The Long-Term Clinical and Radiographic Outcomes of Cerclage Cable Fixation for Displaced Acetabular Fractures Using a Posterior Approach: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Surgical Procedure
2.3. Postoperative Rehabilitation
2.4. Clinical Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cimerman, M.; Kristan, A.; Jug, M.; Tomaževič, M. Fractures of the acetabulum: From yesterday to tomorrow. Int. Orthop. 2021, 45, 1057–1064. [Google Scholar] [CrossRef]
- Judet, R.; Judet, J.; Letournel, E. Fractures of the acetabulum: Classification and surgical approaches for open reduction. Preliminary report. J. Bone Jt. Surg. Am. 1964, 46, 1615–1646. [Google Scholar] [CrossRef]
- Kelly, J.; Ladurner, A.; Rickman, M. Surgical management of acetabular fractures—A contemporary literature review. Injury 2020, 51, 2267–2277. [Google Scholar] [CrossRef]
- Pohlemann, T.; Herath, S.C.; Braun, B.J.; Rollmann, M.F.; Histing, T.; Pizanis, A. Anterior approaches to the acetabulum: Which one to choose? EFORT Open Rev. 2020, 5, 707–712. [Google Scholar] [CrossRef]
- Wan, Y.; Yao, S.; Chen, K.; Zeng, L.; Zhu, F.; Sun, T.; Guo, X. Treatment of anterior column posterior hemitransverse fracture with supra-ilioinguinal approach. J. Int. Med. Res. 2021, 49, 300060520982824. [Google Scholar] [CrossRef]
- Kumar, D.; Kushwaha, N.S.; Mahendra, M.; Verma, S.; Sriwastava, A.; Kumar, A.; Arora, K.; Sharma, V. Assessment of radiological and functional outcomes of complex acetabulum fracture managed with combined anterior and posterior approach in a single anaesthetic setting: A retrospective study. HIP Int. 2024. [Google Scholar] [CrossRef]
- Ruan, Z.; Luo, C.-F.; Zeng, B.-F.; Zhang, C.-Q. Percutaneous screw fixation for the acetabular fracture with quadrilateral plate involved by three-dimensional fluoroscopy navigation: Surgical technique. Injury 2012, 43, 517–521. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-H.; Huang, H.-T.; Chen, J.-C.; Huang, P.-J.; Hung, S.-H.; Liu, P.-C.; Lee, T.Y.; Chen, L.-H.; Chang, J.-K. Percutaneous antegrade screwing for anterior column fracture of acetabulum with fluoroscopic-based computerized navigation. Arch. Orthop. Trauma Surg. 2008, 128, 223–226. [Google Scholar] [CrossRef]
- Kang, C.S.; Min, B.W. Cable fixation in displaced fractures of the acetabulum: 21 patients followed for 2-8 years. Acta Orthop. Scand. 2002, 73, 619–624. [Google Scholar] [CrossRef]
- Siebenrock, K.A.; Gautier, E.; Ziran, B.H.; Ganz, R. Trochanteric flip osteotomy for cranial extension and muscle protection in acetabular fracture fixation using a Kocher-Langenbeck approach. J. Orthop. Trauma 2006, 20, S52–S56. [Google Scholar] [CrossRef]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Colnaric, J.M.; El Sibai, R.H.; Bachir, R.H.; El Sayed, M.J. Injury severity score as a predictor of mortality in adult trauma patients by injury mechanism types in the United States: A retrospective observational study. Medicine 2022, 101, e29614. [Google Scholar] [CrossRef] [PubMed]
- Matta, J.M. Fractures of the acetabulum: Accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J. Bone Jt. Surg. Am. 1996, 78, 1632–1645. [Google Scholar] [CrossRef]
- Helfet, D.L.; Schmeling, G.J. Management of complex acetabular fractures through single nonextensile exposures. Clin. Orthop. Relat. Res. 1994, 305, 58–68. [Google Scholar] [CrossRef]
- Brückl, R.; Hepp, W.R.; Tönnis, D. Differentiation of normal and dysplastic juvenile hip joints by means of the summarized hip factor. Arch. Orthop. Unfallchir 1972, 74, 13–32. [Google Scholar] [CrossRef]
- Kuribayashi, M.; Takahashi, K.A.; Fujioka, M.; Ueshima, K.; Inoue, S.; Kubo, T. Reliability and validity of the Japanese Orthopaedic Association hip score. J. Orthop. Sci. 2010, 15, 452–458. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Park, K.S.; Chan, C.K.; Lee, G.W.; Ahn, H.W.; Yoon, T.R. Outcome of alternative approach to displaced acetabular fractures. Injury 2017, 48, 388–393. [Google Scholar] [CrossRef]
- Briffa, N.; Pearce, R.; Hill, A.M.; Bircher, M. Outcomes of acetabular fracture fixation with ten years’ follow-up. J. Bone Jt. Surg. Br. 2011, 93, 229–236. [Google Scholar] [CrossRef]
- Li, J.; Jin, L.; Chen, C.; Zhai, J.; Li, L.; Hou, Z. Predictors for post-traumatic hip osteoarthritis in patients with transverse acetabular fractures following open reduction internal fixation: A minimum of 2 years’ follow-up multicenter study. BMC Musculoskelet. Disord. 2023, 24, 811. [Google Scholar] [CrossRef]
- Frietman, B.; Biert, J.; Edwards, M.J.R. Patient-reported outcome measures after surgery for an acetabular fracture. Bone Jt. J. 2018, 100–B, 640–645. [Google Scholar] [CrossRef] [PubMed]
- Fakru, N.H.; Faisham, W.I.; Hadizie, D.; Yahaya, S. Functional Outcome of Surgical Stabilisation of Acetabular Fractures. Malays. Orthop. J. 2021, 15, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ge, L.; Liu, J.; Li, H.; Li, D.; Yan, W.; Sun, X. Single pararectus approach combined with three-dimensional guidance for the treatment of acetabular fracture. Quant. Imaging Med. Surg. 2023, 13, 7225–7235. [Google Scholar] [CrossRef] [PubMed]
- Giannoudis, P.V.; Grotz, M.R.W.; Papakostidis, C.; Dinopoulos, H. Operative treatment of displaced fractures of the acetabulum. A meta-analysis. J. Bone Jt. Surg. Br. 2005, 87, 2–9. [Google Scholar] [CrossRef]
- Dodd, A.; Osterhoff, G.; Guy, P.; Lefaivre, K.A. Assessment of functional outcomes of surgically managed acetabular fractures: A systematic review. Bone Jt. J. 2016, 98–B, 690–695. [Google Scholar] [CrossRef]
Number, n | 9 |
---|---|
Age, years, mean ± SD | 47.1 ± 15.5 |
Sex, M/F, n | 7/2 |
BMI, kg/m2, mean ± SD | 24.8 ± 3.3 |
Smokers, n | 4 |
Job before injury, n | |
Farmer | 1 |
Physical worker | 3 |
Office worker | 2 |
Injury mechanism, n | |
Traffic accident | 4 |
Fall from height (>2 m) | 4 |
Snow sports injuries | 1 |
ISS, mean ± SD | 13.6 ± 4.7 |
Judet–Letournel classification, n | |
BC | 3 |
BC + PW | 1 |
TV | 2 |
TV + PW | 1 |
TS | 2 |
Acetabular roof fractures, n | 3 |
Native hip dislocation, n | 1 |
Number, n | 9 |
---|---|
Time from injury to surgery, days, mean ± SD | 13.9 ± 7.0 |
Operation time, min, mean ± SD | 199.1 ± 55.3 |
Blood loss, mL, mean ± SD | 667 ± 522 |
Reduction quality on PR, n (%) | |
Anatomical | 5 (55.6) |
Imperfect | 3 (33.3) |
Poor | 1 (11.1) |
Articular reduction quality on CT, n (%) | |
Satisfactory | 6 (66.7) |
Unsatisfactory | 3 (33.3) |
Complications, n (%) | |
DVT | 1 (11.1) |
Infection | 1 (11.1) |
Nonunion of trochanteric osteotomy | 1 (11.1) |
AVN of femoral head | 1 (11.1) |
Osteoarthritis | 4 (44.4) |
JOA at one-year follow-up, mean ± SD | 88.1 ± 8.7 |
JOA at the final follow-up, mean ± SD | 90.9 ± 7.9 |
Case | Age | Sex | Follow-Up | Mechanism | ISS | Time for Surgery | Fracture Type | Roof Fracture | Operation Time | Bleeding | Reduction Quality | Osteoarthritis | JOA at One Year | JOA at Last Follow-Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | Days | Minutes | mL | |||||||||||
1 | 38 | M | 18.1 | Snowboard | 9 | 11 | BC + PW | − | 209 | 309 | Anatomical | Tönnis II | 93 | 84 |
2 | 44 | M | 15.3 | TA | 10 | 17 | TV | − | 190 | 482 | Anatomical | − | 99 | 93 |
3 | 64 | M | 15.0 | Fall | 18 | 15 | BC | − | 155 | 574 | Imperfect | Tönnis I | 79 | 98 |
4 | 28 | M | 16.3 | Fall | 18 | 27 | BC | − | 330 | 1941 | Poor | Tönnis I | 87 | 91 |
5 | 39 | M | 14.6 | Fall | 22 | 11 | BC | + | 186 | 596 | Anatomical | − | 91 | 100 |
6 | 34 | M | 14.5 | Fall | 9 | 6 | TV | + | 222 | 801 | Imperfect | − | 93 | 93 |
7 | 61 | F | 10.9 | TA | 14 | 22 | TS | − | 194 | 800 | Anatomical | − | 85 | 90 |
8 | 74 | F | 11.2 | TA | 11 | 8 | TV + PW | + | 163 | 281 | Imperfect | Tönnis III | 71 | 74 |
9 | 42 | M | 10.8 | TA | 11 | 8 | TS | − | 143 | 220 | Anatomical | − | 95 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuwahara, Y.; Takemoto, G.; Mitsuya, S.; Yamauchi, K.-i. The Long-Term Clinical and Radiographic Outcomes of Cerclage Cable Fixation for Displaced Acetabular Fractures Using a Posterior Approach: A Retrospective Cohort Study. Medicina 2024, 60, 1659. https://doi.org/10.3390/medicina60101659
Kuwahara Y, Takemoto G, Mitsuya S, Yamauchi K-i. The Long-Term Clinical and Radiographic Outcomes of Cerclage Cable Fixation for Displaced Acetabular Fractures Using a Posterior Approach: A Retrospective Cohort Study. Medicina. 2024; 60(10):1659. https://doi.org/10.3390/medicina60101659
Chicago/Turabian StyleKuwahara, Yutaro, Genta Takemoto, So Mitsuya, and Ken-ichi Yamauchi. 2024. "The Long-Term Clinical and Radiographic Outcomes of Cerclage Cable Fixation for Displaced Acetabular Fractures Using a Posterior Approach: A Retrospective Cohort Study" Medicina 60, no. 10: 1659. https://doi.org/10.3390/medicina60101659