1. Analysis of Experimental Results of NDT Images
4.2.2. Analysis of Experimental Results of BSDS
4.2.3. Overall Analysis of Algorithm Performance Index
4.2.4. Comparative Experiment of the Operation Efficiency
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BSDS | Berkeley Segmentation Datasets and Benchmarks |
CPU | central processing unit |
EITMIS | An efficient iterative thresholding method for image segmentation |
FSEFTISRI | fast single-parameter energy function thresholding for image segmentation based on region information fusion |
FSIM | feature similarity |
IT2FS | interval type-2 fuzzy set |
IT2FSWCC | interval type-2 fuzzy set and theory of weak continuity constraints |
ME | mis-classification error |
MRCUT | multi-scale region and class uncertainty theory |
NDT | Non-destructive testing |
NSWCC | neutrosophic set and weak continuity constraints |
PSNR | peak signal-to-noise ratio |
SLIC | simple linear iterative clustering |
SSIM | structural similarity index measure |
References
- Li, A.; Li, Y.; Wang, T.; Niu, W. Medical image segmentation based on maximum entropy multi-threshold segmentation optimized by improved cuckoo search algorithm. In Proceedings of the 2015 8th International Congress on Image and Signal Processing (CISP), Shenyang, China, 14–16 October 2015; IEEE: Shenyang, China; pp. 470–475. [Google Scholar] [CrossRef]
- Sehgal, S.; Kumar, S.; Bindu, M.H. Remotely sensed image thresholding using OTSU & differential evolution approach. In Proceedings of the International Conference on Cloud Computing, Noida, India, 12–13 January 2017; IEEE: Noida, India; pp. 138–142. [Google Scholar] [CrossRef]
- Medhi, J.P.; Nirmala, S.R.; Choudhury, S.; Dandapat, S. Improved detection and analysis of Macular Edema using modified guided image filtering with modified level set spatial fuzzy clustering on Optical Coherence Tomography images. Biomed. Signal Process. Control 2023, 79, 104149. [Google Scholar] [CrossRef]
- Bigand, A.; Colot, O. Membership function construction for interval-valued fuzzy sets with application to Gaussian noise reduction. Fuzzy Sets Syst. 2016, 286, 66–85. [Google Scholar] [CrossRef]
- Dhar, S.; Kundu, M.K. A novel method for image thresholding using interval type-2 fuzzy set and Bat algorithm. Appl. Soft Comput. 2018, 63, 154–166. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Zhou, J.; Li, T.; Chen, C.P. Interval type-2 outlier-robust picture fuzzy clustering and its application in medical image segmentation. Appl. Soft Comput. 2022, 122, 108891. [Google Scholar] [CrossRef]
- Saha, P.; Udupa, J. Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 689–706. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, G.; Huang, S.; Wang, C.; Wu, X.; Feng, Y. A robust optimum thresholding method based on local intensity mapping and class uncertainty theory. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macao, China, 18–20 July 2017; IEEE: Macao, China; pp. 317–322. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, Y.; Liang, G.; Wu, X.; Zhu, J.; Xiang, H. An Image Segmentation Method by Multi-scale Local Thresholding Based on Class Uncertainty Theory. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; IEEE: Dali, China; pp. 2938–2944. [Google Scholar] [CrossRef]
- Liang, G.; Su, Y.; Chen, F.; Long, H.; Song, Z.; Gan, Y. Wind Power Curve Data Cleaning by Image Thresholding Based on Class Uncertainty and Shape Dissimilarity. IEEE Trans. Sustain. Energy 2020, 12, 1383–1393. [Google Scholar] [CrossRef]
- Dhar, S.; Kundu, M.K. Multi-class Image Segmentation Using Theory of Weak String Energy and Fuzzy Set. In Intelligence Enabled Research in Advances in Intelligent System & Computing Book (AISC), 1st ed.; Springer: Singapore, 2020; Chapter 5; pp. 30–40. [Google Scholar] [CrossRef]
- Dhar, S.; Kundu, M.K. Interval Type-2 Fuzzy Set and Theory of Weak Continuity Constraints for Accurate Multiclass Image Segmentation. IEEE Trans. Fuzzy Syst. 2019, 28, 2151–2163. [Google Scholar] [CrossRef]
- Dhar, S.; Kundu, M.K. Accurate multi-class image segmentation using weak continuity constraints and neutrosophic set. Appl. Soft Comput. 2021, 112, 107759. [Google Scholar] [CrossRef]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation. IEEE Trans. Fuzzy Syst. 2018, 27, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Di, S.; Liao, M.; Zhao, Y.; Li, Y.; Zeng, Y. Image superpixel segmentation based on hierarchical multi-level LI-SLIC. Opt. Laser Technol. 2020, 135, 106703. [Google Scholar] [CrossRef]
- He, F.; Mahmud, M.P.; Kouzani, A.Z.; Anwar, A.; Jiang, F.; Ling, S.H. An Improved SLIC Algorithm for Segmentation of Microscopic Cell Images. Biomed. Signal Process. Control 2021, 73, 103464. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Fan, L.; Wang, N. Fast and accurate superpixel segmentation algorithm with a guidance image. Image Vis. Comput. 2022, 129, 104596. [Google Scholar] [CrossRef]
- Mendel, J.M.; John, R.I.; Liu, F. Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans. Fuzzy Syst. 2006, 14, 808–821. [Google Scholar] [CrossRef] [Green Version]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, H.; Wei, X.; Wang, X.-P. An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 2017, 350, 657–667. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Liu, H.; Zhang, Q. Image bilevel thresholding based on stable transition region set. Digit. Signal Process. 2012, 23, 126–141. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Lei, B.; Fan, J. Image thresholding segmentation method based on minimum square rough entropy. Appl. Soft Comput. J. 2019, 84, 105687. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Vishwakarma, A.; Lee, H.N. An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy. IET Signal Process. 2022, 16, 630–649. [Google Scholar] [CrossRef]
- Sezgin, M.; Sankur, B.L. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146–168. [Google Scholar] [CrossRef]
Image | Evaluation Indexes | Algorithms | |||||
---|---|---|---|---|---|---|---|
Otus | MRCUT | EITMIS | NSWCC | IT2FSWCC | FSEFTISRI | ||
#image1 | ME | 0.0665 | 0.4394 | 0.0181 | 0.0665 | 0.0392 | 0.0136 |
FSIM | 0.7430 | 0.4252 | 0.9587 | 0.7430 | 0.8365 | 0.9687 | |
PSNR | 11.8046 | 3.5722 | 17.7079 | 11.8046 | 14.1568 | 19.3667 | |
SSIM | 0.5654 | 0.0721 | 0.8817 | 0.5654 | 0.7463 | 0.8986 | |
#image2 | ME | 0.5255 | 0.3381 | 0.0044 | 0.4943 | 0.0032 | 0.0008 |
FSIM | 0.2391 | 0.3021 | ---- | 0.2397 | 0.9686 | 0.9933 | |
PSNR | 2.7941 | 4.7094 | 23.5946 | 3.0602 | 24.9415 | 30.8839 | |
SSIM | 0.0024 | 0.0041 | 0.9508 | 0.0027 | 0.9542 | 0.9848 | |
#image3 | ME | 0.5448 | 0.3681 | 0.0238 | 0.5132 | 0.0075 | 0.0015 |
FSIM | 0.3310 | 0.3358 | ---- | 0.3257 | 0.9753 | 0.9949 | |
PSNR | 2.6378 | 4.3407 | 16.2351 | 2.8975 | 21.232 | 28.2217 | |
SSIM | 0.0087 | 0.0173 | 0.9145 | 0.0088 | 0.9573 | 0.9891 | |
#image6 | ME | 0.4466 | 0.4780 | 0.0652 | 0.4281 | 0.0438 | 0.0196 |
FSIM | 0.5899 | 0.5831 | ---- | 0.5976 | 0.8428 | 0.9139 | |
PSNR | 3.5011 | 3.2054 | 11.8589 | 3.6844 | 13.5845 | 17.0671 | |
SSIM | 0.1208 | 0.0943 | 0.731 | 0.127 | 0.7389 | 0.8162 | |
#image13 | ME | 0.0218 | 0.4397 | 0.0588 | 0.0195 | 0.0218 | 0.0065 |
FSIM | 0.7311 | 0.2354 | ---- | 0.744 | 0.9466 | 0.9818 | |
PSNR | 16.6133 | 3.5684 | 12.3031 | 17.0987 | 16.6133 | 21.8552 | |
SSIM | 0.5573 | 0.0181 | 0.8555 | 0.5926 | 0.8771 | 0.9363 | |
#image22 | ME | 0.0326 | 0.0678 | 0.8378 | 0.0326 | 0.0751 | 0.0256 |
FSIM | 0.9571 | 0.7785 | ---- | 0.9571 | 0.9136 | 0.9750 | |
PSNR | 17.5937 | 12.5955 | 0.8353 | 17.5937 | 1.8914 | 20.8514 | |
SSIM | 0.8511 | 0.6343 | 0.11 | 0.8511 | 0.7897 | 0.9053 |
Image | Evaluation Indexes | Algorithms | |||||
---|---|---|---|---|---|---|---|
Otus | MRCUT | EITMIS | NSWCC | IT2FSWCC | FSEFTISRI | ||
#3063 | ME | 0.2923 | 0.2777 | 0.2115 | 0.2851 | 0.0194 | 0.0109 |
FSIM | 0.9241 | 0.9413 | 0.9638 | 0.9317 | 0.9931 | 0.9973 | |
PSNR | 53.4723 | 53.6944 | 54.8771 | 58.5813 | 65.2519 | 67.7694 | |
SSIM | 0.5685 | 0.6106 | 0.7404 | 0.5850 | 0.9230 | 0.9568 | |
#198087 | ME | 0.0598 | 0.2092 | 0.0549 | 0.0997 | 0.0446 | 0.0441 |
FSIM | 0.9540 | 0.9330 | 0.9749 | 0.9494 | 0.9725 | 0.9889 | |
PSNR | 60.3611 | 54.9245 | 60.7380 | 59.1137 | 61.6376 | 61.6897 | |
SSIM | 0.7905 | 0.6110 | 0.8442 | 0.7513 | 0.8424 | 0.8704 | |
#227046 | ME | 0.0639 | 0.3227 | 0.0521 | 0.0623 | 0.0670 | 0.0467 |
FSIM | 0.9152 | 0.8426 | 0.9824 | 0.9110 | 0.9403 | 0.9748 | |
PSNR | 60.0763 | 53.0431 | 60.9653 | 60.1856 | 59.8675 | 61.4355 | |
SSIM | 0.7620 | 0.3586 | 0.9162 | 0.7530 | 0.8024 | 0.8899 | |
#253036 | ME | 0.0227 | 0.1820 | 0.0276 | 0.0210 | 0.0159 | 0.0060 |
FSIM | 0.9930 | 0.9731 | 0.9888 | 0.9938 | 0.9960 | 0.9986 | |
PSNR | 64.5655 | 55.5306 | 63.7161 | 64.9065 | 66.1239 | 70.3653 | |
SSIM | 0.9322 | 0.7252 | 0.9377 | 0.9338 | 0.9396 | 0.9699 | |
#344010 | ME | 0.0604 | 0.0538 | 0.0179 | 0.0636 | 0.0998 | 0.0170 |
FSIM | 0.8948 | 0.9046 | 0.9900 | 0.8930 | 0.8716 | 0.9947 | |
PSNR | 60.3199 | 60.8202 | 65.6098 | 60.0988 | 58.1393 | 65.8244 | |
SSIM | 0.6205 | 0.6865 | 0.9003 | 0.6160 | 0.5691 | 0.9240 | |
#351093 | ME | 0.0565 | 0.2712 | 0.0303 | 0.0624 | 0.0492 | 0.0264 |
FSIM | 0.8918 | 0.8379 | 0.9434 | 0.8818 | 0.8996 | 0.9932 | |
PSNR | 60.6067 | 53.7984 | 63.3158 | 60.1788 | 61.2109 | 63.9203 | |
SSIM | 0.6294 | 0.38831 | 0.7986 | 0.6084 | 0.6525 | 0.9154 |
Index | Otus | MRCUT | EITMIS | NSWCC | IT2FSWCC | FSEFTISRI |
---|---|---|---|---|---|---|
ME | ||||||
FSIM | ||||||
PSNR | ||||||
SSIM |
Index | Otus | MRCUT | EITMIS | NSWCC | IT2FSWCC | FSEFTISRI |
---|---|---|---|---|---|---|
ME | ||||||
FSIM | ||||||
PSNR | ||||||
SSIM |
Algorithms | Otus | MRCUT | EITMIS | NSWCC | IT2FSWCC | FSEFTISRI |
---|---|---|---|---|---|---|
Variance of running time | 0.0208 | 0.2843 | 0.3365 | 25.6121 | 3017.7348 | 0.0011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, R.; Feng, D.; Zhao, F.; Fan, J.; Yu, H. Fast Single-Parameter Energy Function Thresholding for Image Segmentation Based on Region Information. Mathematics 2023, 11, 1059. https://doi.org/10.3390/math11041059
Lan R, Feng D, Zhao F, Fan J, Yu H. Fast Single-Parameter Energy Function Thresholding for Image Segmentation Based on Region Information. Mathematics. 2023; 11(4):1059. https://doi.org/10.3390/math11041059
Chicago/Turabian StyleLan, Rong, Danlin Feng, Feng Zhao, Jiulun Fan, and Haiyan Yu. 2023. "Fast Single-Parameter Energy Function Thresholding for Image Segmentation Based on Region Information" Mathematics 11, no. 4: 1059. https://doi.org/10.3390/math11041059
APA StyleLan, R., Feng, D., Zhao, F., Fan, J., & Yu, H. (2023). Fast Single-Parameter Energy Function Thresholding for Image Segmentation Based on Region Information. Mathematics, 11(4), 1059. https://doi.org/10.3390/math11041059