Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. FDG PET/CT Acquisition
2.2. Determination of Regions of Interest
2.3. Feature Selection
2.4. Prediction Model Selection
2.5. Model Construction
3. Results
3.1. Baseline Information
3.2. Radiomics-Based Models of Local Tumor Control
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hatt, M.; Tixier, F.; Visvikis, D.; Rest, C.C.L. Radiomics in PET/CT: More than meets the eye? J. Nucl. Med. Soc. Nucl. Med. 2017, 58, 365–366. [Google Scholar] [CrossRef] [Green Version]
- Visvikis, D.; Cheze Le Rest, C.; Jaouen, V.; Hatt, M. Artificial intelligence, machine (deep) learning and radio(geno)mics: Definitions and nuclear medicine imaging applications. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2630–2637. [Google Scholar] [CrossRef]
- Ang, K.K.; Trotti, A.; Brown, B.W.; Garden, A.S.; Foote, R.L.; Morrison, W.H.; Geara, F.B.; Klotch, D.W.; Goepfert, H.; Peters, L.J. Randomized trial addressing risk features and time factors of surgery plus radiotherapy in advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 571–578. [Google Scholar] [CrossRef]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, 359–386. [Google Scholar] [CrossRef]
- Bonomo, P.; Merlotti, A.; Olmetto, E.; Bianchi, A.; Desideri, I.; Bacigalupo, A.; Franco, P.; Franzese, C.; Orlandi, E.; Livi, L.; et al. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2122–2138. [Google Scholar] [CrossRef] [Green Version]
- Martens, R.M.; Koopman, T.; Noij, D.P.; Pfaehler, E.; Übelhör, C.; Sharma, S.; Vergeer, M.R.; Leemans, C.R.; Hoekstra, O.S.; Yaqub, M.; et al. Redictive value of quantitative 18F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma. EJNMMI Res. 2020, 10, 102. [Google Scholar] [CrossRef]
- Srinivas, K.S.; Arunan, M.; Venkatachalapathy, E.; John, C.; Manickavasagam, M.; Divyambika, C.V. Prognostic value of fluorine-18 fluorodeoxyglucose positron-emission tomography imaging in patients with head and neck squamous cell carcinoma. Head Neck 2012, 34, 462–468. [Google Scholar]
- Paidpally, V.; Chirindel, A.; Lam, S.; Agrawal, N.; Quon, H.; Subramaniam, R.M. FDG-PET/CT imaging biomarkers in head and neck squamous cell carcinoma. Imaging Med. 2012, 4, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Oh, S.; Kim, J.S.; Kim, Y.K.; Kim, K.H.; Oh, D.H.; Lee, D.H.; Jeong, W.J.; Jung, Y.H. Prognostic value of volumetric parameters measured by 18F-FDG PET/CT in patients with head and neck squamous cell carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 659–667. [Google Scholar]
- Cheng, N.M.; Fang, Y.H.D.; Chang, J.T.C.; Huang, C.G.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Lin, C.Y.; Liao, C.T.; Yen, T.C. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J. Nucl. Med. 2013, 54, 1703–1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.S.; Kang, B.C.; Kim, J.S.; Cho, K.J.; Roh, J.L.; Kim, J.S.; Cho, K.J.; Lee, S.W.; Kim, S.B.; Choi, S.H.; et al. Intratumor textural heterogeneity on pretreatment 18F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann. Surg. Oncol. 2015, 22, 2746–2754. [Google Scholar] [CrossRef]
- Šedienė, S.; Kulakienė, I.; Rudžianskas, V.; Ambrazienė, R. The Role of 18-Fluoro-2-Deoxy-Glucose Positron Emission Tomogra-phy/Computed Tomography as Response and Prognosis Predictive Factor of Concurrent Chemoradiotherapy after Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma: A Prospective Study. Medicina 2018, 54, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudžianskas, V.; Korobeinikova, E.; Rudžianskienė, M.; Jaselskė, E.; Adlienė, D.; Šedienė, S.; Kulakienė, I.; Padervinskis, E.; Jurkienė, N.; Juozaitytė, E. Use of 18F-FDG PET/CT Imaging for Radiotherapy Target Volume Delineation after Induction Chemotherapy and for Prognosis of Locally Advanced Squamous Cell Carcinoma of the Head and Neck. Medicina 2018, 54, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibble, E.H.; Alvarez, A.C.; Truong, M.T.; Mercier, G.; Cook, E.F.; Subramaniam, R.M. 18F-FDG metabolic tumor volume and total glycolytic activity of oral cavity and oropharyngeal squamous cell cancer: Adding value to clinical staging. J. Nucl. Med. 2012, 53, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.H.; Lin, S.C.; Hsieh, T.C.; Yen, K.Y.; Yang, S.N.; Wang, Y.C.; Liang, J.A.; Hua, C.H.; Chen, S.W. Use of pretreatment metabolic tumour volumes to predict the outcome of pharyngeal cancer treated by definitive radiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2012, 39, 1297–1305. [Google Scholar] [CrossRef]
- Pinochet, P.; Eude, F.; Becker, S.; Shah, V.; Sibille, L.; Toledano, M.N.; Modzelewski, R.; Vera, P.; Decazes, P. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Front. Med. 2021, 8, 628179. [Google Scholar] [CrossRef]
- Orlhac, F.; Soussan, M.; Chouahnia, K.; Martinod, E.; Buvat, I. 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer. PLoS ONE 2015, 15, e0145063. [Google Scholar] [CrossRef]
- Orlhac, F.; Soussan, M.; Maisonobe, J.A.; Garcia, C.A.; Vanderlinden, B.; Buvat, I. Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis. J. Nucl. Med. 2014, 55, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, S.; Choi, H.; Paeng, J.C.; Cheon, G.J. Radiomics in Oncological PET/CT: A Methodological Overview. Nucl. Med. Mol. Imaging 2019, 53, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Feliciani, G.; Fioroni, F.; Grassi, E.; Bertolini, M.; Rosca, A.; Timon, G.; Galaverni, M.; Iotti, C.; Versari, A.; Iori, M.; et al. Radiomic Profiling of Head and Neck Cancer: 18F-FDG PET Texture Analysis as Predictor of Patient Survival. Contrast Media Mol. Imaging 2018, 27, 3574310. [Google Scholar] [CrossRef] [Green Version]
- Foster, B.; Bagci, U.; Mansoor, A.; Xu, Z.; Mollura, D.J. A review on segmentation of positron emission tomography images. Comput. Biol. Med. 2014, 50, 76–96. [Google Scholar] [CrossRef] [Green Version]
- Visvikis, D.; Lambin, P.; Beuschau Mauridsen, K.; Hustinx, R.; Lassmann, M.; Rischpler, C.; Shi, K.; Pruim, J. Application of artificial intelligence in nuclear medicine and molecular imaging: A review of current status and future perspectives for clinical translation. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4452–4463. [Google Scholar] [CrossRef]
- Onozato, Y.; Iwata, T.; Uematsu, Y.; Shimizu, D.; Yamamoto, T.; Matsui, Y.; Ogawa, K.; Kuyama, J.; Sakairi, Y.; Kawakami, E.; et al. Predicting pathological highly invasive lung cancer from preoperative [18F] FDG PET/CT with multiple machine learning models. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cao, Y.; Diao, W.; Cheng, Y.; Jia, Z.; Peng, X. Radiomics-based prediction of survival in patients with head and neck squamous cell carcinoma based on pre- and post-treatment 18F-PET/CT. Aging 2020, 12, 14593–14619. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.M.; Fang, Y.H.; Lee, L.Y.; Chang, J.T.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Liao, C.T.; Yang, L.Y.; Hsu, C.H.; et al. One-size nonu-niformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Guezennec, C.; Robin, P.; Orlhac, F.; Bourhis, D.; Delcroix, O.; Gobel, Y.; Rousset, J.; Schick, U.; Salaün, P.Y.; Abgral, R. Prognostic value of textural indices extracted from pretherapeutic 18-F FDG-PET/CT in head and neck squamous cell carcinoma. Head Neck 2019, 41, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Yuan, Q.; Wang, Q.; Ma, J.; Feng, Q.; Chen, W.; Rahmim, A.; Lu, L. Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma. Mol. Imaging Biol. 2019, 21, 954–964. [Google Scholar] [CrossRef]
- Bogowicz, M.; Riesterer, O.; Stark, L.S.; Studer, G.; Unkelbach, J.; Guckenberger, M.; Tanadini-Lang, S. Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma. Acta Oncol. 2017, 56, 531–1536. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.H.; Cao, D.; Ginat, D.T. Radiomic Model Predicts Lymph Node Response to Induction Chemotherapy in Locally Ad-vanced Head and Neck Cancer. Diagnostics 2021, 11, 588. [Google Scholar] [CrossRef]
Training Cohort | |
---|---|
Number of patients | 55 |
Number of recurrences | 29 |
Median follow-up (months) | 22.26 |
Age (years) a | 55.23 ± 9.38 (30–77) |
Tumor classification | Number of patients |
T1 | 3 |
T2 | 15 |
T3 | 13 |
T4 | 24 |
Nodal classification | Number of patients |
N0 | 2 |
N1 | 10 |
N2 | 40 |
N3 | 3 |
Tumor location | Number of patients |
Oropharynx | 31 |
Hypopharynx | 20 |
Larynx | 2 |
Other | 2 |
First-order features | PET parameters | SUVmin, SUVmean, SUVstd, SUVmax, SUV_Skewness, SUV_Kurtosis, SUV_Excess Kurtosis, TLG, MTV, Discretised SUVmin, Discretised SUVmean, Discretised SUVstd, Discretised SUVmax, Discretised_Skewness, Discretised_Kurtosis |
Second-order features | Intensity features | HISTO_Skewness, HISTO_Kurtosis, HISTO_Entropy_log10, HISTO_Entropy_log2, Discretised_HISTO_Entropy_log10, Discretised_HISTO_Entropy_log2 |
Shape features | SHAPE_Volume_ml, SHAPE_Volume_vx, SHAPE_Sphericity, SHAPE_Compacity | |
GLCM a | GLCM_Homogenicity, GLCM_Energy, GLCM_Contrast, GLCM_Correlation, GLCM_Entropy_log10, GLCM_Entropy_log2 | |
Third-order features | GLRLM b | GLRLM_SRE, GLRLM_LRE, GLRLM_LGRE, GLRLM_SRLGE, GLRLM_SRHGE, GLRLM_LRLGR, GLRLM_LEHGE, GLRLM_GLNU, GLRLM_RLNU, GLRLM_RP |
NGLDM c | NGLDM_Coarseness, NGLDM_Contrast, NGLDM_Busyness | |
GLZLM d | GLZLM_SZE, GLZLM_LZL, GLZLM_LGZE, GLZLM_HGZE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šedienė, S.; Kulakienė, I.; Urbonavičius, B.G.; Korobeinikova, E.; Rudžianskas, V.; Povilonis, P.A.; Jaselskė, E.; Adlienė, D.; Juozaitytė, E. Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment. Medicina 2023, 59, 1173. https://doi.org/10.3390/medicina59061173
Šedienė S, Kulakienė I, Urbonavičius BG, Korobeinikova E, Rudžianskas V, Povilonis PA, Jaselskė E, Adlienė D, Juozaitytė E. Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment. Medicina. 2023; 59(6):1173. https://doi.org/10.3390/medicina59061173
Chicago/Turabian StyleŠedienė, Severina, Ilona Kulakienė, Benas Gabrielis Urbonavičius, Erika Korobeinikova, Viktoras Rudžianskas, Paulius Algirdas Povilonis, Evelina Jaselskė, Diana Adlienė, and Elona Juozaitytė. 2023. "Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment" Medicina 59, no. 6: 1173. https://doi.org/10.3390/medicina59061173
APA StyleŠedienė, S., Kulakienė, I., Urbonavičius, B. G., Korobeinikova, E., Rudžianskas, V., Povilonis, P. A., Jaselskė, E., Adlienė, D., & Juozaitytė, E. (2023). Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment. Medicina, 59(6), 1173. https://doi.org/10.3390/medicina59061173