Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for a Nonlinear Option Pricing Model
Abstract
:1. Introduction
2. Discretization Format of Nonlinear Black–Scholes Model
3. Solve the Large System of Algebraic Equations
3.1. Finite-Difference Schemes
3.2. Variational Iteration Method for System of Algebraic Equations
4. Numerical Experiments and Discussion
4.1. Leland’s Model
4.2. Barles–Soner Model
4.3. Risk Adjusted Pricing Methodology
4.4. Comparison of the Algorithm Precision
5. Discussion
5.1. Analysis of Experimental Results
5.2. Robustness of the Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Polit. Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef] [Green Version]
- Ankudinova, J.; Ehrhardt, M. On the numerical solution of nonlinear Black-Scholes equations. Comput. Math. Appl. 2008, 56, 799–812. [Google Scholar] [CrossRef] [Green Version]
- Elbeleze, A.A.; AKılıçman Taib, B.M. Homotopy Perturbation Method for Fractional Black-Scholes European Option Pricing Equations Using Sumudu Transform. Math. Probl. Eng. 2013, 2013, 524852. [Google Scholar] [CrossRef]
- Rashidinia, J.; Jamalzadeh, S. Modified B-Spline Collocation Approach for Pricing American Style Asian Options. Mediterr. J. Math. 2017, 14, 111. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Z.; Yang, Y. A new operator splitting method for American options under fractional Black–Scholes models-ScienceDirect. Comput. Math. Appl. 2019, 77, 2130–2144. [Google Scholar] [CrossRef]
- HMandal Bira, B.; Zeidan, D. Optimal algebra and power series solution of fractional Black-Scholes pricing model. Soft Comput. 2021, 25, 6075–6082. [Google Scholar]
- Khajehnasiri, A.A.; Safavi, M. Solving fractional Black–Scholes equation by using Boubaker functions. Math. Methods Appl. Sci. 2021, 44, 8505–8515. [Google Scholar] [CrossRef]
- Mei, S.L. Faber-Schauder Wavelet Sparse Grid Approach for Option Pricing with Transactions Cost. Abstr. Appl. Anal. 2014, 2014, 168630. [Google Scholar] [CrossRef]
- Cattani, C. Haar wavelet splines. J. Interdiscip. Math. 2001, 4, 35–47. [Google Scholar] [CrossRef]
- Cattani, C. Haar wavelets based technique in evolution problems. Proc. Est. Acad. Sci. Phys. Math. 2004, 53, 45–65. [Google Scholar]
- Chen, C.F.; Hsiao, C.H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Control Theory Appl. 2002, 144, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.F.; Hsiao, C.-H. Wavelet approach to optimising dynamic systems. IEE Proc. Control Theory Appl. 1997, 146, 213–219. [Google Scholar] [CrossRef]
- Jiwari, R. A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ Equation. Comput. Phys. Commun. 2012, 183, 2413–2423. [Google Scholar] [CrossRef]
- Hariharan, G.; Kannan, K.; Sharma, K.R. Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 2009, 211, 284–292. [Google Scholar] [CrossRef]
- Hariharan, G.; Kannan, K. A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection–diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 2010, 11, 173–184. [Google Scholar] [CrossRef]
- Lepik, U. Application of the Haar wavelet transform to solving integral and differential equations. Proc. Est. Acad. Sci. Phys. Math. 2007, 56, 28–46. [Google Scholar]
- Zedan, H.A.; Alaidarous, E. Haar Wavelet Method for the System of Integral Equations. Abstract and Applied Analysis 2014, 2014, 418909. [Google Scholar] [CrossRef]
- Hajjaji, M.A.; Bourennane, E.-B.; Abdelali, A.B.; Mtibaa, A. Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking. BioMed Res. Int. 2014, 2014, 313078. [Google Scholar] [CrossRef] [Green Version]
- Sugumar, S.J.; Jayaparvathy, R. An Improved Real Time Image Detection System for Elephant Intrusion along the Forest Border Areas. Sci. World J. 2014, 2014, 393958. [Google Scholar] [CrossRef]
- Saeed, U.; Rehman, M.U. Haar Wavelet Operational Matrix Method for Fractional Oscillation Equations. Int. J. Math. Math. Sci. 2014, 2014, 174819. [Google Scholar] [CrossRef] [Green Version]
- Saeed, U.; Rehman, M.U. Assessment of Haar Wavelet-Quasilinearization Technique in Heat Convection-Radiation Equations. Appl. Comput. Intell. Soft Comput. 2014, 2014, 275–279. [Google Scholar] [CrossRef] [Green Version]
- He, J.-H. New interpretation of homotopy perturbation method. Int. J. Mod. Phys. B 2006, 20, 2561–2568. [Google Scholar] [CrossRef]
- Mei, S.L.; Zhu, D.H. HPM-Based Dynamic Sparse Grid Approach for Perona-Malik Equation. Sci. World J. 2014, 2014, 417486. [Google Scholar] [CrossRef]
- Liu, L.W. Interval Wavelet Numerical Method on Fokker-Planck Equations for Nonlinear Random System. Adv. Math. Phys. 2013, 2013, 206–226. [Google Scholar] [CrossRef]
- Tripathi, L.P.; Kadalbajoo, M.K.; Kumar, A. A cubic B-spline collocation method for a numerical solution of the generalized Black-Scholes equation. Math. Comput. Model. 2012, 55, 1483–1505. [Google Scholar]
- Ehrhardt, M.; Mickens, R.E. Discrete Artificial Boundary Conditions for the Black–Scholes Equation of American Options. Black-Sch. Equ. 2006. URN:urn:nbn:de:0296-matheon-3200. Available online: https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/year/2006/docId/320 (accessed on 13 April 2021).
- He, J. Variational Iterative Solution of Large Linear System. J. Math. Technol. 1999, 15, 119–123. [Google Scholar]
- Leland, H.E. Option Pricing and Replication with Transactions Costs. J. Financ. 2012, 40, 1283–1301. [Google Scholar] [CrossRef]
- Jandačka, M.; Ševčovič, D. On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile. J. Appl. Math. 2005, 2005, 235–258. [Google Scholar] [CrossRef] [Green Version]
- Jian, H.; Cen, Z. Cubic Spline Method for a Generalized Black-Scholes Equation. Math. Probl. Eng. 2014, 2014, 484362. [Google Scholar]
- Černá, D. Numerical solution of the Black-Scholes equation using cubic spline wavelets. In Proceedings of the Applications of Mathematics in Engineering and Economics (AMEE’16): Proceedings of the 42nd International Conference on Applications of Mathematics in Engineering and Economics, Sozopol, Bulgaria, 8–13 June 2016. American Institute of Physics Conference Series. [Google Scholar]
- Mei, S.L.; Zhu, D.H. Interval Shannon Wavelet Collocation Method for Fractional Fokker-Planck Equation. Adv. Math. Phys. 2013, 2013, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Xing, R. Wavelet-Based Homotopy Analysis Method for Nonlinear Matrix System and Its Application in Burgers Equation. Math. Probl. Eng. 2013, 2013, 14–26. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, R.; Liu, M.; Meng, K.; Mei, S. Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for a Nonlinear Option Pricing Model. Mathematics 2021, 9, 1642. https://doi.org/10.3390/math9141642
Xing R, Liu M, Meng K, Mei S. Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for a Nonlinear Option Pricing Model. Mathematics. 2021; 9(14):1642. https://doi.org/10.3390/math9141642
Chicago/Turabian StyleXing, Ruyi, Meng Liu, Kexin Meng, and Shuli Mei. 2021. "Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for a Nonlinear Option Pricing Model" Mathematics 9, no. 14: 1642. https://doi.org/10.3390/math9141642
APA StyleXing, R., Liu, M., Meng, K., & Mei, S. (2021). Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for a Nonlinear Option Pricing Model. Mathematics, 9(14), 1642. https://doi.org/10.3390/math9141642