Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning
Abstract
:1. Introduction
2. Accumulation of Learning Data through FEM Analysis
2.1. Verifying the Validity of the FEM Model
2.2. Generation and Analysis of Corroded Steel Specimen Using a Spatial Autocorrelation Model
3. Building a Model to Assess Effective Thickness Using Deep Learning
3.1. Outline of CNN
3.1.1. The Convolutional Layer
3.1.2. The Pooling Layer
3.1.3. The Fully Connected Layer and the Output Layer
3.2. Generation of Input Image for CNN and Learning
3.3. Proposed Feature Extraction Layer
3.4. CNN Learning and Verification of the Model Precision
4. FEM Modeling of Corroded Structural Members
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Krechkovska, H.; Student, O.; Lesiuk, G.; Correia, J. Features of the microstructural and mechanical degradation of long term operated mild steel. Int. J. Struct. Integr. 2018, 9, 296–306. [Google Scholar] [CrossRef]
- Lesiuk, G.; Rymsza, B.; Rabiega, J.; Correia, J.A.; De Jesus, A.M.P.; Calcada, R. Influence of loading direction on the static and fatigue fracture properties of the long term operated metallic materials. Eng. Fail. Anal. 2019, 96, 409–425. [Google Scholar] [CrossRef]
- Liu, Z.; Hebdon, M.H.; Correia, J.A.; Carvalho, H.; Vilela, P.M.; de Jesus, A.M.; Calçada, R.A. Fatigue assessment of critical connections in a historic Eyebar suspension bridge. J. Perform. Constr. Facil. 2018, 33, 04018091. [Google Scholar] [CrossRef]
- Lesiuk, G.; Correia, J.; Smolnicki, M.; De Jesus, A.; Duda, M.; Montenegro, P.; Calcada, R. Fatigue Crack Growth Rate of the Long Term Operated Puddle Iron from the Eiffel Bridge. Metals 2019, 9, 53. [Google Scholar] [CrossRef]
- National Transportation Safety Board. Collapse of I-35W Highway Bridge, Minneapolis, Minnesota, August 1, 2007; Highway Accident Report NTSB/HAR-08/03; National Transportation Safety: Washington, DC, USA, 2008.
- Kariya, A.; Tagaya, K.; Kaita, T.; Fujii, K. Mechanical properties of corroded steel plate under tensile force. In Proceedings of the 3rd International Structural Engineering and Construction Conference (ISEC-03), Shunan, Japan, 20–23 September 2005; Hara, T., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 105–110. [Google Scholar]
- Kim, I.T.; Dao, D.K.; Jeong, Y.S.; Huh, J.; Ahn, J.H. Effect of corrosion on the tension behavior of painted structural steel members. J. Constr. Steel Res. 2017, 133, 256–268. [Google Scholar] [CrossRef]
- Appuhamy, J.M.R.S.; Ohga, M.; Chun, P.; Dissanayake, P.B.R. Numerical investigation of residual strength and energy dissipation capacities of corroded bridge members under earthquake loading. J. Earthq. Eng. 2013, 17, 171–186. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, S.; Wang, H.; Li, A. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology. Constr. Build. Mater. 2017, 152, 777–793. [Google Scholar] [CrossRef]
- Qin, G.C.; Xu, S.H.; Yao, D.Q.; Zhang, Z.X. Study on the degradation of mechanical properties of corroded steel plates based on surface topography. J. Constr. Steel Res. 2016, 125, 205–217. [Google Scholar] [CrossRef]
- Sultana, S.; Wang, Y.; Sobey, A.J.; Wharton, J.A.; Shenoi, R.A. Influence of corrosion on the ultimate compressive strength of steel plates and stiffened panels. Thin-Walled Struct. 2015, 96, 95–104. [Google Scholar] [CrossRef]
- Tung, N.X.; Nogami, K.; Yamamoto, N.; Yamasawa, T.; Yoda, T.; Kasano, H.; Murakoshi, J.; Toyama, N.; Sawada, M. Measurement of Corroded Gusset Plate Connection of Steel Truss Bridge and Evaluation for its Corrosion State. In Design, Fabrication and Economy of Metal Structures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 657–662. [Google Scholar]
- Nguyen, X.T.; Nogami, K.; Yoda, T.; Kasano, H.; Murakoshi, J.; Sawada, M. Evaluation of corrosion state of gusset plate connections of steel truss bridge. Kou kouzou rombunshuu 2014, 21, 71–83. [Google Scholar]
- Chun, P.J.; Yamashita, H.; Furukawa, S. Bridge damage severity quantification using multipoint acceleration measurement and artificial neural networks. Shock Vib. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Appuhamy, J.R.S.; Ohga, M.; Kaita, T.; Dissanayake, R. Reduction of ultimate strength due to corrosion-A finite element computational method. Int. J. Eng. 2011, 5, 194. [Google Scholar]
- Kaita, T.; Appuhamy, J.M.R.S.; Itogawa, K.; Ohga, M.; Fujii, K. Experimental study on remaining strength estimation of corroded wide steel plates under tensile force. Procedia Eng. 2011, 14, 2707–2713. [Google Scholar] [CrossRef]
- Karina, C.N.; Chun, P.J.; Okubo, K. Tensile strength prediction of corroded steel plates by using machine learning approach. Steel Compos. Struct. 2017, 24, 635–641. [Google Scholar]
- Okumura, M.; Fujii, K.; Tukai, M. Statistical model of steel corrosion considering spatial auto-correlation. Doboku Gakkai Ronbunshu 2001, 2011, 109–116. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Chun, P.J.; Tsukada, K.; Kusumoto, M.; Okubo, K. Investigation and repair plan for abraded steel bridge piers: case study from Japan. Proc. Inst. Civ. Eng. -Forensic Eng. 2019, 172, 11–18. [Google Scholar] [CrossRef]
Layer Name | The Number of Filters | Size or Dropout Rate | Output Size |
---|---|---|---|
Input image | - | - | Original image size |
Feature extraction layer | - | - | Original image size |
Image resize layer | - | - | 256 × 256 × 3 |
Convolutional layer 1 | 32 | 11 × 11 | 246 × 246 × 32 |
Convolutional layer 2 | 32 | 7 × 7 | 240 × 240 × 32 |
Convolutional layer 3 | 32 | 3 × 3 | 238 × 238 × 32 |
Pooling layer 1 | - | 2 × 2 | 119 × 119 × 32 |
Dropout 1 | - | 0.2 | 119 × 119 × 32 |
Convolutional layer 4 | 64 | 7 × 7 | 113 × 113 × 64 |
Convolutional layer 5 | 64 | 3 × 3 | 111 × 111 × 64 |
Pooling layer 2 | - | 2 × 2 | 55 × 55 × 64 |
Dropout 2 | - | 0.2 | - |
Convolutional layer 6 | 128 | 5 × 5 | 53 × 53 × 128 |
Pooling layer 3 | - | 2 × 2 | 26 × 26 × 128 |
Convolutional layer 4 | 256 | 3 × 3 | 24 × 24 × 256 |
Pooling layer 4 | - | 2 × 2 | 12 × 12 × 256 |
Fully connected layer 1 | - | - | 200 |
Fully connected layer 2 | - | - | 40 |
Dropout 3 | - | 0.2 | - |
Fully connected layer 3 | - | - | 20 |
Dropout 4 | - | 0.2 | - |
output | - | - | 1 |
Model Type | Effective Thickness Model | Average Thickness Model |
---|---|---|
Steel plate model | 3.3% | 22.0% |
H-section steel model | 4.2% | 16.8% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, P.-j.; Yamane, T.; Izumi, S.; Kameda, T. Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning. Metals 2019, 9, 1259. https://doi.org/10.3390/met9121259
Chun P-j, Yamane T, Izumi S, Kameda T. Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning. Metals. 2019; 9(12):1259. https://doi.org/10.3390/met9121259
Chicago/Turabian StyleChun, Pang-jo, Tatsuro Yamane, Shota Izumi, and Toshihiro Kameda. 2019. "Evaluation of Tensile Performance of Steel Members by Analysis of Corroded Steel Surface Using Deep Learning" Metals 9, no. 12: 1259. https://doi.org/10.3390/met9121259