Numerical Analysis on Temperature Field of Grinding Ti-6Al-4V Titanium Alloy by Oscillating Heat Pipe Grinding Wheel
Abstract
:1. Introduction
2. Simulation Model and Parameters
2.1. OHP Grinding Wheel Model
2.2. Simulation Model
2.3. Simulation Parameters
3. Results and Discussion
3.1. Effects of the Grinding Heat Flux and OHPs
3.2. Temperature Field of the Grinding Wheel
3.3. Temperature Field of the Workpiece
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ap | Depth of cut, mm |
b | Width of grinding wheel, mm |
ds | Diameter of the grinding wheel, mm |
d0 | Hydraulic diameter of the oscillating heat pipe channel, mm |
Ft | Tangential grinding force, N |
ka | Thermal conduction of the abrasive layer, W/(m·K) |
km | Thermal conduction of the matrix of the grinding wheel, W/(m·K) |
kOHP | Thermal conduction of the oscillating heat pipe grinding wheel, W/(m·K) |
La | Thickness of the matrix of the grinding wheel, mm |
Lm | Thickness of the matrix of the grinding wheel, mm |
Ltotal | Thickness of the matrix of the evaporation of the grinding wheel, mm |
ls | Length of the grinding zone, mm |
N | Length of the grinding zone, mm |
P | Power, W |
Qtotal | Total grinding heat flux, W/m2 |
vs | Grinding speed, m/s |
vw | Infeed speed, mm/min |
References
- Prasad Rambabu, N.; Eswara Prasad, V.V.K.; Wanhill, R.J.H. Aerospace Materials and Material Technologies; Springer: Singapore, 2017; Volume 1, ISBN 9789811021343. [Google Scholar]
- Zhang, X.; Chen, Y.; Hu, J. Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 2018, 97, 22–34. [Google Scholar] [CrossRef]
- Österle, W.; Li, P.X. Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater. Sci. Eng. A 1997, 238, 357–366. [Google Scholar] [CrossRef]
- Malkin, S.; Guo, C. Thermal Analysis of Grinding. CIRP Ann. 2007, 56, 760–782. [Google Scholar] [CrossRef]
- Kappmeyer, G.; Hubig, C.; Hardy, M.; Witty, M.; Busch, M. Modern Machining of Advanced Aerospace Alloys-Enabler for Quality and Performance. Procedia CIRP 2012, 1, 28–43. [Google Scholar] [CrossRef]
- Klocke, F.; Soo, S.L.; Karpuschewski, B.; Webster, J.A.; Novovic, D.; Elfizy, A.; Axinte, D.A.; Tönissen, S. Abrasive machining of advanced aerospace alloys and composites. CIRP Ann. 2015, 64, 581–604. [Google Scholar] [CrossRef]
- Adrian, P. Mouritz Processing and machining of aerospace metals. In Introduction to Aerospace Materials; Mouritz, A.P., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 154–172. ISBN 9781855739468. [Google Scholar]
- Tawakoli, T.; Rabiey, M. An innovative concept and its effects on wheel surface topography in dry grinding by resin and vitrified bond CBN wheel. Mach. Sci. Technol. 2008, 12, 514–528. [Google Scholar] [CrossRef]
- Malkin, S. Current Trends in CBN Grinding Technology. CIRP Ann. Manuf. Technol. 1985, 34, 557–563. [Google Scholar] [CrossRef]
- Chen, S.P.; Liu, X.P.; Wan, L.; Gao, P.Z.; Zhang, W.; Hou, Z.Q. Effect of V2O5 addition on the wettability of vitrified bond to diamond abrasive and grinding performance of diamond wheels. Diam. Relat. Mater. 2020, 102, 107672. [Google Scholar] [CrossRef]
- Zhi, G.; Bi, W.Y.; Tang, J.J.; Rong, Y.K. The analysis of bonding mechanism of CBN grains for electroplated superabrasive tools. In Proceedings of the Applied Mechanics and Materials, Jakarta, Indonesia, 15–16 October 2014. [Google Scholar]
- Li, Z.; Ding, W.; Shen, L.; Xi, X.; Fu, Y. Comparative investigation on high-speed grinding of TiCp/Ti–6Al–4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels. Chin. J. Aeronaut. 2016, 29, 1414–1424. [Google Scholar] [CrossRef] [Green Version]
- Lyu, J.J.; Wu, X.; Liu, Y.; Liu, Y.; Li, A.D.R.; Zheng, Y.; Shih, A. A miniature nickel-diamond electroplated wheel for grinding of the arterial calcified plaque. In Proceedings of the Procedia Manufacturing, Penn State Behrend Erie, PA, USA, 10–14 June 2019. [Google Scholar]
- Marinescu, I.D.; Rowe, W.B.; Dimitrov, B.; Ohmori, H. Tribology of Abrasive Machining Processes; Elsevier: Oxford, UK, 2012; ISBN 9781437734676. [Google Scholar]
- Ren, B.; Gao, L.; Xie, B.T.; Li, M.J.; Zhang, S.D.; Zu, G.Q.; Ran, X. Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives. Tribol. Int. 2020, 144, 106114. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, P.; Li, X.; Wang, J.; Huang, C.; Zhu, H.; Zou, B.; Liu, H. Grinding performance and tribological behavior in solid lubricant assisted grinding of glass-ceramics. J. Manuf. Process. 2020, 51, 31–43. [Google Scholar] [CrossRef]
- Kuang, W.; Zhao, B.; Yang, C.; Ding, W. Effects of h-BN particles on the microstructure and tribological property of self-lubrication CBN abrasive composites. Ceram. Int. 2020, 46, 2457–2464. [Google Scholar] [CrossRef]
- Hadad, M.J.; Tawakoli, T.; Sadeghi, M.H.; Sadeghi, B. Temperature and energy partition in minimum quantity lubrication-MQL grinding process. Int. J. Mach. Tools Manuf. 2012, 54–55, 10–17. [Google Scholar] [CrossRef]
- Sadeghi, M.H.; Haddad, M.J.; Tawakoli, T.; Emami, M. Minimal quantity lubrication-MQL in grinding of Ti–6Al–4V titanium alloy. Int. J. Adv. Manuf. Technol. 2009, 44, 487–500. [Google Scholar] [CrossRef]
- Damir, A.; Shi, B.; Attia, M.H. Flow characteristics of optimized hybrid cryogenic-minimum quantity lubrication cooling in machining of aerospace materials. CIRP Ann. 2019, 68, 77–80. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Zhang, Y.; Wang, Y.; Jia, D.; Yang, M. Grinding temperature and energy ratio coefficient in MQL grinding of high-temperature nickel-base alloy by using different vegetable oils as base oil. Chin. J. Aeronaut. 2016, 29, 1084–1095. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Kalita, P.; Malshe, A.P.; Shih, A.J. Performance of novel MoS2 nanoparticles based grinding fluids in minimum quantity lubrication grinding. In Proceedings of the Transactions of the North American Manufacturing Research Institution of SME, Monterry, Mexico, 20–23 May 2008; Volume 36, pp. 357–364. [Google Scholar]
- Jia, D.; Li, C.; Wang, S.; Zhang, Q.; Hou, Y. Advances and Patents about Grinding Equipments with Nano-Particle Jet Minimum Quantity Lubrication. Recent Pat. Nanotechnol. 2015, 8, 215–229. [Google Scholar] [CrossRef]
- Singh, H.; Sharma, V.S.; Singh, S.; Dogra, M. Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. J. Manuf. Process. 2019, 39, 241–249. [Google Scholar] [CrossRef]
- Setti, D.; Ghosh, S.; Paruchuri, V.R. Influence of nanofluid application on wheel wear, coefficient of friction and redeposition phenomenon in surface grinding of Ti-6Al-4V. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2018, 232, 128–140. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Sharma, V.S.; Dogra, M. Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI. Tribol. Int. 2020, 144, 106113. [Google Scholar] [CrossRef]
- Li, M.; Yu, T.; Zhang, R.; Yang, L.; Ma, Z.; Li, B.; Wang, X.Z.; Wang, W.; Zhao, J. Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. J. Clean. Prod. 2020, 244, 118747. [Google Scholar] [CrossRef]
- Shibata, J.; Yonetsu, S. Thermal Aspects of Creep-Feed Grinding and Effective Coolant Application. In Proceedings of the Twenty-Sixth International Machine Tool Design and Research Conference, Manchester, UK, 17–18 September 1986. [Google Scholar]
- Chong-Ching, C. An application of lubrication theory to predict useful flow-rate of coolants on grinding porous media. Tribol. Int. 1997, 30, 575–581. [Google Scholar] [CrossRef]
- Cayli, T.; Klocke, F.; Döbbeler, B. Increasing Energy Efficiency in Turning of Aerospace Materials with High-Pressure Coolant Supply. Procedia Manuf. 2018, 21, 405–412. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Liu, G.; Hou, Y.; Li, R.; Zhang, N.; Wu, Q.; et al. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J. Clean. Prod. 2018, 193, 236–248. [Google Scholar] [CrossRef]
- Setti, D.; Yadav, N.K.; Ghosh, S. Grindability improvement of Ti-6Al-4V using cryogenic cooling. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2014, 228, 1131–1137. [Google Scholar] [CrossRef]
- Amini, S.; Baraheni, M.; Esmaeili, S.J. Experimental comparison of MO40 steel surface grinding performance under different cooling techniques. Int. J. Light. Mater. Manuf. 2019, 2, 330–337. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, F.; Xu, Q.; Huang, Y.; Li, M.; Huang, H.; Wang, C.; Zhou, Y.; Tang, H. Selective laser sintering and grinding performance of resin bond diamond grinding wheels with arrayed internal cooling holes. Ceram. Int. 2019, 45, 20873–20881. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, W. Suppression of surface burn in grinding of titanium alloy TC4 using a self-inhaling internal cooling wheel. Chin. J. Aeronaut. 2011, 24, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, B. The impact of contact zone flow rate and bulk cooling on the cooling efficiency in grinding applying different nozzle designs and grinding wheel textures. CIRP J. Manuf. Sci. Technol. 2017, 18, 179–187. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Zhang, Y.; Wang, Y.; Li, B.; Jia, D.; Hou, Y.; Li, R. Research on microscale skull grinding temperature field under different cooling conditions. Appl. Therm. Eng. 2017, 126, 525–537. [Google Scholar] [CrossRef]
- Webster, J.; Brinksmeier, E.; Heinzel, C.; Wittmann, M.; Thoens, K. Assessment of Grinding Fluid Effectiveness in Continuous-Dress Creep Feed Grinding. CIRP Ann. 2002, 51, 235–240. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.; Jung, Y. Development of twin wheel creep-feed grinding machine using continuous dressing for machining of aircraft rotary wing. J. Cent. South. Univ. 2011, 18, 704–710. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, J.; Fu, Y. Study on coolant-induced hydrodynamic pressure in contact zone while deep grinding with CBN wheels. Mach. Sci. Technol. 2016, 20, 547–566. [Google Scholar] [CrossRef]
- Ma, H. Oscillating Heat Pipes; Springer: New York, NY, USA, 2015; ISBN 9781493925049. [Google Scholar]
- Jo, J.; Kim, J.; Kim, S.J. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe. Energy Convers. Manag. 2019, 181, 331–341. [Google Scholar] [CrossRef]
- Qian, N.; Fu, Y.; Zhang, Y.; Chen, J.; Xu, J. Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel. Int. J. Heat Mass Transf. 2019, 136, 911–923. [Google Scholar] [CrossRef]
- Taft, B.S.; Williams, A.D.; Drolen, B.L. Review of Pulsating Heat Pipe Working Fluid Selection. J. Thermophys. Heat Transf. 2012, 26, 651–656. [Google Scholar] [CrossRef]
- Creatini, F.; Guidi, G.M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; et al. Pulsating Heat pipe only for Space (PHOS): Results of the REXUS 18 sounding rocket campaign. J. Phys. Conf. Ser. 2015, 655. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Sun, Q.; Wang, H.; Zhang, D.; Yuan, J. Performance characteristics of flat-plate oscillating heat pipe with porous metal-foam wicks. Int. J. Heat Mass Transf. 2019, 137, 20–30. [Google Scholar] [CrossRef]
- Wu, Z.; Deng, J.; Su, C.; Luo, C.; Xia, D. Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process. Int. J. Refract. Met. Hard Mater. 2014, 45, 238–248. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, Y.; Luo, C. Design, fabrication and dry cutting performance of pulsating heat pipe self-cooling tools. J. Clean. Prod. 2016, 124, 276–282. [Google Scholar] [CrossRef]
- Qian, N.; Fu, Y.; Marengo, M.; Chen, J.; Xu, J. Start-up timing behavior of single-loop oscillating heat pipes based on the second-order dynamic model. Int. J. Heat Mass Transf. 2020, 147, 118994. [Google Scholar] [CrossRef]
- Qian, N.; Wang, X.; Fu, Y.; Zhao, Z.; Xu, J.; Chen, J. Predicting heat transfer of oscillating heat pipes for machining processes based on extreme gradient boosting algorithm. Appl. Therm. Eng. 2020, 164, 114521. [Google Scholar] [CrossRef]
- Ebrahimi Dehshali, M.; Nazari, M.A.; Shafii, M.B. Thermal performance of rotating closed-loop pulsating heat pipes: Experimental investigation and semi-empirical correlation. Int. J. Therm. Sci. 2018, 123, 14–26. [Google Scholar] [CrossRef]
- Aboutalebi, M.; Nikravan Moghaddam, A.M.; Mohammadi, N.; Shafii, M.B. Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int. Commun. Heat Mass Transf. 2013, 45, 137–145. [Google Scholar] [CrossRef]
- Liou, T.-M.; Chang, S.W.; Cai, W.L.; Lan, I.-A. Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad. Int. J. Heat Mass Transf. 2019, 131, 273–290. [Google Scholar] [CrossRef]
- On-ai, K.; Kammuang-lue, N.; Terdtoon, P.; Sakulchangsatjatai, P. Implied physical phenomena of rotating closed-loop pulsating heat pipe from working fluid temperature. Appl. Therm. Eng. 2019, 148, 1303–1309. [Google Scholar] [CrossRef]
- Qian, N.; Fu, Y.; Marengo, M.; Xu, J.; Chen, J.; Jiang, F. Heat Transport Capacity of an Axial-Rotating Single-Loop Oscillating Heat Pipe for Abrasive-Milling Tools. Energies 2020, 13, 2145. [Google Scholar] [CrossRef]
- Klocke, F. Manufacturing Processes 2. Grinding, Honing, Lapping; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9788578110796. [Google Scholar]
Material | Density | Specific Capacity | Thermal Conduction |
---|---|---|---|
kg/m3 | J/(kg·K) | W/(m·K) | |
2Cr13 stainless steel | 8030 | 502.5 | 18.2 |
Ti-6Al-4V alloy | 4440 | 674 | 9.8 |
Abrasive layer | 8000 | 509 | 99 |
Parameters | Value |
---|---|
Ambient and initial temperature (°C) | 15 |
Environment pressure (atm) | 1 |
Thermal convection for condenser (W/(m2·K)) | 700 |
Solver | Segregated solver |
Time step (s) | 0.005 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, N.; Zhao, Z.; Fu, Y.; Xu, J.; Chen, J. Numerical Analysis on Temperature Field of Grinding Ti-6Al-4V Titanium Alloy by Oscillating Heat Pipe Grinding Wheel. Metals 2020, 10, 670. https://doi.org/10.3390/met10050670
Qian N, Zhao Z, Fu Y, Xu J, Chen J. Numerical Analysis on Temperature Field of Grinding Ti-6Al-4V Titanium Alloy by Oscillating Heat Pipe Grinding Wheel. Metals. 2020; 10(5):670. https://doi.org/10.3390/met10050670
Chicago/Turabian StyleQian, Ning, Zhengcai Zhao, Yucan Fu, Jiuhua Xu, and Jiajia Chen. 2020. "Numerical Analysis on Temperature Field of Grinding Ti-6Al-4V Titanium Alloy by Oscillating Heat Pipe Grinding Wheel" Metals 10, no. 5: 670. https://doi.org/10.3390/met10050670