Non-Stationary Helical Flows for Incompressible Couple Stress Fluid
Abstract
:1. Introduction: System of Equations (Incompressible Couple Stress Fluid)
2. The Solving Procedure for Time-Dependent Solution: α = Const
3. Final Presentation of the Solution (the Helical Flows for Incompressible Couple Stress Fluid)
4. Discussion
- (1)
- According strictly to form (3) of helical flow, solutions of a type (13) exist if only we choose B0 = 0 or if we choose simplifying condition B = const in (9) from the very beginning for the process of constructing the exact solutions; in this case, we had from (3)
- (2)
- But nevertheless, it is worth noting that form (3) of helical flow has already been taken into account in a derived system of Equation (10) (stemming from momentum Equation (2)), from which we obtain as a result solutions (14) in the most general form. So, using continuity Equation (1), we conclude that solutions of a type (14) can exist if restriction to the form of solutions is valid as below:
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stokes, V.K. Couple Stresses in Fluids. Phys. Fluids 1966, 9, 1709. [Google Scholar] [CrossRef]
- Joseph, S.P. Exact Solutions of Couple Stress Fluid Flows. In Numerical Heat Transfer and Fluid Flow; Srinivasacharya, D., Reddy, K., Eds.; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Devakar, M.; Iyengar, T.K.V. Stokes’ problems for an incompressible couple stress fluid. Nonlinear Anal. Model. Control. 2008, 13, 181–190. [Google Scholar] [CrossRef]
- Devakar, M.; Sreenivasu, D.; Shankar, B. Analytical solutions of couple stress fluid flows with slip boundary conditions. Alex. Eng. J. 2014, 53, 723–730. [Google Scholar]
- Ershkov, S.V. Non-stationary helical flows for incompressible 3D Navier-Stokes equations. Appl. Math. Comput. 2016, 274, 611–614. [Google Scholar] [CrossRef]
- Ershkov, S.V.; Giniyatullin, A.R.; Shamin, R.V. On a new type of non-stationary helical flows for incompressible 3D Navier-Stokes equations. J. King Saud Univ.—Sci. 2020, 32, 459–467. [Google Scholar] [CrossRef]
- Beltrami, E. Considerazioni idrodinamiche. Rend. Inst. Lombardo Acad. Sci. Lett. 1889, 22, 122–131. [Google Scholar] [CrossRef]
- Trkal, V. Poznámka k hydrodynamice vazkých tekutin. Čas. Pro Pěstování Mat. Fys. 1919, 48, 302–311. (In Czech) [Google Scholar] [CrossRef]
- Gromeka, I.S. Collected Works; Akademia Nauk SSSR: Moscow, Russia, 1952. (In Russian) [Google Scholar]
- Prosviryakov, E.Y. Exact Solutions to Generalized Plane Beltrami—Trkal and Ballabh Flows. Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.—Mat. Nauk. 2020, 24, 319–330. [Google Scholar] [CrossRef]
- Ershkov, S.V. About existence of stationary points for the Arnold-Beltrami-Childress (ABC) flow. Appl. Math. Comput. 2016, 276, 379–383. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. Sixth Problem of the Millennium: Navier–Stokes Equations, Existence and Smoothness. Russ. Math. Surv. 2003, 58, 251–286. [Google Scholar] [CrossRef]
- Baranovskii, E.S.; Burmasheva, N.V.; Prosviryakov, E.Y. Exact Solutions to the Navier–Stokes Equations with Couple Stresses. Symmetry 2021, 13, 1355. [Google Scholar] [CrossRef]
- Ershkov, S.V. Non-stationary Riccati-type flows for incompressible 3D Navier-Stokes equations. Comput. Math. Appl. 2016, 71, 1392–1404. [Google Scholar] [CrossRef]
- Ershkov, S.V. A procedure for the construction of non-stationary Riccati-type flows for incompressible 3D Navier-Stokes equations. Rend. Circ. Mat. Palermo 2016, 65, 73–85. [Google Scholar] [CrossRef]
- Arnold, V.I. Sur la topologie des ’ecoulements stationnaires des fluids parfaits. CR Acad. Sci. Paris 1965, 261, 17–20. [Google Scholar]
- Dombre, T.; Frisch, U.; Greene, J.M.; Hénon, M.; Mehr, A.; Soward, A.M. Chaotic streamlines in the ABC flows. J. Fluid Mech. 1986, 167, 353–391. [Google Scholar] [CrossRef]
- Trkal, V. A note on the hydrodynamics of viscous fluids (translated by I. Gregora). Czech J. Phys. 1994, 44, 97–106. [Google Scholar] [CrossRef]
- Bogoyavlenskij, O.; Fuchssteiner, B. Exact NSE solutions with crystallo-graphic symmetries and no transfer of energy through the spectrum. J. Geom. Phys. 2005, 54, 324–338. [Google Scholar] [CrossRef]
- Podvigina, O.M.; Pouquet, A. On the nonlinear stability of the 1 = 1 = 1 ABC flow. Phys. D 1994, 75, 471–508. [Google Scholar] [CrossRef]
- Moffat, H.K. Helicity and singular structures in fluid. PNAS 2014, 111, 3663–3670. [Google Scholar] [CrossRef]
- Shi, C.; Huang, Y. Some properties of three-dimensional Beltrami flows. Acta Mech. Sin. 1991, 7, 289–294. [Google Scholar]
- Selçuk, S.C. Numerical Study of Helical Vortices and their Instabilities, Mechanics of the Fluids. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2016; p. 200p. [Google Scholar]
- Golubkin, V.N.; Sizykh, G.B. Some general properties of plane-parallel viscous flows. Fluid Dyn. 1987, 22, 479. [Google Scholar] [CrossRef]
- Pažanin, I. Investigation of micropolar fluid flow in a helical pipe via asymptotic analysis. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 528–540. [Google Scholar] [CrossRef]
- Rubbab, Q.; Mirza, I.A.; Siddique, I.; Irshad, S. Unsteady Helical Flows of a Size-Dependent Couple-Stress Fluid. Adv. Math. Phys. 2017, 2017, 9724381. [Google Scholar] [CrossRef]
- Wang, C.Y. Exact solutions of the Navier-Stokes equations—The generalized Beltrami flows, review and extension. Acta Mech. 1990, 81, 69–74. [Google Scholar] [CrossRef]
- Aristov, S.N.; Polyanin, A.D. New class of Exact solutions and some transformations of the Navier–Stokes equations. Russ. J. Math. Phys. 2010, 17, 1–18. [Google Scholar] [CrossRef]
- Joseph, S.P. Polynomial solutions and other exact solutions of axisymmetric generalized Beltrami flows. Acta Mech. 2018, 229, 2737–2750. [Google Scholar] [CrossRef]
- Temam, R. Navier-Stokes Equations; North-Holland: Amsterdam, The Netherlands, 1977; p. 500. [Google Scholar]
- Ershkov, S.V.; Christianto, V.; Shamin, R.V.; Giniyatullin, A.R. About analytical ansatz to the solving procedure for Kelvin-Kirchhoff equations. Eur. J. Mech. B/Fluids 2020, 79C, 87–91. [Google Scholar] [CrossRef]
- Polyanin, A.D. Exact solutions to the Navier-Stokes equations with generalized separation of variables. Dokl. Phys. 2001, 46, 726–731. [Google Scholar] [CrossRef]
- Polyanin, A.D.; Zaitsev, V.F. CRC Handbook of Nonlinear Partial Differential Equations; CRC Press: Boca Raton, FL, USA, 2004; p. 840. [Google Scholar]
- Polyanin, A.D.; Zhurov, A.I. Methods of Separation of Variables and Exact Solutions of Nonlinear Equations of Mathematical Physics; Institute for Problems of Mechanics of RAS: Moscow, Russia, 2020; p. 384. [Google Scholar]
- Aristov, S.N.; Knyazev, D.V.; Polyanin, A.D. Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables. Theor. Found. Chem. Eng. 2009, 43, 642–662. [Google Scholar] [CrossRef]
- Pukhnachev, V.V. Symmetries in the Navier-Stokes equations. Uspekhi Mekhaniki 2006, 6, 6–76. (In Russian) [Google Scholar]
- Andreev, V.K.; Kaptsov, O.V.; Pukhnachev, V.V.; Rodionov, A.A. Applications of Group-Theoretical Methods in Hydrodynamics; Springer Science + Business Media B.V.: Berlin, Germany; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Liu, Y.; Peng, Y. Study on the Collapse Process of Cavitation Bubbles Including Heat Transfer by Lattice Boltzmann Method. J. Mar. Sci. Eng. 2021, 9, 219. [Google Scholar] [CrossRef]
- Sedov, L.I. Mechanics of Continuous Media; World Scientific: Singapore, 1997; ISBN 978-981-279-711-7. [Google Scholar]
- Joseph, D.D. Stability of Fluid Motions; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976. [Google Scholar]
- Meleshko, S.V.; Pukhnachev, V.V. On a class of partially invariant solutions of the Navier-Stokes equations. J. Appl Mech Tech Phys. 1999, 40, 208–216. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Brisitskii, R.V. Theoretical Analysis of Boundary Value Problems for Generalized Boussinesq Model of Mass Transfer with Variable Coefficients. Symmetry 2022, 14, 2580. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Brizitskii, R.V. Solvability Analysis of a Mixed Boundary Value Problem for Stationary Magnetohydrodynamic Equations of a Viscous Incompressible Fluid. Symmetry 2021, 13, 2088. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Brizitskii, R.V. Solvability of the boundary value problem for stationary magnetohydrodynamic equations under mixed boundary conditions for the magnetic field. Appl. Math. Lett. 2014, 32, 13–18. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Levin, V.A.; Tereshko, D.A. The optimization method in design problems of spherical layered thermal shells. Dokl. Phys. 2017, 62, 465–469. [Google Scholar] [CrossRef]
- Alekseev, G.V.; Pukhnachev, V.V. The axially symmetric flow-through problem for the Navier-Stokes equations in variables “vorticity-stream function”. Dokl. Phys. 2012, 57, 301–306. [Google Scholar] [CrossRef]
- Pukhnachev, V.V. Branching of rotationally symmetric solutions describing flows of a viscous liquid with a free surface. J. Appl. Mech. Tech. Phys. 1973, 14, 253–258. [Google Scholar] [CrossRef]
- Takahashi, K. Three-dimensional unsteady axisymmetric viscous Beltrami vortex solutions to the Navier–Stokes equations. J. Multidiscip. Sci. J. 2023, 6, 460–476. [Google Scholar] [CrossRef]
- Barber, T.A.; Majdalani, J. On the Beltramian motion of the bidirectional vortex in a conical cyclone. J. Fluid Mech. 2017, 828, 708–732. [Google Scholar] [CrossRef]
- Maicke, B.A.; Cecil, O.M.; Majdalani, J. On the compressible bidirectional vortex in a cyclonically driven Trkalian flow field. J. Fluid Mech. 2017, 823, 755–786. [Google Scholar] [CrossRef]
- Williams, L.L.; Majdalani, J. Exact Beltramian solutions for hemispherically bounded cyclonic flowfields. Phys. Fluids 2021, 33, 093601. [Google Scholar] [CrossRef]
- Takahashi, K. Three-dimensional unsteady axisymmetric vortex solutions to the Bellamy-Knights equation and the distribution of boundary conditions. AIP Adv. 2022, 12, 085324. [Google Scholar] [CrossRef]
- Dierkes, D.; Cheviakov, A.; Oberlack, M. New similarity reductions and exact solutions for helically symmetric viscous flows. Phys. Fluids 2020, 32, 053604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershkov, S.V.; Prosviryakov, E.Y.; Artemov, M.A.; Leshchenko, D.D. Non-Stationary Helical Flows for Incompressible Couple Stress Fluid. Mathematics 2023, 11, 4999. https://doi.org/10.3390/math11244999
Ershkov SV, Prosviryakov EY, Artemov MA, Leshchenko DD. Non-Stationary Helical Flows for Incompressible Couple Stress Fluid. Mathematics. 2023; 11(24):4999. https://doi.org/10.3390/math11244999
Chicago/Turabian StyleErshkov, Sergey V., Evgeniy Yu. Prosviryakov, Mikhail A. Artemov, and Dmytro D. Leshchenko. 2023. "Non-Stationary Helical Flows for Incompressible Couple Stress Fluid" Mathematics 11, no. 24: 4999. https://doi.org/10.3390/math11244999