PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects
Abstract
:1. Introduction
2. Disturbance Reconstruction and Compensation for IPDT and DIPDT Models
2.1. Reconstruction and Compensation Based on IPDT Models
- 1.
- It leads to setpoint responses with monotonic output, which allows for the calculation of the corresponding values using the Laplace transform as the value of the integral error . In the case of disturbance responses, the return to the desired setpoint is also monotonic without changing the sign of the control error, which in turn enables the calculation of by Laplace transformation from the value .
- 2.
- The MRDP controller leads to transients with zero deviations from the ideal input and output shapes. According to [49], this is a condition for the invariance of the selected performance measures to variable circuit parameters.
- 3.
2.2. Pid Controllers Based on DIPDT Models
- the PID gain is 1.58 times larger than the gain of the PD controller (22) and its derivative time constant is only 0.69 of the PD time constant, but the dominant time constant is 1.41 times larger than in the case of the PD controller. Together with the higher multiplication of the dominant pole, this leads to a significant slowdown of the transients.
- Similarly to the IPDT model, it would be possible to calculate the for the unit setpoint step responses to show that, using a PID controller, a DIPDT system, and the simplest prefilter (with ), the achieved values () are about 1.8 times higher than for a PD controller with .
- For DIPDT processes, the design of stabilizing PD controllers can be performed analytically using the MRDP method.
- The advantage of controllers with parallel I-action for DIPDT processes is the possibility to perform an analytical design using the MRDP method, which also applies to controllers with higher-order derivatives.
- The disadvantage is that the controller setting must be recalculated, which leads to a considerable increase in sensitivity to measurement noise, a slowdown in transients, and a reduction in the robustness of the controller.
- There is no real solution for an analytical design of PIDs with automatic reset (series PIDs) using the MRDP method. It is possible to calculate their best possible setting using the PPM but, even then, the performance achieved is significantly lower than when using parallel PIDs.
3. Stabilization and Compensation of DIPDT Processes Using Higher-Order Derivatives
3.1. Filter Design
3.2. Stabilizing Control with Disturbance Reconstruction and Compensation
4. Simulation Experiment—DIPDT System
4.1. Comparison of MRDP-PID with Sensitivity-Constrained Optimal Design
4.2. Comparison of MRDP-Optimal PID and Model-Based Controllers Based on DIPDT Models
5. Magnetic Levitation Control
6. Discussion
7. Conclusions and Future Work
- the redesign of the stabilizing controller;
- an increase in the controller gains and thus an increase in the negative effects of measurement noise;
- a reduction in the speed of transient responses.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1P | One-pulse, response with 2 monotonic segments (1 extreme point) |
2P | Two-pulse, response with 3 monotonic segments (2 extreme points) |
ADRC | Active disturbance rejection control |
AOC | Automatic offset controller |
DOB | Disturbance observer |
DOBC | Disturbance observer based control |
FO | Fractional order |
HO | Higher-order |
IAE | Integral absolute error |
IPDT | Integrator plus dead-time |
IMC | Internal model control |
MCT | Modern control theory |
MRDP | Multiple real dominant pole |
PD | Proportional-derivative |
PDO | Predictive disturbance observer |
-PDO | P controller with mth order derivatives and PDO |
PID | Proportional-integrative-derivative |
QRDP | Quadruple real dominant pole |
TRDP | Triple real dominant pole |
Deviation from 2P shape | |
USO | Unstable second-order |
References
- Huba, M.; Gao, Z. Uncovering Disturbance Observer and Ultra-Local Plant Models in Series PI Controllers. Symmetry 2022, 14, 640. [Google Scholar] [CrossRef]
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 1942, 64, 759–768. [Google Scholar] [CrossRef]
- Åström, K.J.; Hägglund, T. PID Controllers: Theory, Design, and Tuning, 2nd ed.; Instrument Society of America: Research Triangle Park, NC, USA, 1995. [Google Scholar]
- Åström, K.J.; Hägglund, T. Advanced PID Control; ISA: Research Triangle Park, NC, USA, 2006. [Google Scholar]
- O’Dwyer, A. An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes. In PID Control in the Third Millennium. Lessons Learned and New Approaches; Vilanova, R., Visioli, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Zhao, D.; Gao, C.; Li, J.; Fu, H.; Ding, D. PID control and PI state estimation for complex networked systems: A survey. Int. J. Syst. Sci. 2025, 1–16. [Google Scholar] [CrossRef]
- Samad, T. A Survey on Industry Impact and Challenges Thereof [Technical Activities]. IEEE Control Syst. Mag. 2017, 37, 17–18. [Google Scholar]
- Badau, N.E.; Popescu, T.M.; Mihai, M.; Dulf, E.H.; Muresan, C.I. Bridging the gap between control theory and practice: From simple controller design to a practical microcontroller implementation. IFAC-PapersOnLine 2024, 58, 124–129. [Google Scholar] [CrossRef]
- Herbst, G.; Madonski, R. Interlude: A Look Around. In Active Disturbance Rejection Control: From Principles to Practice; Springer Nature: Cham, Switzerland, 2025; pp. 103–117. [Google Scholar]
- Kothare, M.; Campo, P.J.; Morari, M.; Nett, C.N. A Unified Framework for the Study of Anti-windup Designs. Automatica 1994, 30, 1869–1883. [Google Scholar] [CrossRef]
- Huba, M.; Vrančić, D.; Bisták, P. PID Control with Higher Order Derivative Degrees for IPDT Plant Models. IEEE Access 2021, 9, 2478–2495. [Google Scholar] [CrossRef]
- Huba, M.; Bisták, P.; Vrančić, D. Series PID Control with Higher-Order Derivatives for Processes Approximated by IPDT Models. IEEE Trans. Autom. Sci. Eng. 2024, 21, 4406–4418. [Google Scholar] [CrossRef]
- Huba, M.; Bistak, P.; Vrancic, D. Parametrization and Optimal Tuning of Constrained Series PIDA Controller for IPDT Models. Mathematics 2023, 11, 4229. [Google Scholar] [CrossRef]
- Boskovic, M.C.; Sekara, T.B.; Rapaic, M.R. Novel tuning rules for PIDC and PID load frequency controllers considering robustness and sensitivity to measurement noise. Int. J. Electr. Power Energy Syst. 2020, 114, 105416. [Google Scholar] [CrossRef]
- Veinović, S.; Stojić, D.; Ivanović, L. Optimized PIDD2 controller for AVR systems regarding robustness. Int. J. Electr. Power Energy Syst. 2023, 145, 108646. [Google Scholar] [CrossRef]
- Boskovic, M.C.; Sekara, T.B.; Rapaic, M.R. A New Analytical Design Method of Controllers in Modified Parallel Cascade Structure for Stable, Integrating and Unstable Industrial Primary Processes including Time Delay under Robustness Constraints. In Proceedings of the 2023 22nd International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 15–17 March 2023; pp. 1–6. [Google Scholar]
- Kumar, M.; Hote, Y.V. Robust PIDD2 Controller Design for Perturbed Load Frequency Control of an Interconnected Time-Delayed Power Systems. IEEE Trans. Control Syst. Technol. 2021, 29, 2662–2669. [Google Scholar] [CrossRef]
- Ferrari, M.; Visioli, A. A software tool to understand the design of PIDA controllers. In Proceedings of the 13th IFAC Symposium on Advances in Control Education ACE, Hamburg, Germany, 24–27 July 2022. [Google Scholar]
- Visioli, A.; Sánchez-Moreno, J. A relay-feedback automatic tuning methodology of PIDA controllers for high-order processes. Int. J. Control 2022, 97, 51–58. [Google Scholar] [CrossRef]
- Campregher, F.; Milanesi, M.; Schiavo, M.; Visioli, A. Generalized Haalman tuning of PIDA controllers. IFAC-PapersOnLine 2024, 58, 406–411. [Google Scholar] [CrossRef]
- Milanesi, M.; Paolino, N.; Schiavo, M.; Padula, F.; Visioli, A. PIDA control of depth of hypnosis in total intravenous anesthesia. IFAC-PapersOnLine 2024, 58, 192–197. [Google Scholar] [CrossRef]
- Visioli, A.; Sanchez-Moreno, J. IMC-based tuning of PIDA controllers: A comparison with PID control. IFAC-PapersOnLine 2024, 58, 1–6. [Google Scholar] [CrossRef]
- Boskovic, M.C.; Sekara, T.B.; Stojic, D.M.; Rapaic, M.R. Novel tuning rules for PIDC controllers in automatic voltage regulation systems under constraints on robustness and sensitivity to measurement noise. Int. J. Electr. Power Energy Syst. 2024, 157, 109791. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Tan, W. Comparison of PI/PID/PIDD2 Controllers for Higher Order Processes. In Proceedings of the 4rd IFAC Conference on Advances in Proportional-Integral-Derivative Control, Almeria, Spain, 12–14 June 2024. [Google Scholar]
- Ekinci, S.; Izci, D.; Gider, V.; Abualigah, L.; Bajaj, M.; Zaitsev, I. Efficient control strategy for electric furnace temperature regulation using quadratic interpolation optimization. Sci. Rep. 2025, 15, 154. [Google Scholar] [CrossRef] [PubMed]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Gao, Z. On the centrality of disturbance rejection in automatic control. ISA Trans. 2014, 53, 850–857. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, Z.; Li, D.; Chen, Y.; Liu, Y. On transitioning from PID to ADRC in thermal power plants. Control Theory Technol. 2021, 19, 3–18. [Google Scholar] [CrossRef]
- Lin, P.; Wu, Z.; Fei, Z.; Sun, X.M. A Generalized PID Interpretation for High-Order LADRC and Cascade LADRC for Servo Systems. IEEE Trans. Ind. Electron. 2022, 69, 5207–5214. [Google Scholar] [CrossRef]
- Sun, Y.; Su, Z.G.; Sun, L.; Zhao, G. Time-Delay Active Disturbance Rejection Control of Wet Electrostatic Precipitator in Power Plants. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2748–2760. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, J.; Zhang, J.; Li, W.; Liu, Y.; Fu, W.; Ma, X. Speed Control for a Marine Diesel Engine Based on the Combined Linear-Nonlinear Active Disturbance Rejection Control. Math. Probl. Eng. 2018, 2018, 7641862. [Google Scholar] [CrossRef]
- Madonski, R.; Herbst, G.; Stankovic, M. ADRC in output and error form: Connection, equivalence, performance. Control Theory Technol. 2023, 21, 56–71. [Google Scholar] [CrossRef]
- Stankovic, M.; Ting, H.; Madonski, R. From PID to ADRC and back: Expressing error-based active disturbance rejection control schemes as standard industrial 1DOF and 2DOF controllers. Asian J. Control 2024, 26, 2796–2806. [Google Scholar] [CrossRef]
- Amokrane, S.B.; Laidouni, M.Z.; Adli, T.; Madonski, R.; Stankovic, M. Active disturbance rejection control for unmanned tracked vehicles in leader–follower scenarios: Discrete-time implementation and field test validation. Mechatronics 2024, 97, 103114. [Google Scholar] [CrossRef]
- Herbst, G.; Madonski, R. Linear Active Disturbance Rejection Control. In Active Disturbance Rejection Control: From Principles to Practice; Springer Nature: Cham, Switzerland, 2025; pp. 29–44. [Google Scholar]
- Huba, M.; Škrinárová, J.; Bisták, P. Higher Order PD and iPD controller tuning. IFAC-PapersOnLine 2020, 53, 8808–8813. [Google Scholar] [CrossRef]
- Fliess, M.; Join, C. Stability margins and model-free control: A first look. In Proceedings of the 2014 European Control Conference (ECC), Strasbourg, France, 24–27 June 2014; pp. 454–459. [Google Scholar]
- Fliess, M.; Join, C. An alternative to proportional-integral and proportional-integral-derivative regulators: Intelligent proportional-derivative regulators. Int. J. Robust Nonlinear Control 2021, 32, 9512–9524. [Google Scholar] [CrossRef]
- Huba, M.; Vrančić, D. Tuning of PID Control for the Double Integrator Plus Dead-Time Model by Modified Real Dominant Pole and Performance Portrait Methods. Mathematics 2022, 10, 971. [Google Scholar] [CrossRef]
- Chamraz, S.; Huba, M.; Zakova, K. Stabilization of Magnetic Levitation System. Appl. Sci. 2021, 11, 10369. [Google Scholar] [CrossRef]
- Asadi, F. Overview of Kharitonov’s Theorem. In Robust Control of DC-DC Converters: The Kharitonov’s Theorem Approach with MATLAB® Codes; Springer International Publishing: Cham, Switzerland, 2018; pp. 35–70. [Google Scholar]
- Matusu, R.; Pekar, L. Robust stability of thermal control systems with uncertain parameters: The graphical analysis examples. Appl. Therm. Eng. 2017, 125, 1157–1163. [Google Scholar] [CrossRef]
- Mercader, P.; Åström, K.J.; Banos, A.; Hägglund, T. Robust PID Design Based on QFT and Convex/Concave Optimization. IEEE Trans. Control Syst. Technol. 2017, 25, 441–452. [Google Scholar] [CrossRef]
- Mercader, P.; Banos, A. A PI tuning rule for integrating plus dead time processes with parametric uncertainty. ISA Trans. 2017, 67, 246–255. [Google Scholar] [CrossRef]
- Mercader, P.; Banos, A.; Vilanova, R. Robust proportional-integral-derivative design for processes with interval parametric uncertainty. IET Control Theory Appl. 2017, 11, 1016–1023. [Google Scholar] [CrossRef]
- Mahapatro, S.R.; Subudhi, B. A Robust Decentralized PID Controller Based on Complementary Sensitivity Function for a Multivariable System. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2024–2028. [Google Scholar] [CrossRef]
- Mahapatro, S.R.; Mahapatra, S.; Govinda, A.; Mahapatra, R.K. A dynamic optimal decoupling controller design for a multi-variable system with stability analysis: An algebraic approach. Int. J. Model. Simul. 2024, 1–14. [Google Scholar] [CrossRef]
- Mahapatro, S.R.; Subudhi, B. A New H∞ Weighted Sensitive Function-Based Robust Multi-Loop PID Controller for a Multi-Variable System. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 1256–1260. [Google Scholar] [CrossRef]
- Huba, M. Performance measures, performance limits and optimal PI control for the IPDT plant. J. Process Control 2013, 23, 500–515. [Google Scholar] [CrossRef]
- Huba, M.; Bistak, P.; Skachová, Z.; Zakova, K. Predictive Antiwindup PI and PID-Controllers Based on I1 and I2 Models with Dead Time. In Proceedings of the 6th IEEE Mediterranean Conference on Control and Automation, Alghero, Italy, 9–11 June 1998; Volume 11, pp. 532–535. [Google Scholar]
- Huba, M. Modular PID-controller design with different filtering properties. In Proceedings of the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), Vienna, Austria, 10–13 November 2013; pp. 3609–3614. [Google Scholar]
- Skogestad, S. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 2003, 13, 291–309. [Google Scholar] [CrossRef]
- O’Dwyer, A. Handbook of PI and PID Controller Tuning Rules, 3rd ed.; Imperial College Press: London, UK, 2009. [Google Scholar]
- Huba, M. Disturbance Observer in PID Controllers for First-Order Time-Delayed Systems. IFAC-PapersOnLine 2022, 55, 19–24. [Google Scholar] [CrossRef]
- Vítečková, M.; Víteček, A. Two-degree of Freedom Controller Tuning for Integral Plus Time Delay Plants. ICIC Express Lett. Int. J. Res. Surv. Jpn. 2008, 2, 225–229. [Google Scholar]
- Vítečková, M.; Víteček, A. 2DOF PI and PID controllers tuning. In Proceedings of the 9th IFAC Workshop on Time Delay Systems, Praha, Czech Republic, 7–9 June 2010; Volume 9, pp. 343–348. [Google Scholar]
- Oldenbourg, R.; Sartorius, H. Dynamik Selbsttätiger Regelungen; R. Oldenbourg-Verlag: München, Germany, 1944. [Google Scholar]
- Zhao, S.; Gao, Z. Modified active disturbance rejection control for time-delay systems. ISA Trans. 2014, 53, 882–888. [Google Scholar] [CrossRef]
- Víteček, A.; Vítečková, M. Series Two Degree of Freedom PID Controller for Integrating Plants with Time Delay. In Proceedings of the 2019 20th International Carpathian Control Conference (ICCC), Krakow-Wieliczka, Poland, 26–29 May 2019; pp. 1–4. [Google Scholar]
- Huba, M.; Vrančić, D. Delay Equivalences in Tuning PID Control for the Double Integrator Plus Dead-Time. Mathematics 2021, 9, 328. [Google Scholar] [CrossRef]
- Huba, M.; Chamraz, S.; Bisták, P.; Vrančić, D. Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable. Sensors 2021, 18, 6157. [Google Scholar] [CrossRef]
- Liu, T.; He, X.; Gu, D.; Zhang, W. Analytical decoupling control design for dynamic plants with time delay and double integrators. IEE Proc.-Control Theory Appl. 2004, 151, 745–753. [Google Scholar] [CrossRef]
- Hassaan, G.A. Controller Tuning for Disturbance Rejection Associated with Delayed Double Integrating processes, Part I: PD-PI Controller. Int. J. Comput. Tech. 2015, 2, 110–115. [Google Scholar] [CrossRef]
- Grimholt, C.; Skogestad, S. Optimal PID control of double integrating processes. IFAC-PapersOnLine 2016, 49, 127–132. [Google Scholar] [CrossRef]
- Skogestad, S. Probably the best simple PID tuning rules in the world. In Proceedings of the AIChE Annual Meeting, Reno, NV, USA, 4–9 November 2001. [Google Scholar]
- Huba, M.; Šimunek, M. Modular Approach to Teaching PID Control. IEEE Trans. Ind. Electron. 2007, 54, 3112–3121. [Google Scholar] [CrossRef]
- Huba, M.; Vrančić, D. Extending the Model-Based Controller Design to Higher-Order Plant Models and Measurement Noise. Symmetry 2021, 2021, 798. [Google Scholar] [CrossRef]
- Grimholt, C.; Skogestad, S. Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. J. Process Control 2018, 70, 36–46. [Google Scholar] [CrossRef]
- Visioli, A. Practical PID Control; Springer: London, UK, 2006. [Google Scholar]
- Morari, M.; Zafiriou, E. Robust Process Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Sariyildiz, E.; Oboe, R.; Ohnishi, K. Disturbance Observer-Based Robust Control and Its Applications: 35th Anniversary Overview. IEEE Trans. Ind. Electron. 2020, 67, 2042–2053. [Google Scholar] [CrossRef]
- Gao, Z.; Huang, Y. A special issue on active disturbance rejection control (ADRC). Control Theory Technol. 2021, 19, 1–2. [Google Scholar] [CrossRef]
- Liu, C.L.; Yang, C.J.; Liu, W.L.; Zhao, L.Y.; Liu, S.; Wang, Z.Q. Comprehensive Quantitative Tuning Method for Multiple LADRCs in High Order Plus Time Delay Processes. IEEE Trans. Autom. Sci. Eng. 2025, 22, 2159–2173. [Google Scholar] [CrossRef]
- Skogestad, S. PID is the Future of Advanced Control. In Proceedings of the 4th IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2024, Almería, Spain, 12–14 June 2024. [Google Scholar]
- Wang, L. Integral Control via Disturbance Estimation. In Proceedings of the 4th IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2024, Almería, Spain, 12–14 June 2024. [Google Scholar]
- Huba, M.; Sovišová, D.; Spurná, N. Digital Time-optimal Control of Nonlinear Second-order System. IFAC Proc. Vol. 1987, 20, 31–36. [Google Scholar] [CrossRef]
- Kumar, V.; Hote, Y.V. New approach of series-PID controller design based on modern control theory: Simulations and real-time validation. IFAC J. Syst. Control 2025, 31, 100295. [Google Scholar] [CrossRef]
- Tepljakov, A.; Alagoz, B.B.; Yeroglu, C.; Gonzalez, E.; HosseinNia, S.H.; Petlenkov, E. FOPID Controllers and Their Industrial Applications: A Survey of Recent Results. IFAC-PapersOnLine 2018, 51, 25–30. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Chen, P.; Yu, W.; Peng, Y.; Luo, Y. A fractional-order active disturbance rejection control for permanent magnet synchronous motor position servo system. Asian J. Control 2024, 26, 3137–3147. [Google Scholar] [CrossRef]
- Huba, M.; Bistak, P.; Skrinarova, J.; Vrancic, D. Performance Portrait Method: Robust Design of Predictive Integral Controller. Biomimetics 2025, 10, 74. [Google Scholar] [CrossRef]
- Glattfelder, A.; Schaufelberger, W. Control Systems with Input and Output Constraints; Springer: London, UK, 2003. [Google Scholar]
- Hippe, P. Windup prevention for unstable systems. Automatica 2003, 39, 849–2019. [Google Scholar] [CrossRef]
- Hippe, P. Windup in Control; Springer: London, UK, 2006. [Google Scholar]
- Rao, V.G.; Bernstein, D.S. Naive control of the double integrator. IEEE Control Syst. 2001, 21, 86–97. [Google Scholar]
- Bélai, I.; Huba, M.; Vrancic, D. Comparing traditional and constrained disturbance-observer based positional control. Meas. Control 2021, 54, 170–178. [Google Scholar] [CrossRef]
- Bistak, P. Time sub-optimal controller for triple integrator applied to three-level hydraulic system. In Proceedings of the 13th IASTED International Conference on Control and Applications, Vancouver, BC, Canada, 1–3 June 2011; pp. 28–35. [Google Scholar]
- Bisták, P.; Huba, M. Three-Tank Virtual Laboratory for Input Saturation Control Based on Matlab. In Proceedings of the 11th IFAC Symposium Advances in Control Education, Bratislava, Slovakia, 1–3 June 2016. [Google Scholar]
- Huba, M.; Vrančić, D.; Bisták, P. Reference Model Control of the Time Delayed Double Integrator. IEEE Access 2022, 10, 39282–39298. [Google Scholar] [CrossRef]
- Kvasnica, M.; Lofberg, J.; Herceg, M.; Cirka, L.; Fikar, M. Low-Complexity Polynomial Approximation of Explicit MPC via Linear Programming. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010. [Google Scholar]
- Herceg, M.; Kvasnica, M.; Jones, C.N.; Morari, M. Multi-Parametric Toolbox 3.0. In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 502–510. [Google Scholar]
- Klauco, M.; Kaluz, M.; Kvasnica, M. Real-time implementation of an explicit MPC-based reference governor for control of a magnetic levitation system. Control Eng. Pract. 2017, 60, 99–105. [Google Scholar] [CrossRef]
- Jiang, Y.; Oravec, J.; Houska, B.; Kvasnica, M. Parallel MPC for Linear Systems With Input Constraints. IEEE Trans. Autom. Control 2021, 66, 3401–3408. [Google Scholar] [CrossRef]
- Jugade, C.; Ingole, D.; Sonawane, D.N.; Kvasnica, M.; Gustafson, J. A Memory Efficient FPGA Implementation of Offset-Free Explicit Model Predictive Controller. IEEE Trans. Control Syst. Technol. 2022, 30, 2646–2657. [Google Scholar] [CrossRef]
0.5858 | 1.2679 | 2.0000 | 2.7639 | 3.5505 | |
1.7071 | 0.7887 | 0.5000 | 0.3618 | 0.2816 | |
0.0791 | 0.2100 | 0.3610 | 0.5237 | 0.6947 | |
5.8284 | 3.7321 | 3.0000 | 2.6180 | 2.3798 | |
0 | 0.9811 | 1.1250 | 1.1434 | 1.1310 | |
0 | 0 | 0.1250 | 0.1962 | 0.2373 | |
0 | 0 | 0 | 0.0124 | 0.0243 | |
0 | 0 | 0 | 0 | 0.0010 |
0.0416 | 0.0694 | 0.0974 | 0.1215 | |
16.39 | 13.39 | 11.98 | 11.28 | |
7.17 | 5.76 | 5.09 | 4.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huba, M.; Bistak, P.; Vrancic, D.; Sun, M. PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects. Mathematics 2025, 13, 664. https://doi.org/10.3390/math13040664
Huba M, Bistak P, Vrancic D, Sun M. PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects. Mathematics. 2025; 13(4):664. https://doi.org/10.3390/math13040664
Chicago/Turabian StyleHuba, Mikulas, Pavol Bistak, Damir Vrancic, and Mingwei Sun. 2025. "PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects" Mathematics 13, no. 4: 664. https://doi.org/10.3390/math13040664
APA StyleHuba, M., Bistak, P., Vrancic, D., & Sun, M. (2025). PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects. Mathematics, 13(4), 664. https://doi.org/10.3390/math13040664