Modeling the Coronavirus Disease 2019 Incubation Period: Impact on Quarantine Policy
Abstract
:1. Introduction
2. Exposure History Reports for Confirmed COVID-19 Cases
3. Model and Estimation
- Type I: observing potential exposure period and symptom onset date ( and ):
- Type II: observing potential exposure period and hospitalization date ( and ):
- Type III: observing exact exposure date and symptom onset date ( and ):
- Type IV: observing exact exposure date and hospitalization date only ( and ):
4. Application
5. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wilson, M.E.; Chen, L.H. Travellers Give Wings to Novel Coronavirus (2019-NCoV). J. Travel Med. 2020, 27, taaa015. [Google Scholar] [CrossRef] [Green Version]
- Backer, J.A.; Klinkenberg, D.; Wallinga, J. Incubation Period of 2019 Novel Coronavirus (2019-NCoV) Infections among Travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 2020, 25, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.-M.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J. Clin. Med. 2020, 9, 538. [Google Scholar] [CrossRef] [Green Version]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 172, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Kong, T.K. Longer incubation period of coronavirus disease 2019 (COVID-19) in older adults. Aging Med. 2020, 3, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.B.; Lieu, R.; Quenby, S. Significantly Longer Covid-19 Incubation Times for the Elderly, from a Case Study of 136 Patients throughout China. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Dai, J.; Zhao, J.; Wang, Y.; Deng, P.; Wang, J. Estimation of Incubation Period and Serial Interval of COVID-19: Analysis of 178 Cases and 131 Transmission Chains in Hubei Province, China. Epidemiol. Infect. 2020, 148, e117. [Google Scholar] [CrossRef] [PubMed]
- DXY: COVID-19 Epidemic Situation in Real Time. Available online: https://docs.google.com/spreadsheets/d/e/2PACX-1vQU0SIALScXx8VXDX7yKNKWWPKE1YjFlWc6VTEVSN45CklWWf-uWmprQIyLtoPDA18tX9cFDr-aQ9S6/pubhtml (accessed on 20 March 2020).
- Xu, B.; Gutierrez, B.; Mekaru, S.; Sewalk, K.; Goodwin, L.; Loskill, A.; Cohn, E.L.; Hswen, Y.; Hill, S.C.; Cobo, M.M.; et al. Epidemiological Data from the COVID-19 Outbreak, Real-Time Case Information. Sci Data 2020, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, D.M.; Doksum, K.A. Estimation and Testing in a Two-Sample Generalized Odds-Rate Model. J. Am. Stat. Assoc. 1988, 83, 744–749. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 30 April 2020).
- Cowling, B.J.; Muller, M.P.; Wong, I.O.L.; Ho, L.-M.; Louie, M.; McGeer, A.; Leung, G.M. Alternative Methods of Estimating an Incubation Distribution: Examples from Severe Acute Respiratory Syndrome. Epidemiology 2007, 18, 253–259. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Considerations for Quarantine of Individuals in the Context of Containment for Coronavirus Disease (COVID-19). Available online: https://www.who.int/publications-detail/considerations-forquarantine-of-individuals-in-the-context-of-containment-forcoronavirus-disease-(covid-19) (accessed on 12 April 2020).
- The White House. Press Briefing by Members of the President’s Coronavirus Task Force. Available online: https://www.whitehouse.gov/briefings-statements/press-briefing-members-presidents-coronavirus-task-force (accessed on 1 February 2020).
- Moons, K.G.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.; Macaskill, P.; Steyerberg, E.W.; Collins, G.S. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royston, P.; Altman, D.G.; Sauerbrei, W. Dichotomizing continuous predictors in multiple regression: A bad idea. Stat. Med. 2006, 25, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune response in COVID-19: A review. J. Infect. Public Health 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Van Dorp, L.; Acman, M.; Richard, D.; Shaw, L.P.; Ford, C.E.; Ormond, L.; Owen, C.J.; Pang, J.; Tan, C.C.S.; Boshier, F.A.T.; et al. Emergence of Genomic Diversity and Recurrent Mutations in SARS-CoV-2. Infect. Genet. Evol. 2020, 83, 104351. [Google Scholar] [CrossRef] [PubMed]
Model * | ||||||
---|---|---|---|---|---|---|
Full model | Estimate | 2.300 | 0.305 | −3.766 | 0.141 | 0.371 |
SE | 0.155 | 0.119 | 6.569 | 0.176 | 0.180 | |
p-value | <0.001 | 0.010 | 0.566 | 0.423 | 0.039 | |
Reduced model | Estimate | 2.115 | 0.457 | −1.271 | - | 0.449 |
SE | 0.126 | 0.128 | 0.685 | - | 0.214 | |
p-value | <0.001 | <0.001 | 0.064 | - | 0.035 |
Percentile (Days, 95% CI) | 2.5th | 25th | 50th | 75th | 97.5th |
---|---|---|---|---|---|
Age ≤ 42 years (G1) | 0.6 (0.3, 0.9) | 2.9 (2.3, 3.5) | 5.3 (4.3, 6.3) | 8.7 (7.0, 10.4) | 20.3 (15.2, 25.5) |
Age > 42 years (G2) | 0.8 (0.4, 1.2) | 3.9 (3.0, 4.7) | 7.0 (5.6, 8.3) | 11.6 (9.4, 13.8) | 27.0 (20.3, 33.7) |
Difference (G2–G1) | 0.2 (0.0, 0.4) | 1.0 (0.1, 1.8) | 1.7 (0.2, 3.3) | 2.9 (0.3, 5.4) | 6.7 (0.6, 12.8) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pak, D.; Langohr, K.; Ning, J.; Cortés Martínez, J.; Gómez Melis, G.; Shen, Y. Modeling the Coronavirus Disease 2019 Incubation Period: Impact on Quarantine Policy. Mathematics 2020, 8, 1631. https://doi.org/10.3390/math8091631
Pak D, Langohr K, Ning J, Cortés Martínez J, Gómez Melis G, Shen Y. Modeling the Coronavirus Disease 2019 Incubation Period: Impact on Quarantine Policy. Mathematics. 2020; 8(9):1631. https://doi.org/10.3390/math8091631
Chicago/Turabian StylePak, Daewoo, Klaus Langohr, Jing Ning, Jordi Cortés Martínez, Guadalupe Gómez Melis, and Yu Shen. 2020. "Modeling the Coronavirus Disease 2019 Incubation Period: Impact on Quarantine Policy" Mathematics 8, no. 9: 1631. https://doi.org/10.3390/math8091631