Investigation on Contact Heating of Aluminum Alloy Sheets in Hot Stamping Process
Abstract
:1. Introduction
2. Experimental Device, Method, and Simulation
2.1. Contact Heating Device
2.2. Experimental Method
2.3. Simulation
3. Results and Discussion
3.1. Simulation Results
3.1.1. Temperature Distribution of Simulation Model
3.1.2. Contact Heating Process of Aluminum Alloy Sheets
3.2. Experimental Results
3.2.1. Analysis of Contact Surface Temperature Distribution
3.2.2. Heating Curves of Aluminum Alloy Sheets during Contact Heating
3.2.3. Rapid Solution Treatment of 7075 Aluminum Alloy Sheet
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zheng, K.; Politis, D.J.; Wang, L.; Lin, J. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int. J. Lightweight Mater. Manuf. 2018, 1, 55–80. [Google Scholar] [CrossRef]
- Han, N.M.; Zhang, X.M.; Liu, S.D.; He, D.G.; Zhang, R. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050. J. Alloys Compd. 2011, 509, 4138–4145. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, W.; Hao, X.; Qiu, F.; Zhao, Q. Improving elevated-temperature strength of an Al-Mn-Si alloy by strain-induced precipitation. Metals 2018, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yan, H.; Liu, W.; Zou, X.; Tang, B. Effect of T6 heat treatment on microstructure and hardness of nanosized Al2O3 reinforced 7075 aluminum matrix composites. Metals 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Maeno, T.; Mori, K.; Yachi, R. Hot stamping of high-strength aluminium alloy aircraft parts using quick heating. CIRP Ann. 2017, 66, 269–272. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Wang, Z.; Zhu, B.; Wang, Y.; Zhang, Y. Flow and friction behaviors of 6061 aluminum alloy at elevated temperatures and hot stamping of a B-pillar. Int. J. Adv. Manuf. Technol. 2018, 96, 4063–4083. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Wang, Z.; Zhu, B.; Wang, Y.; Zhang, Y. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Eng. 2017, 207, 723–728. [Google Scholar] [CrossRef]
- Sun, L.; Cai, Z.; He, D.; Li, L. Aluminum alloy sheet-forming limit curve prediction based on original measured stress–strain data and its application in stretch-forming process. Metals 2019, 9, 1129. [Google Scholar] [CrossRef] [Green Version]
- Garrett, R.P.; Lin, J.; Dean, T.A. An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: Experimentation and modelling. Int. J. Plast. 2005, 21, 1640–1657. [Google Scholar] [CrossRef]
- Zheng, K.; Dong, Y.; Zheng, D.; Lin, J.; Dean, T.A. An experimental investigation on the deformation and post-formed strength of heat-treatable aluminium alloys using different elevated temperature forming processes. J. Mater. Process. Technol. 2019, 268, 87–96. [Google Scholar] [CrossRef]
- Harrison, N.R.; Luckey, S.G. Hot stamping of a B-pillar outer from high strength aluminum sheet AA7075. SAE Int. J. Mate. Manuf. 2014, 7, 567–573. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, B.; Lin, J.; Fu, L.; Ma, W. Forming defects in aluminum alloy hot stamping of side-door impact beam. Trans. Nonferrous Met. Soc. China 2014, 24, 3611–3620. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Zheng, K. An experimental and numerical investigation on the formability of AA7075 sheet in hot stamping condition. Int. J. Adv. Manuf. Technol. 2017, 92, 3299–3309. [Google Scholar] [CrossRef]
- Liang, W.; Tao, W.; Zhu, B.; Zhang, Y. Influence of heating parameters on properties of the Al-Si coating applied to hot stamping. Sci. China Technol. Sci. 2017, 60, 1088–1102. [Google Scholar] [CrossRef]
- Schuster, P.; Österreicher, J.; Kirov, G.; Sommitsch, C.; Kessler, O.; Mukeli, E. Characterisation and comparison of process chains for producing automotive structural parts from 7xxx aluminium sheets. Metals 2019, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, J.; He, D. Influence of contact solid-solution treatment on microstructures and mechanical properties of 7075 aluminum alloy. Mater. Sci. Eng. A 2019, 743, 500–503. [Google Scholar] [CrossRef]
- Rojas, J.I.; Crespo, D. Dynamic microstructural evolution of an Al-Zn-Mg-Cu alloy (7075) during continuous heating and the influence on the viscoelastic response. Mater. Charact. 2017, 134, 319–328. [Google Scholar] [CrossRef]
- Zou, X.; Yan, H.; Chen, X. Evolution of second phases and mechanical properties of 7075 Al alloy processed by solution heat treatment. Trans. Nonferrous Met. Soc. China 2017, 27, 2146–2155. [Google Scholar] [CrossRef]
- He, X.; Pan, Q.; Li, H.; Huang, Z.; Liu, S.; Li, K.; Li, X. Effect of artificial aging, delayed aging, and pre-aging on microstructure and properties of 6082 aluminum alloy. Metals 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Rometsch, P.A.; Zhang, Y.; Knight, S. Heat treatment of 7xxx series aluminium alloys-some recent developments. Trans. Nonferrous Met. Soc. China 2014, 24, 2003–2017. [Google Scholar] [CrossRef]
- Marlaud, T.; Deschamps, A.; Bley, F.; Lefebvre, W.; Baroux, B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu Alloy. Acta Mater. 2010, 58, 4814–4826. [Google Scholar] [CrossRef]
- Xu, D.K.; Rometsch, P.A.; Birbilis, N. Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part II. Microstructure and mechanical properties. Mater. Sci. Eng. A 2012, 534, 244–252. [Google Scholar] [CrossRef]
- Jiang, S.; Nin, A.; Xian, S. Investigation on fast solid solution treatment of high strength aluminum alloy. J. Shaoyang Univ. (Nat. Sci.) 2005, 2, 25–27. [Google Scholar]
- Chang, Y.; Hung, F.; Lui, T. Enhancing the tensile yield strength of A6082 aluminum alloy with rapid heat solutionizing. Mater. Sci. Eng. A 2017, 702, 438–445. [Google Scholar] [CrossRef]
- Mori, K.; Maeno, T.; Mongkolkaji, K. Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping. J. Mater. Process. Technol. 2013, 213, 508–514. [Google Scholar] [CrossRef]
- Mori, K.; Maeno, T.; Fuzisaka, S. Punching of ultra-high strength steel sheets using local resistance heating of shearing zone. J. Mater. Process. Technol. 2012, 212, 534–540. [Google Scholar] [CrossRef]
- Mori, K.; Maeno, T.; Maruo, Y. Punching of small hole of die-quenched steel sheets using local resistance heating. CIRP Ann. 2012, 61, 255–258. [Google Scholar] [CrossRef]
- Kolleck, R.; Veit, R.; Merklein, M.; Lechler, J.; Geiger, M. Investigation on induction heating for hot stamping of boron alloyed steels. CIRP Ann. 2009, 58, 275–278. [Google Scholar] [CrossRef]
- Shao, Z.; Jiang, J.; Lin, J. Feasibility study on direct flame impingement heating applied for the solution heat treatment, forming and cold die quenching technique. J. Manuf. Process. 2018, 36, 398–404. [Google Scholar] [CrossRef]
- Ploshikhin, V.; Prihodovsky, A.; Kaiser, J.; Bisping, R.; Lindner, H.; Lengsdorf, C.; Roll, K. New heating technology for the furnace-free press hardening process. In Tools and Technologies for Processing Ultra-High Strength Materials; Graz, Austria, 2011. [Google Scholar]
- Rasera, J.N.; Daun, K.J.; Shi, C.J.; D’Souza, M. Direct contact heating for hot forming die quenching. Appl. Therm. Eng. 2016, 98, 1165–1173. [Google Scholar] [CrossRef]
- Rasera, J. Development of a Novel Technology for Rapidly Austenitizing Usibor® 1500P Steel. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2015. [Google Scholar]
- Field, N. Austenitization of Ultra-High Strength Steel by Direct Contact Heating for Hot Forming Die Quenching. Master’s Thesis, University of Waterloo, Waterloo, ON, Canada, 2017. [Google Scholar]
- Geng, H.C.; Wang, Z.J.; Wang, K.; Wang, Y.L.; Zhang, Y.S. Simulation on direct contact heating of aluminum alloys. In Proceedings of the 4th International Conference on Advanced High Strength Steel and Press Hardening (ICHSU2018), Hefei, China, 20–22 August 2018; pp. 249–254. [Google Scholar]
- Ji, K.; Fakir, O.E.; Gao, H.; Wang, L. Determination of heat transfer coefficient for hot stamping process. Mater. Today Proc. 2015, 2, S434–S439. [Google Scholar] [CrossRef] [Green Version]
Temperature (°C) | 20 | 400 | 600 |
---|---|---|---|
Density (kg/m3) | 7800 | 7700 | 7600 |
Elastic modulus (GPa) | 210 | 180 | 145 |
Expansion coefficient (/°C) | - | 12.6 × 10−6 | 13.2 × 10−6 |
Thermal conductivity (W/m·°C) | - | 33 | 33 |
Mg | Zn | Mn | Cu | Fe | Cr | Si | Al |
---|---|---|---|---|---|---|---|
3.161 | 5.895 | 0.1778 | 1.63 | 0.1309 | 0.2113 | 0.03 | Bal. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, H.; Wang, Y.; Wang, Z.; Zhang, Y. Investigation on Contact Heating of Aluminum Alloy Sheets in Hot Stamping Process. Metals 2019, 9, 1341. https://doi.org/10.3390/met9121341
Geng H, Wang Y, Wang Z, Zhang Y. Investigation on Contact Heating of Aluminum Alloy Sheets in Hot Stamping Process. Metals. 2019; 9(12):1341. https://doi.org/10.3390/met9121341
Chicago/Turabian StyleGeng, Huicheng, Yilin Wang, Zijian Wang, and Yisheng Zhang. 2019. "Investigation on Contact Heating of Aluminum Alloy Sheets in Hot Stamping Process" Metals 9, no. 12: 1341. https://doi.org/10.3390/met9121341