An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs
Abstract
:1. Introduction
2. Existence and Uniqueness Theorem
3. Bernstein Formulas and Their Operational Matrices
3.1. Bernstein Polynomials
3.2. Generalized Bernstein Functions
3.3. Approximation of Functions
4. Applications of Operational Matrices
4.1. The Approximate Solutions Obtained by Tau Method
4.1.1. Residual Correction Procedure for Bernstein Tau Method and GBF Tau Method
4.2. Approximate Solutions Obtained by Collocation Method
Residual Correction Procedure for Bernstein Collocation Method and GBF Collocation Method
5. Numerical Experiments
5.1. Example 1
5.2. Example 2
5.3. Example 3
5.4. Example 4
5.5. Example 5
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shawagfeh, N.; Kaya, D. Comparing numerical methods for the solutions of systems of ordinary differential equations. Appl. Math. Lett. 2004, 17, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Hairer, E.; Wanner, G. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Bataineh, A.S.; Noorani, M.S.M.; Hashim, I. Solving systems of ODEs by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 2060–2070. [Google Scholar] [CrossRef]
- Park, J.H. GCS of a class of chaotic dynamic systems. Chaos Solitons Fract. 2005, 26, 1429–1435. [Google Scholar] [CrossRef]
- Park, J.H. Chaos synchronization between two different chaotic dynamical systems. Chaos Solitons Fract. 2006, 27, 549–554. [Google Scholar] [CrossRef]
- Genesio, R.; Tesi, A. A harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 1992, 28, 531–548. [Google Scholar] [CrossRef]
- Hashim, I.; Chowdhury, M.S.H. Adaptation of homotopy-perturbation method for numeric-analytic solution of system of ODEs. Phys. Lett. A 2008, 372, 470–481. [Google Scholar] [CrossRef]
- Isik, O.R.; Sezer, M.; Guney, Z. A rational approximation based on Bernstein polynomials for high order initial and boundary values problems. Appl. Math. Comput. 2011, 217, 9438–9450. [Google Scholar]
- Rostamy, D.; Karimi, K. Bernstein polynomials for solving fractional heat- and wave-like equations. Fract. Calc. Appl. Anal. 2012, 15, 556–571. [Google Scholar] [CrossRef]
- Yuzbasi, S. Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 2013, 219, 6328–6343. [Google Scholar]
- Baleanu, D.; Alipour, M.; Jafari, H. The Bernstein operational matrices for solving the fractional quadratic Riccati differential equations with the Riemann-Liouville derivative. Abstr. Appl. Anal. 2013, 2013, 461970. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N. Solution of Lane-Emden type equations using Bernstein operational matrix of differentiation. New Astrom. 2012, 17, 303–308. [Google Scholar] [CrossRef]
- Isik, O.R.; Sezer, M. Bernstein series solution of a class of Lane-Emden type equations. Math. Probl. Eng. 2013, 2013, 423797. [Google Scholar] [CrossRef]
- Isik, O.R.; Sezer, M.; Guney, Z. Bernstein series solution of linear second-order partial differential equations with mixed conditions. Math. Meth. Appl. Sci. 2014, 37, 609–619. [Google Scholar] [CrossRef]
- Maleknejad, K.; Basirat, B.; Hashemizadeh, E. A Bernstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations. Math. Comput. Model. 2012, 55, 1363–1372. [Google Scholar] [CrossRef]
- Rostamy, D.; Karimi, K. A new operational matrix method based on the Bernstein polynomials for solving the backward inverse heat conduction problems. Int. J. Numer. Meth. Heat Fluid Flow 2014, 24, 669–678. [Google Scholar] [CrossRef]
- Alshbool, M.H.T.; Hashim, I. Multistage Bernstein polynomials for the solutions of the fractional order stiff systems. J. King Saud Univ. Sci. 2016, 28, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Alshbool, M.H.T.; Bataineh, A.S.; Hashim, I.; Isik, O.R. Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions. J. King Saud Univ. Sci. 2017, 29, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.; Ezzati, R. Using operational matrix of two-dimensional Bernstein polynomials for solving two-dimensional integral equations of fractional order. Appl. Math. Comput. 2017, 307, 290–298. [Google Scholar] [CrossRef]
- Bataineh, A.S.; Alomari, A.K.; Isik, O.R.; Hashim, I. Multistage Bernstein collocation method for solving strongly nonlinear damped systems. J. Vib. Control 2019, 25, 122–131. [Google Scholar] [CrossRef]
- Khataybeh, S.; Hashim, I.; Alshbool, M. Solving directly third-order ODEs using operational matrices of Bernstein polynomials method with applications to fluid flow equations. J. King Saud Univ. Sci. 2019, 31, 822–826. [Google Scholar] [CrossRef]
- Khataybeh, S.; Hashim, I. Direct solution of second-order system of ODEs using Bernstein polynomials on an arbitrary interval. Int. J. Math. Comput. Sci. 2019, 14, 343–357. [Google Scholar]
- Bataineh, A.S.; Isik, O.R.; Alomari, A.K.; Shatnawi, W.; Hashim, I. An efficient scheme for time-dependent Emden-Fowler type equations based on two-dimensional Bernstein polynomials. Mathematics 2020, 8, 1473. [Google Scholar] [CrossRef]
- Alshbool, M.H.T.; Shatanawi, W.; Hashim, I.; Sarr, M. Residual correction procedure with Bernstein polynomials for solving important systems of ordinary differential equations. Comput. Math. Contin. 2020, 64, 63–80. [Google Scholar] [CrossRef]
- Alshbool, M.H.; Isik, O.; Hashim, I. Fractional Bernstein series solution of fractional diffusion equations with error estimate. Axioms 2021, 10, 6. [Google Scholar] [CrossRef]
- Burden, R.L.; Faires, J.D. Numerical Analysis, 9th ed.; Brooks/Cole: Boston, MA, USA, 2007. [Google Scholar]
- Birkhoff, G.; Rota, G.-C. Ordinary Differential Equations, 4th ed.; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
Method | m | 5 | 10 | 15 |
---|---|---|---|---|
Tau method | × 10 | × 10 | × 10 | |
Tau method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 |
Method | m | 5 | 10 | 15 |
---|---|---|---|---|
Tau method | × 10 | × 10 | × 10 | |
Tau method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 |
x | ||||||
---|---|---|---|---|---|---|
0.0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 0.14 × 10 | 0.50 × 10 | 0.23 × 10 | 0.15 × 10 | 0.13 × 10 | 0.21 × 10 |
0.2 | 0.18 × 10 | 0.42 × 10 | 0.46 × 10 | 0.33 × 10 | 0.32 × 10 | 0.67 × 10 |
0.3 | 0.12 × 10 | 0.42 × 10 | 0.19 × 10 | 0.56 × 10 | 0.50 × 10 | 0.30 × 10 |
0.4 | 0.13 × 10 | 0.64 × 10 | 0.11 × 10 | 0.81 × 10 | 0.65 × 10 | 0.20 × 10 |
0.5 | 0.61 × 10 | 0.50 × 10 | 0.30 × 10 | 0.11 × 10 | 0.73 × 10 | 0.11 × 10 |
0.6 | 0.22 × 10 | 0.73 × 10 | 0.30 × 10 | 0.12 × 10 | 0.67 × 10 | 0.19 × 10 |
0.7 | 0.23 × 10 | 0.46 × 10 | 0.60 × 10 | 0.17 × 10 | 0.48 × 10 | 0.32 × 10 |
0.8 | 0.39 × 10 | 0.40 × 10 | 0.40 × 10 | 0.19 × 10 | 0.10 × 10 | 0.45 × 10 |
0.9 | 0.24 × 10 | 0.47 × 10 | 0.20 × 10 | 0.22 × 10 | 0.47 × 10 | 0.58 × 10 |
1.0 | 0.87 × 10 | 0.10 × 10 | 0.30 × 10 | 0.23 × 10 | 0.12 × 10 | 0.70 × 10 |
Method | m | 5 | 10 | 15 |
---|---|---|---|---|
Tau method | × 10 | × 10 | × 10 | |
Tau method | × 10 | × 10 | × 10 | |
Tau method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 | |
Coll. method | × 10 | × 10 | × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bataineh, A.S.; Isik, O.R.; Oqielat, M.; Hashim, I. An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs. Mathematics 2021, 9, 425. https://doi.org/10.3390/math9040425
Bataineh AS, Isik OR, Oqielat M, Hashim I. An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs. Mathematics. 2021; 9(4):425. https://doi.org/10.3390/math9040425
Chicago/Turabian StyleBataineh, Ahmad Sami, Osman Rasit Isik, Moa’ath Oqielat, and Ishak Hashim. 2021. "An Enhanced Adaptive Bernstein Collocation Method for Solving Systems of ODEs" Mathematics 9, no. 4: 425. https://doi.org/10.3390/math9040425