Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Formulation of the Problem
- v is the field of fluid velocity within the volume Vf of the fluid filling the void within representative unit cell (notion proposed in [49]),
- p is the fluid pressure,
- g is the gravitational body force per unit mass,
- is the fluid mass density,
- μ is the fluid dynamic viscosity.
- is the pressure of the fluid filling the void within representative unit cell;
- F is the microscopic shear factor.
2.2. Problems Involving p-Laplacian
3. Results
3.1. Solutions via Surjectivity Approaches
3.1.1. Solving the Problem
- 10 f (x, − s) = − f (x, s) ∀s from R, ∀x from Ω,
- 20 |f (x, s)| ≤ c1 |s|q−1 + β(x) ∀s from R, ∀x from Ω\A, μ(A) = 0,
- 10 f (x, − s) = − f (x, s) ∀x from Ω, ∀s from R,
- 20 |f (x, s)| ≤ c1 |s|p−1 + β(x) ∀s from R, ∀x from Ω\A, μ(A) = 0,
3.1.2. Applications for Results of the Fredholm Alternative Type
3.1.3. Applications for Results via Surjectivity at Different Homogeneity Degrees
3.2. Other Characterization Types
3.2.1. Characterization of Weak Solutions Starting from Ekeland Variational Principle
3.2.2. Solutions Involving Critical Points for Nondifferentiable Functionals
3.3. Weak Solutions Using a Perturbed Variational Principle
3.4. A Theorem Based on a Result of Moutain Pass Type
- (f1) f (x, s) = o(|s|), s → 0, uniformly for x ∈ ;
- (f2) There exist constants μ > p and r > 0, e.g., for |s| ≥ r,
- 0 < μF(x, s) ≤ sf (x, s).
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Meghea, I.; Ştefan, D.S.; Ioniţă, F.; Lesnic, M.; Manea-Saghin, A.-M. An integrative approach on hazardous effects caused by pharmaceutical contaminants on environmental factors, in process. Heliyon, 2024; in process. [Google Scholar]
- Meghea, I.; Lesnic, M.; Manea-Saghin, A.-M. Innovative technological solutions for removal of pharmaceutical contaminants from water sources. Proc. Int. Struct. Eng. Constr. 2024, 11, AAW-01. [Google Scholar] [CrossRef]
- Meghea, I.; Lesnic, M.; Manea-Saghin, A.-M. Design solutions for rehabilitation of a water treatment plant. Proc. Int. Struct. Eng. Constr. 2024, 11, AAW-02. [Google Scholar] [CrossRef]
- du Plessis, J.P. Mathematical Modelling of Flow Through Porous Membranes; WRC Report No. 402/1/93; WRC: Pretoria, South Africa, 1993. [Google Scholar]
- Poliquin, G. Bounds on the Principal Frequency of the p-Laplacian. In Geometric and Spectral Analysis. Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2014; Volume 630, pp. 349–366. [Google Scholar]
- de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. A fractional porous medium equation. Adv. Math. 2011, 226, 1378–1409. [Google Scholar] [CrossRef]
- de Pablo, A.; Quirós, F.; Rodríguez, A.; Vázquez, J.L. A general fractional porous medium equation. Commun. Pure Appl. Math. 2012, 65, 1242–1284. [Google Scholar] [CrossRef]
- Vázquez, J.L. The Dirichlet problem for the Porous Medium Equation in bounded domains. Asymptotic behaviour. Monatsh. Math. 2004, 142, 81–111. [Google Scholar] [CrossRef]
- Vázquez, J.L. The Dirichlet problem for the fractional p-Laplacian evolution equation. J. Differ. Equ. 2016, 260, 6038–6056. [Google Scholar] [CrossRef]
- Diaz, J.I.; de Thelin, F. On a nonlinear parabolic problem arising in some models related to turbulent flow. SIAM J. Math. Anal. 1994, 25, 1085–1111. [Google Scholar] [CrossRef]
- Benedikt, J.; Girg, P.; Kotrla, L.; Takáč, P. Origin of the p-Laplacian and A. Missbach. EJDE 2018, 2018, 1–17. [Google Scholar]
- Mastorakis, N.E.; Fathabadi, H. On the solution of p-Laplacian for non-Newtonian fluid flow. WSEAS Trans. Math. 2009, 8, 238–245. [Google Scholar]
- Lundström, N.L.P. p-Harmonic Functions Near the Boundary. Ph.D. Thesis, Umeå University, Umeå, Sweden, 2011. [Google Scholar]
- Hornung, U.; Jäger, W. Diffusion, Convection, Adsorption, and Reaction of Chemicals in Porous Media. J. Differ. Equ. 1991, 92, 199–225. [Google Scholar] [CrossRef]
- Vondenhoff, E. Asymptotic behaviour of injection and suction for Hele-Shaw flow in R3 with surface tension near balls. CASA Rep. 2006, 0642. [Google Scholar]
- Showalter, R.E. Distributed Microstructure Models of Porous Media. In Flow in Porous Media; Douglas, J., Jr., Hornung, U., Eds.; Springer: Basel, Switzerland, 1993; Volume 114, pp. 155–163. [Google Scholar]
- Showalter, R.E.; Walkington, N.J. Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 1991, 22, 1702–1722. [Google Scholar] [CrossRef]
- van Duijn, C.J.; Pop, I.S. Crystal dissolution and precipitation in porous media: Pore scale analysis. J. Reine Angew. Math. 2004, 577, 171–211. [Google Scholar] [CrossRef]
- Vinther, F. Mathematical Modelling of Membrane Separation; Technical University of Denmark: Kongens Lyngby, Denmark, 2015. [Google Scholar]
- Agueh, M.; Blanchet, A.; Carrillo, J.A. Large time asymptotics of the doubly nonlinear equation in the non-displacement convexity regime. J. Evol. Equ. 2009, 10, 59–84. [Google Scholar] [CrossRef]
- Allaire, G.; Mikelić, A.; Piatnitski, A. Homogenization approach to the dispersion theory for reactive transport through porous media. SIAM J. Math. Anal. 2010, 42, 125–144. [Google Scholar] [CrossRef]
- Hornung, U.; Jäger, W.; Mikelić, A. Reactive transport through an array of cells with semi-permeable membranes. ESAIM Math. Model. Numer. Anal. 1994, 28, 59–94. [Google Scholar] [CrossRef]
- Cuccu, F.; Emamizadeh, B.; Porru, G. Nonlinear elastic membranes involving the p-Laplacian operator. EJDE 2006, 2006, 1–10. [Google Scholar]
- Imbert, C.; Tarhini, R.; Vigneron, F. Regularity of solutions of a fractional porous medium equation. Interfaces Free Boundaries Math. Anal. Comput. Appl. 2020, 22, 401–442. [Google Scholar] [CrossRef] [PubMed]
- Stan, D.; del Teso, F.; Vázquez, J.L. Finite and infinite speed of propagation for porous medium equations with fractional pressure. Comptes Rendus Math. 2013, 352, 123–128. [Google Scholar] [CrossRef]
- Stan, D.; del Teso, F.; Vázquez, J.L. Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 2016, 260, 1154–1199. [Google Scholar] [CrossRef]
- Dassios, G.; Vafeas, P. On the Spheroidal Semiseparation for Stokes Flow. Res. Lett. Phys. 2008, 2008, 135289. [Google Scholar] [CrossRef]
- Kinderlehrer, D.; Stampacchia, G. An Introduction to Variational Inequalities and Their Applications; Academic Press: New York, NY, USA; London, UK; Toronto, ON, Canada; Sydney, Australia; San Francisco, CA, USA, 1980. [Google Scholar]
- Ji, H.; Sanaei, P. Mathematical model for filtration and drying in filter membranes. Phys. Rev. Fluids 2023, 8, 064302. [Google Scholar] [CrossRef]
- Monroe, J.I.; Thamaraiselvan, C.; Wickramasinghe, S.R. Grand challenges in membrane transport, modeling and simulation. Front. Membr. Sci. Technol. 2024, 2, 1357625. [Google Scholar] [CrossRef]
- Wrubel, J.A.; Kang, Z.; Witteman, L.; Zhang, F.-Y.; Ma, Z.; Bender, G. Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells. Int. J. Hydrogen Energy 2021, 46, 25341–25354. [Google Scholar] [CrossRef]
- Liu, J.; McCool, B.; Johnson, J.R.; Rangnekar, N.; Daoutidis, P.; Tsapatsis, M. Mathematical modeling and parameter estimation of MFI membranes for para/ortho-xylene separation. AIChE J. 2021, 67, e17232. [Google Scholar] [CrossRef]
- Luckins, E.K.; Breward, C.J.W.; Griffiths, I.M.; Please, C.P. Mathematical modelling of impurity deposition during evaporation of dirty liquid in a porous material. J. Fluid Mech. 2024, 986, A31. [Google Scholar] [CrossRef]
- Ciavolella, G.; David, N.; Poulain, A. Effective interface conditions for a porous medium type problem. Interfaces Free Boundaries Math. Anal. Comput. Appl. 2024, 26, 161–188. [Google Scholar] [CrossRef]
- Fong, D.; Cummings, L.J.; Chapman, S.J.; Sanaei, P. On the performance of multilayered membrane filters. J. Eng. Math. 2021, 127, 23. [Google Scholar] [CrossRef]
- Huliienko, S.V.; Korniienko, Y.M.; Gatilov, K.O. Modern Trends in the Mathematical Simulation of Pressure-Driven Membrane Processes. J. Eng. Sci. 2020, 7, F1–F21. [Google Scholar] [CrossRef]
- Pavlenko, I.; Ochowiak, M.; Włodarczak, S.; Krupińska, A.; Matuszak, M. Parameter Identification of the Fractional-Order Mathematical Model for Convective Mass Transfer in a Porous Medium. Membranes 2023, 13, 819. [Google Scholar] [CrossRef] [PubMed]
- Ramazanov, M.M. Mathematical Model of Filtration of Solutions in a Porous Medium with Semipermeable Inclusions. Osmotic Convection. J. Eng. Phys. Thermoph. 2023, 96, 823–833. [Google Scholar] [CrossRef]
- Ding, L.; Azimi, G. Mathematical modeling of rare earth element separation in electrodialysis with adjacent anion exchange membranes and ethylenediaminetetraacetic acid as chelating agent. Sci. Rep. 2024, 14, 12240. [Google Scholar] [CrossRef] [PubMed]
- Sepe, M. Mathematical Modeling and Reconstruction of Porous Media to Understand Transport Phenomena for Electrochemical System Applications. Ph.D. Thesis, University of South Carolina, Columbia, SC, USA, 2024. [Google Scholar]
- Kumar, R.; Mahajan, K.; Igwegbe, C.A.; Aggarwal, A.K.; Shah, M.A.; Sangeetika, X. Chemical engineering of separation membrane, interfacial strategies, and mathematical modeling: A thorough analysis. J. Integr. Sci. Technol. 2021, 9, 75–84. [Google Scholar]
- Demir, H.; Keskin, S. A New Era of Modeling MOF-Based Membranes: Cooperation of Theory and Data Science. Macromol. Mater. Eng. 2024, 309, 2300225. [Google Scholar] [CrossRef]
- Heiranian, M.; Fan, H.; Wang, L.; Lu, X.; Elimelech, M. Mechanisms and models for water transport in reverse osmosis membranes: History, critical assessment, and recent developments. Chem. Soc. Rev. 2023, 52, 8455–8480. [Google Scholar] [CrossRef]
- Parasyris, A.; Brady, C.; Bhusan Das, D.; Discacciati, M. Computational Modeling of Coupled Free and Porous Media Flow for Membrane-based Filtration Systems: A Review. J. Appl. Membr. Sci. Technol. 2019, 23, 15–36. [Google Scholar] [CrossRef]
- Bear, J.; Bachmat, Y. Introduction to Modelling of Transport Phenomena in Porous Media; Kluwer Academic Publisher: Dordrecht, Holland, 1991. [Google Scholar]
- du Plessis, J.P. Pore-Scale Modelling for Flow Through Different Types of Porous Environments. In Heat and Mass Transfer in Porous Media; Quintard, M., Todorovic, M., Eds.; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- du Plessis, J.P. Saturated flow through a two-dimensional porous domain. Adv. Water Resour. 1991, 14, 131–137. [Google Scholar] [CrossRef]
- du Plessis, J.P.; Masliyah, J.H. Mathematical modelling of flow through consolidated isotropic porous media. Transp. Porous Med. 1988, 3, 145–161. [Google Scholar] [CrossRef]
- Bachmat, Y.; Bear, J. Macroscopic modelling of transport phenomena in porous media. 2: Applications to mass, momentum and energy transport. Transp. Porous Med. 1986, 1, 241–269. [Google Scholar] [CrossRef]
- du Plessis, J.P.; Masliyah, J.H. Flow through isotropic granular porous media. Transp. Porous Med. 1991, 6, 207–221. [Google Scholar] [CrossRef]
- Vázquez, J.L.; Volzone, B. Symmetrization for Linear and Nonlinear Fractional Parabolic Equations of Porous Medium Type. J. Math. Pures Appl. 2014, 101, 553–582. [Google Scholar] [CrossRef]
- Vázquez, J.L. Symmetrization and Mass Comparison for Degenerate Nonlinear Parabolic and related Elliptic Equations. Adv. Nonlinear Stud. 2005, 5, 87–131. [Google Scholar] [CrossRef]
- Meghea, I. Solutions for some Mathematical Physics Problems issued from Modeling Real Phenomena: Part 1. Axioms 2023, 12, 532. [Google Scholar] [CrossRef]
- Meghea, I. Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena. Mathematics 2022, 10, 3476. [Google Scholar] [CrossRef]
- Chang, K.C. Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 1981, 80, 102–129. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meghea, I. Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants. Mathematics 2024, 12, 3446. https://doi.org/10.3390/math12213446
Meghea I. Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants. Mathematics. 2024; 12(21):3446. https://doi.org/10.3390/math12213446
Chicago/Turabian StyleMeghea, Irina. 2024. "Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants" Mathematics 12, no. 21: 3446. https://doi.org/10.3390/math12213446
APA StyleMeghea, I. (2024). Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants. Mathematics, 12(21), 3446. https://doi.org/10.3390/math12213446