The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding
Abstract
:1. Introduction
2. Metabolite Profiles during Pollen Development
2.1. Carbohydrates and Acid Invertase
2.2. Proline
2.3. Lipids
2.4. Gluthatione
2.5. Flavonoids
2.6. Polyamines
2.7. Hormones
Commun name | Latin name | Metabolites | Implication | References |
---|---|---|---|---|
arabidopsis | Arabidopsis thaliana | Proline | Required for pollen germination | [52] |
Glutathione | Required for pollen germination | [59] | ||
Auxin | Required for floral organ development and pollen production | [77] | ||
Required for pollen maturation and anther dehiscence | [79] | |||
Gibberellin | Required for stamen elongation and pollen maturation | [82] | ||
Jasmonic acid | Required for pollen germination | [85,86] | ||
Brassinosteroid | Formation of pollen exine | [94] | ||
Flavonoids | Not required for pollen germination | [66] | ||
Devil’s trumpet | Datura metel | Amino acids | Accumulation during pollen development | [51] |
Proline represents 60% of the free amino-acids | ||||
kiwi | Actinidia deliciosa | Polyamines | Required for pollen viability and pollen germination | [70] |
lily | Lilium auratum | Carbohydrates | Accumulation of soluble sugars during anther development | [45] |
Locular fluid is a sugar storage compartment | [40] | |||
Gradient of sugars from anther wall to pollen grain | ||||
maize | Zea mays | Flavonoids | Required for pollen germination | [63] |
Abscisic acid | High ABA concentration inhibited in-vitro pollen germination | [91] | ||
olive | Olea europaea | Lipids | Accumulation of lipids during pollen development | [54] |
Energy reserve for pollen germination | ||||
petunia | Petunia hybrida | Flavonoids | Required for pollen germination | [63,64] |
Ethylene | Required in anther development and anther dehiscence | [88] | ||
pomegrenate | Punica granatum | Abscisic acid | High ABA concentration inhibited in-vitro pollen germination | [92] |
rice | Oryza sativa | Gibberellin | Required for pollen germination, stamen elongation and pollen development | [83] |
tobacco | Nicotiana tabacum | Flavonoids | Improve in-vitro pollen germination | [62] |
Polyamines | Accumulation of polyamines during pollen development | [68] | ||
Reduction of polyamines during pollen germination | ||||
Auxin | Required for pollen embryogenesis | [80] | ||
Ethylene | Control anther dehiscence | [89] | ||
tomato | Solanum lycopersicum | Carbohydrates | Increase of soluble sugars during pollen and anther development | [33] |
Sucrose represents 80% of total carbohydrates in pollen mature | [46] | |||
Flavonoids | Required for pollen fertility and fruit set | [65] | ||
Polyamines | Accumulation of spermidine and spermine is required for pollen germination | [69] | ||
trumpet vine | Campsis radicans | Lipids | Accumulation of lipids during anther development | [55] |
3. The Impact of Heat Stress on Pollen Quality
3.1. Pollen Viability
3.2. Pollen Development
3.3. Tapetum
3.4. Opening of Loculi
3.5. Pollen Germination
4. Impact of Heat Stress on Pollen Metabolites
4.1. Carbohydrates
4.2. Proline
4.3. Lipids
4.4. Polyamines
4.5. Hormones
Common name | Latin name | Metabolites | Temperatures | Heat-stress length | Plant material used | Impacts | References |
---|---|---|---|---|---|---|---|
tomato | Solanum lycopersicum | Carbohydrates | 32 °C/26 °C | Four months | Flowers totally developed under HS | Decrease in pollen mature | [33] |
32 °C/26 °C | Three months | Flowers totally developed under HS | Sugar abundance decreased in thermo-sensitive genotype compare to thermo-tolerant ones | [12] | |||
36 °C/28 °C | 24 h | Plants at four days after anthesis | Decrease of acid invertase activity in flowers of sensitive genotype compare to tolerant genotype | [14] | |||
Proline | 32 °C/26 °C | Long | Flowers totally developed under HS | Proline transporter expression decreased in anthers | [100] | ||
Polyamines | 33 °C, 35 °C, 38 °C | 20 h | Pollen germination medium | Adding polyamines improved in-vitro pollen germination | [139] | ||
38 °C | 4 h | Pollen germination medium | Decrease in pollen mature | [138] | |||
Brassinosteroids | 35 °C | 4 h | Pollen germination medium | Adding brassinosteroids improved in-vitro pollen germination | [142] | ||
Ethylene | 32 °C/26 °C | Three months | Flowers totally developed under HS | Ethylene transporter mutation decreased pollen viability | [46] | ||
barley | Hordeum vulgare | Auxin | 30 °C/25 °C | Five days | Plants at five leaf stage | Decrease in anther and exogenous auxin restored male sterility | [147] |
rice | Oryza sativa | Proline | 39 °C | 4 h per day during five days | Plants at flowering stage | Decrease in anther | [133] |
Auxin | 39 °C | 5 h per day during five days | Plants at flowering stage | Decrease in anther | [133] | ||
Gibberelin | 39 °C | 4 h per day during five days | Plants at flowering stage | Decrease in anther | [133] | ||
Abscisic acid | 39 °C | 4 h per day during five days | Plants at flowering stage | Increase in anther | [133] | ||
arabidopsis | Arabidopsis thaliana | Auxin | 30 °C/25 °C | Five days | Plants at five leaf stage | Decrease in anther and exogenous auxin restored male sterility | [147] |
bell pepper | Capsicum annuum | Carbohydrates | 32 °C/26 °C | For eight days before anthesis | Plants at flowering stage | Increase of sucrose due to a decrease of acid invertase activity | [111] |
sorghum | Sorghum bicolor | Carbohydrates | 36 °C/26 °C | Long-season | Flowers totally developed under HS | Decrease of sucrose and starch in pollen mature | [130] |
Lipids | 32 °C/28 °C | Ten days | Plants at 40 days after sowing | Decrease of saturated fatty acids which weaken the membrane to ROS attack | [134] | ||
chickpea | Cicer arietinum | Carbohydrates | Above 32 °C/20 °C | Long | Flowers totally developed under HS | Decrease of sugars in sensitive genotypes compare to tolerant genotype in anthers. Tolerant genotype increased hexose abundance in anthers compare to sensitive genotype. | [113] |
lily | Lilium auratum | Proline | 40 °C | 10 min | Pollen germination medium | Adding proline improved in-vitro pollen germination | [132] |
cowpea | Vigna unguiculata | Proline | 45 °C/25 °C | Long | Flowers totally developed under HS | Proline accumulated in anther wheareas in pollen it decreased. Tolerant genotype had a higher abundance of proline in pollen | [50] |
soybean | Glycine max | Lipids | From 30 °C/23 °C to 39 °C/20 °C | Ten days | Flowering stage | Decrease of saturated phospholipids | [11] |
japanese abricot | Prunus mume | Polyamines | 35 °C | 24 h | Pollen germination medium | Addind polyamines did not improve pollen germination | [140] |
5. Breeding for Pollen Thermo-Tolerance
5.1. Heritability of Thermo-Tolerance
5.2. QTL Mapping for Thermo-Tolerance
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006, 11, 15–19. [Google Scholar] [PubMed]
- Ainsworth, E.A.; Ort, D.R. How do we improve crop production in a warming world? Plant Physiol. 2010, 154, 526–530. [Google Scholar]
- Wahid, A.; Gelani, S.; Ashraf, M.; Foolad, M. Heat tolerance in plants: An overview. Environ. Exp. Bot. 2007, 61, 199–223. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In Special Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Dahe, Q., Eds.; Cambridge University Press: Cambridge, UK, 2012; p. 582. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [PubMed]
- Allakhverdiev, S.I.; Kreslavski, V.D.; Klimov, V.V.; Los, D.A.; Carpentier, R.; Mohanty, P. Heat stress: An overview of molecular responses in photosynthesis. Photosynth. Res. 2008, 98, 541–550. [Google Scholar] [PubMed]
- Yamamoto, Y.; Aminaka, R.; Yoshioka, M.; Khatoon, M.; Komayama, K.; Takenaka, D.; Yamashita, A.; Nijo, N.; Inagawa, K.; Morita, N.; et al. Quality control of photosystem ii: Impact of light and heat stresses. Photosynth. Res. 2008, 98, 589–608. [Google Scholar]
- Demirevska-Kepova, K.; Feller, U. Heat sensitivity of rubisco, rubisco activase and rubisco binding protein in higher plants. Acta Physiol. Plant. 2004, 26, 103–114. [Google Scholar]
- Bokszczanin, K.L.; Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium; Fragkostefanakis, S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front. Plant. Sci. 2013. [Google Scholar] [CrossRef]
- De Storme, N.; Geelen, D. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environ. 2014, 37, 1–18. [Google Scholar]
- Dane, F.; Hunter, A.G.; Chambliss, O.L. Fruit set, pollen fertility, and combining ability of selected tomato genotypes under high temperature field conditions. J. Am. Soc. Hort. Sci. 1991, 116, 906–910. [Google Scholar]
- Firon, N.; Shaked, R.; Peet, M.M.; Pharr, D.M.; Zamski, E.; Rosenfeld, K.; Althan, L.; Pressman, E. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Sci. Hort. 2006, 109, 212–217. [Google Scholar]
- Frank, G.; Pressman, E.; Ophir, R.; Althan, L.; Shaked, R.; Freedman, M.; Shen, S.; Firon, N. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ros scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 2009, 60, 3891–3908. [Google Scholar] [PubMed]
- Li, W.; Wei, Z.; Qiao, Z.; Wu, Z.; Cheng, L.; Wang, Y. Proteomics analysis of alfalfa response to heat stress. PloS One 2013, 8, e82725. [Google Scholar] [PubMed]
- Kaplan, F.; Kopka, J.; Haskell, D.W.; Zhao, W.; Schiller, K.C.; Gatzke, N.; Sung, D.Y.; Guy, C.L. Exploring the temperature-stress metabolome of arabidopsis. Plant Physiol. 2004, 136, 4159–4168. [Google Scholar] [PubMed]
- Liu, X.; Huang, B. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. J. Am. Soc. Hort. Sci. 2000, 125, 442–447. [Google Scholar]
- Chaitanya, K.V.; Sundar, D.; Reddy, A.R. Mulberry leaf metabolism under high temperature stress. Biol. Plantarum 2001, 44, 379–384. [Google Scholar]
- Rizhsky, L.; Liang, H.; Shuman, J.; Shulaev, V.; Davletova, S.; Mittler, R. When defense pathways collide. The response of arabidopsis to a combination of drought and heat stress. Plant Physiol. 2004, 134, 1683–1696. [Google Scholar] [PubMed]
- Al-Whaibi, M.H. Plant heat-shock proteins: A mini review. J. King Saud. Univ. Sci. 2011, 23, 139–150. [Google Scholar]
- Kregel, K.C. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. physiol. 2002, 92, 2177–2186. [Google Scholar] [PubMed]
- Almeselmani, M.; Deshmukh, P.S.; Sairam, R.K.; Kushwaha, S.R.; Singh, T.P. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 2006, 171, 382–388. [Google Scholar] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal Behav. 2012, 7, 1456–1466. [Google Scholar] [PubMed]
- Chen, T.H.; Murata, N. Glycinebetaine protects plants against abiotic stress: Mechanisms and biotechnological applications. Plant Cell. Environ. 2011, 34, 1–20. [Google Scholar] [PubMed]
- Kinnersley, A.M.; Turano, F.J. Gamma aminobutyric acid (gaba) and plant responses to stress. Crit. Rev. Plant Sci. 2000, 19, 479–509. [Google Scholar]
- Strzalka, K.; Kostecka-Gugala, A.; Latowski, D. Carotenoids and environmental stress in plants: Significance of carotenoid-mediated modulation of membrane physical properties. Russ. J. Plant physiol. 2003, 50, 168–172. [Google Scholar]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [PubMed]
- Caverzan, A.; Passaia, G.; Barcellos Rosa, S.; Werner Ribeiro, C.; Lazzarotto, F.; Margis-Pinheiro, M. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 2012, 35, 1011–1019. [Google Scholar] [PubMed]
- Twell, D. Plant reproduction, annual plant reviews. In Pollen Developmental Biology; O’Neill, S.D., Roberts, J.A., Eds.; Sheffield Academic Press: Sheffield, UK, 2002; Volume 6. [Google Scholar]
- Honys, D.; Renak, D.; Twell, D. Male Gametophyte Development and Function. Available online: http://www.ueb.cas.cz/cs/system/files/users/public/2006__Honys_Male_gametophyte__FOPB.pdf (accessed on 10 September 2014).
- Pacini, E.; Jacquard, C.; Clement, C. Pollen vacuoles and their significance. Planta 2011, 234, 217–227. [Google Scholar] [PubMed]
- Taylor, L.P. Pollen germination and tube growth. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 461–491. [Google Scholar] [PubMed]
- Sawhney, V.K.; Bhadula, S.K. Microsporogenesis in the normal and male-sterile stamenless-2 mutant of tomato (Lycopersicon esculentum). Can. J. Bot. 1988, 66, 2013–2021. [Google Scholar]
- Pressman, E.; Peet, M.M.; Pharr, D.M. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrates concentration in the developing anthers. Ann. Bot. 2002, 2002, 631–636. [Google Scholar]
- Eveland, A.L.; Jackson, D.P. Sugars, signalling, and plant development. J. Exp. Bot. 2012, 63, 3367–3377. [Google Scholar] [PubMed]
- Banga, S.S.; Labana, K.S.; Banga, S.K. Male sterility in indian mustard (Brassica juncea L. coss)—A biochemical characterization. Theor. Appl. Genet. 1984, 67, 515–519. [Google Scholar] [PubMed]
- Pacini, E. Types and meaning of pollen carbohydrate reserves. Sex. Plant Reprod. 1996, 9, 362–366. [Google Scholar]
- Roitsch, T. Source-sink regulation by sugar and stress. Plant Biol. 1999, 2, 198–206. [Google Scholar]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [PubMed]
- Singh, M.B.; Knox, R.B. Invertases of lilium pollen. Plant physiol. 1984, 74, 510–515. [Google Scholar] [PubMed]
- Castro, A.J.; Clement, C. Sucrose and starch catabolism in the anther of lilium during its development: A comparative study among the anther wall, locular fluid and microspore/pollen fractions. Planta 2007, 225, 1573–1582. [Google Scholar] [PubMed]
- Goetz, M.; Godt, D.E.; Guivarc’h, A.; Kahmann, U.; Chriqui, D.; Roitsch, T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc. Natl. Acad. Sci. USA 2001, 98, 6522–6527. [Google Scholar] [PubMed]
- Le Roy, K.; Vergauwen, R.; Struyf, T.; Yuan, S.; Lammens, W.; Matrai, J.; de Maeyer, M.; van den Ende, W. Understanding the role of defective invertases in plants: Tobacco nin88 fails to degrade sucrose. Plant Physiol. 2013, 161, 1670–1681. [Google Scholar]
- García, C.C.; Guarnieri, M.; Pacini, E. Inter-conversion of carbohydrate reserves from pollen maturation to rehydration in a chili pepper. Am. J. Plant Sci. 2013, 4, 1181–1186. [Google Scholar]
- Clément, C.; Audran, J.-C. Anther wall layers control pollen sugar nutrition in Lilium. Protoplasma 1995, 187, 172–181. [Google Scholar]
- Clement, C.; Burrus, M.; Audran, J.-C. Floral organ growth and carbohydrate content during pollen development in Lilium. Am. J. Bot. 1996, 83, 459–469. [Google Scholar]
- Pressman, E.; Shaked, R.; Shen, S.; Altahan, L.; Firon, N. Variations in carbohydrate content and sucrose-metabolizing enzymes in tomato (Solanum lycopersicum L.) stamen parts during pollen maturation. Am. J. Plant Sci. 2012, 3, 252–260. [Google Scholar]
- Clément, C.; Mischler, P.; Burrus, M.; Audran, J.-C. Characteristics of the photosynthetic apparatus and CO2 fixation in the flower bud of Lilium. Ii. Anther. Int. J. Plant Sci. 1997, 158, 801–810. [Google Scholar]
- Lehmann, S.; Funck, D.; Szabados, L.; Rentsch, D. Proline metabolism and transport in plant development. Amino Acids 2010, 39, 949–962. [Google Scholar] [PubMed]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2009, 15, 89–97. [Google Scholar] [PubMed]
- Mutters, R.G.; Ferreira, L.G.R.; Hall, A.E. Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci. 1989, 29, 1497–1500. [Google Scholar]
- Sangwan, R.S. Change in the amino-acid content during male gametophyte formation of Datura metel in situ. Theor. Appl. Genet. 1978, 52, 221–225. [Google Scholar] [PubMed]
- Mattioli, R.; Biancucci, M.; Lonoce, C.; Costantino, P.; Trovato, M. Proline is required for male gametophyte development in arabidopsis. BMC Plant Biol. 2012. [Google Scholar] [CrossRef]
- Edlund, A.F.; Swanson, R.; Preuss, D. Pollen and stigma structure and function: The role of diversity in pollination. Plant Cell 2004, 16, S84–S97. [Google Scholar] [PubMed]
- Rodriguez-Garcia, M.I.; M’Rani-Alaoui, M.; Fernandez, M.C. Behavior of storage lipids during development and germination of olive (Olea europaea L.) pollen. Protoplasma 2003, 221, 237–244. [Google Scholar] [PubMed]
- Tütüncü, K.S.; Dane, F.; Tütüncü, S. Distribution of insoluble polysaccharides, neutral lipids, and proteins in the developing anthers of Campsis radicans (L.) seem. (bignoniaceae). Plant Syst. Evol. 2013, 299, 743–760. [Google Scholar]
- Wolters-Arts, M.; Lush, W.M.; Mariani, C. Lipids are required for directional pollen-tube growth. Nature 1998, 392, 818–821. [Google Scholar] [PubMed]
- May, M.J.; Vernoux, T.; Leaver, C.; van Montagu, M.; Inzé, D. Glutathione homeostasis in plants: Implications for environmental sensing and plant development. J. Exp. Bot. 1998, 49, 649–667. [Google Scholar]
- Szalai, G.; Kellős, T.; Galiba, G.; Kocsy, G. Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions. J. Plant Growth Regul. 2009, 28, 66–80. [Google Scholar]
- Zechmann, B.; Koffler, B.E.; Russell, S.D. Glutathione synthesis is essential for pollen germination in vitro. BMC Plant Biol. 2011. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [PubMed]
- Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci. 2013, 14, 3540–3555. [Google Scholar] [PubMed]
- Ylstra, B.; Touraev, A.; Moreno, R.M.B.; Stoger, E.; Tunen Van, A.J.; Vicente, O.; Mol, J.N.M.; Heberle-Bors, E. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 1992, 100, 902–907. [Google Scholar] [PubMed]
- Mo, Y.; Nagel, C.; Taylor, L.P. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc. Natl. Acad. Sci. 1992, 89, 7213–7217. [Google Scholar] [PubMed]
- Napoli, C.A.; Fahy, D.; Wang, H.-Y.; Taylor, L.P. White anther: A petunia mutant that abolishes pollen flavonol accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol. 1999, 120, 615–622. [Google Scholar] [PubMed]
- Schijlen, E.G.; de Vos, C.H.; Martens, S.; Jonker, H.H.; Rosin, F.M.; Molthoff, J.W.; Tikunov, Y.M.; Angenent, G.C.; van Tunen, A.J.; Bovy, A.G. Rna interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol. 2007, 144, 1520–1530. [Google Scholar] [PubMed]
- Burbulis, I.E.; Iacobucci, V.; Shirley, B.W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in arabidopsis. Plant Cell 1996, 8, 1013–1025. [Google Scholar] [PubMed]
- Evans, P.T.; Malmberg, R.L. Do polyamines have roles in plant development? Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 235–269. [Google Scholar] [CrossRef]
- Chibi, F.; Angosto, T.; Garrido, D.; Matilla, A. Requirement of polyamines for in vitro maturation of the mid-binucleate pollen of Nicotiana Tabacum. J. Plant Physiol. 1993, 142, 452–456. [Google Scholar]
- Song, J.; Nada, K.; Tachibana, S. The early increase of s-adenosylmethionine decarboxylase activity is essential for the normal germination and tube growth in tomato (Lycopersicon esculentum mill.) pollen. Plant Sci. 2001, 161, 507–515. [Google Scholar]
- Falasca, G.; Franceschetti, M.; Bagni, N.; Altamura, M.M.; Biasi, R. Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiol. Biochem. 2010, 48, 565–573. [Google Scholar] [PubMed]
- Parish, R.W.; Phan, H.A.; Iacuone, S.; Li, S.F. Tapetal development and abiotic stress: A centre of vulnerability. Funct. Plant Biol. 2013, 39, 553–559. [Google Scholar]
- Ellis, C.M.; Nagpal, P.; Young, J.C.; Hagen, G.; Guilfoyle, T.J.; Reed, J.W. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 2005, 132, 4563–4574. [Google Scholar] [PubMed]
- De Jong, M.; Mariani, C.; Vriezen, W.H. The role of auxin and gibberellin in tomato fruit set. J. Exp. Bot. 2009, 60, 1523–1532. [Google Scholar]
- Abeles, F.B.; Rubinstein, B. Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol. 1963, 39, 963–969. [Google Scholar]
- Tanaka, M.; Takei, K.; Kojima, M.; Sakakibara, H.; Mori, H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006, 45, 1028–1036. [Google Scholar] [PubMed]
- Mano, Y.; Nemoto, K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012, 63, 2853–2872. [Google Scholar] [PubMed]
- Cheng, Y.; Dai, X.; Zhao, Y. Auxin biosynthesis by the yucca flavin monooxygenases controls the formation of floral organs and vascular tissues in arabidopsis. Genes Dev. 2006, 20, 1790–1799. [Google Scholar] [PubMed]
- Cecchetti, V.; Altamura, M.M.; Falasca, G.; Costantino, P.; Cardarelli, M. Auxin regulates arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell 2008, 20, 1760–1774. [Google Scholar] [PubMed]
- Cecchetti, V.; Altamura, M.M.; Brunetti, P.; Petrocelli, V.; Falasca, G.; Ljung, K.; Costantino, P.; Cardarelli, M. Auxin controls arabidopsis anther dehiscence by regulating endothecium lignification and jasmonic acid biosynthesis. Plant J. 2013, 74, 411–422. [Google Scholar] [PubMed]
- Yang, H.; Wei, Z.; Xu, Z. Effects of specific expression of iaal gene in tobacco tapetum on pollen embryogenesis. Sci. China 1997, 40, 384–391. [Google Scholar]
- Daviere, J.M.; Achard, P. Gibberellin signaling in plants. Development 2013, 140, 1147–1151. [Google Scholar] [PubMed]
- Goto, N.; Pharis, R.P. Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Can. J. Bot. 1999, 77, 944–954. [Google Scholar]
- Chhun, T.; Aya, K.; Asano, K.; Yamamoto, E.; Morinaka, Y.; Watanabe, M.; Kitano, H.; Ashikari, M.; Matsuoka, M.; Ueguchi-Tanaka, M. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 2007, 19, 3876–3888. [Google Scholar] [PubMed]
- Creelman, R.A.; Mullet, J.E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 355–381. [Google Scholar] [PubMed]
- McConn, M.; Browse, J. The critical requirement for linolenic acid, is pollen development, not photosynthesis, in an arabidopsis mutant. Plant Cell 1996, 8, 403–416. [Google Scholar] [PubMed]
- Ishiguro, S.; Kawai-Oda, A.; Ueda, J.; Nishida, I.; Okada, K. The defective in anther dehiscence1 gene encodes a novel phospholipase a1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in arabidopsis. Plant Cell 2001, 13, 2191–2209. [Google Scholar] [PubMed]
- De la Torre, F.; María del Carmen, R.-G.; Matilla, A.J. How ethylene works in the reproductive organs of higher plants. Plant Signal. Behav. 2006, 1, 231–242. [Google Scholar]
- Kovaleva, L.V.; Dobrovolskaya, A.; Voronkov, A.; Rakitin, V. Ethylene is involved in the control of male gametophyte development and germination in petunia. J. Plant Growth Regul. 2010, 30, 64–73. [Google Scholar]
- Rieu, I.; Wolters-Arts, M.; Derksen, J.; Mariani, C.; Weterings, K. Ethylene regulates the timing of anther dehiscence in tobacco. Planta 2003, 217, 131–137. [Google Scholar] [PubMed]
- Xiong, L. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003, 133, 29–36. [Google Scholar] [PubMed]
- Frascaroli, E.; Tuberosa, R. Effect of abscisic acid on pollen germination and tube growth of maize genotypes. Plant Breed. 1993, 110, 250–254. [Google Scholar]
- Yang, H.-Q.; Jie, Y.-L.; Liu, L.-X.; Tang, W.-Y.; Yu, M.-G. Regulation of abscisic acid and its biosynthesis inhibitors on pomegranate pollen germination and tube growth. Acta Hort. 2003, 620, 209–213. [Google Scholar]
- Fridman, Y.; Savaldi-Goldstein, S. Brassinosteroids in growth control: How, when and where. Plant Sci. 2013, 209, 24–31. [Google Scholar] [PubMed]
- Ariizumi, T.; Kawanabe, T.; Hatakeyama, K.; Sato, S.; Kato, T.; Tabata, S.; Toriyama, K. Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates. Plant Cell Physiol. 2008, 49, 58–67. [Google Scholar] [PubMed]
- Saini, H.S.; Sedgley, M.; Aspinall, D. Developmental anatomy in wheat of male sterility induced by heat stress, water deficit or abscissic acid. Aust. J. Plant Physiol. 1984, 11, 243–253. [Google Scholar]
- Abdul-Baki, A.A.; Stommel, J.R. Pollen viability and fruit set of tomato genotypes under optimum and high-temperature regimes. HortScience 1995, 30, 115–117. [Google Scholar]
- Ploeg Van der, A.; Heuvelink, E. Influence of sub-optimal temperature on tomato growth and yield: A review. J. Hortic. Sci. Biotech. 2005, 80, 652–659. [Google Scholar]
- Hurd, R.G.; Cooper, A.J. The effect of early low temperature treatment on the yield of single inflorescence tomatoes. J. Hortic. Sci. 1970, 45, 19–27. [Google Scholar]
- Peet, M.M.; Sato, S.; Gardner, R.G. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 1998, 21, 225–231. [Google Scholar]
- Sato, S.; Kamiyama, M.; Iwata, T.; Makita, N.; Furukawa, H.; Ikeda, H. Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 2006, 97, 731–738. [Google Scholar] [PubMed]
- Sakata, T.; Takahashi, H.; Nishiyama, I.; Higashitani, A. Effects of high temperature on the development of pollen mother cells and microspores in barley Hordeum vulgare L. J. Plant Res. 2000, 113, 395–402. [Google Scholar]
- Prasad, P.V.V.; Boote, K.J.; Allen, L.H.; Sheehy, J.E.; Thomas, J.M.G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop. Res. 2006, 95, 398–411. [Google Scholar]
- Matsui, T.; Omasa, K. Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: Anther characteristics. Ann. Bot. 2002, 89, 683–687. [Google Scholar] [PubMed]
- Devasirvatham, V.; Gaur, P.M.; Mallikarjuna, N.; Tokachichu, R.N.; Trethowan, R.M.; Tan, D.K.Y. Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct. Plant Biol. 2012, 39, 1009–1018. [Google Scholar]
- Herrero, M.P.; Johnson, R.R. High temperature stress and pollen viability of maize. Crop Sci. 1980, 20, 796–800. [Google Scholar]
- Kim, S.Y.; Hong, C.B.; Lee, I. Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J. Plant Res. 2001, 114, 301–307. [Google Scholar]
- Young, L.W.; Wilen, R.W.; Bonham-Smith, P.C. High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 2004, 55, 485–495. [Google Scholar] [PubMed]
- Harsant, J.; Pavlovic, L.; Chiu, G.; Sultmanis, S.; Sage, T.L. High temperature stress and its effect on pollen development and morphological components of harvest index in the c3 model grass Brachypodium distachyon. J. Exp. Bot. 2013, 64, 2971–2983. [Google Scholar] [PubMed]
- Porch, T.G.; Jahn, M. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 2001, 24, 723–731. [Google Scholar]
- Prasad, P.V.; Craufurd; Summerfield, R.J. Fruit number in relation to pollen production and viability in groundnut exposed to short episodes of heat stress. Ann. Bot. 1999, 84, 381–386. [Google Scholar]
- Aloni, B.; Peet, M.; Pharr, M.; Karni, L. The effect of high temperature and high atmospheric co2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol. Plant. 2001, 112, 505–512. [Google Scholar] [PubMed]
- Djanaguiraman, M.; Prasad, P.V.V.; Boyle, D.L.; Schapaugh, W.T. Soybean pollen anatomy, viability and pod set under high temperature stress. J. Agron. Crop. Sci. 2013, 199, 171–177. [Google Scholar]
- Kaushal, N.; Awasthi, R.; Gupta, K.; Gaur, P.; Siddique, K.H.M.; Nayyar, H. Heat-stress-induced reproductive failurs in chikpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct. Plant Biol. 2013, 40, 1334–1349. [Google Scholar]
- Ledesma, N.; Sugiyama, N. Pollen quality and pperformance in strawberry plants exposed to high-temperature stress. J. Amer. Soc. Hort. Sci 2005, 130, 341–347. [Google Scholar]
- Iwahori, S. High temperature injuries in tomato. IV. Development of normal flower buds and morphological abnormalities of flower buds treated with high temperature. J. Jpn. Soc. Hort. Sci. 1965, 35, 55–62. [Google Scholar]
- Sato, S.; M.M., P.; Thomas, J.F. Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum mill. Exposed to moderatly elevated temperatures. J. Exp. Bot. 2002, 53, 1187–1195. [Google Scholar] [PubMed]
- Ahmed, F.E.; Hall, A.E.; DeMason, D.A. Heat injury during floral development in cowpea (Vigna unguiculata, fabaceae). Am. J. Bot. 1992, 79, 784–791. [Google Scholar]
- Prasad, P.V.; Craufurd, P.Q.; Kakani, V.G.; Wheeler, T.R.; Boote, K.J. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Aust. J. Plant Physiol 2001, 28, 233–240. [Google Scholar]
- Erickson, A.N.; Markhart, A.H. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annum l.) to elevated temperature. Plant Cell Environ. 2002, 25, 123–130. [Google Scholar]
- Oshino, T.; Abiko, M.; Saito, R.; Ichiishi, E.; Endo, M.; Kawagishi-Kobayashi, M.; Higashitani, A. Premature progression of anther early developmental programs accompanied by comprehensive alterations in transcription during high-temperature injury in barley plants. Mol. Genet. Genomics 2007, 278, 31–42. [Google Scholar] [PubMed]
- Suzuki, K.; Takeda, H.; Tsukaguchi, T.; Egawa, Y. Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sex. Plant Reprod. 2001, 13, 293–299. [Google Scholar]
- Hazra, P.; Ansary, S.H. Genetics of heat tolerance for floral and fruit set to high temperature stress in tomato (Lycopersicon esculentum mill.). Sabrao J. breed. Genet. 2008, 40, 117–125. [Google Scholar]
- Kakani, V.G.; Reddy, K.R.; Koti, S.; Wallace, T.P.; Prasad, P.V.; Reddy, V.R.; Zhao, D. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 2005, 96, 59–67. [Google Scholar] [PubMed]
- Vasil, I.K. Developing cell and tissue culture systems for the improvement of cereals and grass crops. J. Plant Physiol. 1987, 128, 193–218. [Google Scholar]
- Johannsson, M.H.; Stephenson, A.G. Effects of temperature during microsporogenesis on pollen performance in Cucurbita pepo L. (cucurbitaceae). Int. J. Plant Sci. 1998, 159, 616–626. [Google Scholar]
- Sato, S.; Peet, M.M.; Thomas, J.F. Physiological factors limit fruit set of tomato (Lycopersicon esculentum mill.) under chronic, mild heat stress. Plant Cell Environ. 2000, 23, 719–726. [Google Scholar]
- Sato, S.; Peet, M.M.; Gardner, R.G. Formation of parthenocarpic fruit, undeveloped flowers and aborted flowers in tomato under moderately elevated temperatures. Sci. Hort. 2001, 90, 243–254. [Google Scholar]
- Abdelmageed, A.; Gruda, N. Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Europ. J. Hort. Sci. 2009, 74, 152–159. [Google Scholar]
- Li, Z.; Palmer, W.M.; Martin, A.P.; Wang, R.; Rainsford, F.; Jin, Y.; Patrick, J.W.; Yang, Y.; Ruan, Y.-L. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into and heat tolerance of young fruit. J. Exp. Bot. 2011, 63, 1155–1166. [Google Scholar] [PubMed]
- Jain, M.; Prasad, P.V.; Boote, K.J.; Hartwell, A.L., Jr.; Chourey, P.S. Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor l. Moench). Planta 2007, 227, 67–79. [Google Scholar] [PubMed]
- Karni, L.; Aloni, B. Fructokinase and hexokinase from pollen grains of bell pepper (Capsicum annuum L.): Possible role in pollen germination under conditions of high temperature and CO2 enrichment. Ann. Bot. 2002, 90, 607–612. [Google Scholar] [PubMed]
- Hong-Qi, Z.; Croes, A.F. Protection of pollen germination from adverse temperature : A possible role for proline. Plant Cell Environ. 1983, 6, 471–476. [Google Scholar]
- Tang, R.-S.; Zheng, J.-C.; Jin, Z.-Q.; Zhang, D.-D.; Huang, Y.-H.; Chen, L.-G. Possible correlation between high temperature-induced floret sterility and endogenous levels of iaa, gas and aba in rice (Oryza sativa L.). Plant Growth Regul. 2008, 54, 37–43. [Google Scholar]
- Prasad, P.V.V.; Djanaguiraman, M. High night temperature decreases leaf photosynthesis and pollen function in grain sorghum. Funct. Plant Biol. 2011, 38, 993–1003. [Google Scholar]
- Fariduddin, Q.; Varshney, P.; Yusuf, M.; Ahmad, A. Polyamines: Potent modulators of plant responses to stress. J. Plant Interact. 2013, 8, 1–16. [Google Scholar]
- Gupta, K.; Dey, A.; Gupta, B. Plant polyamines in abiotic stress responses. Acta Physiol. Plant. 2013, 35, 2015–2036. [Google Scholar]
- Alcazar, R.; Marco, F.; Cuevas, J.C.; Patron, M.; Ferrando, A.; Carrasco, P.; Tiburcio, A.F.; Altabella, T. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 2006, 28, 1867–1876. [Google Scholar] [PubMed]
- Song, J.; Nada, K.; Tachibana, S. Ameliorative effect of polyamines on the high temperature inhibition of in vitro pollen germination in tomato (Lycopersicon esculentum mill.). Sci. Hort. 1999, 80, 203–212. [Google Scholar]
- Song, J.; Nada, K.; Tachibana, S. Suppresion of s-adenosylmethionine decarboxylase activity is a major cause for high-temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum mill.). Plant Cell Physiol. 2002, 43, 619–627. [Google Scholar] [PubMed]
- Wolukau, J.N.; Zhang, S.; Xu, G.; Chen, D. The effect of temperature, polyamines and polyamine synthesis inhibitor on in vitro pollen germination and pollen tube growth of Prunus mume. Sci. Hort. 2004, 99, 289–299. [Google Scholar]
- Mazorra, L.M. Brassinosteroid action and its relation with heat stress mechanisms in plants. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: New York, NY, USA, 2011; pp. 289–307. [Google Scholar]
- Singh, I.; Shono, M. Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 2005, 47, 111–119. [Google Scholar]
- Larkindale, J.; Knight, M.R. Protection against heat stress-induced oxidative damage in arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002, 128, 682–695. [Google Scholar] [PubMed]
- Firon, N.; Pressman, E.; Meir, S.; Khoury, R.; Altahan, L. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants 2012. [Google Scholar] [CrossRef]
- Zhang, S.W.; Li, C.H.; Cao, J.; Zhang, Y.C.; Zhang, S.Q.; Xia, Y.F.; Sun, D.Y.; Sun, Y. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by tld1/osgh3.13 activation. Plant Physiol. 2009, 151, 1889–1901. [Google Scholar] [PubMed]
- Jain, M.; Khurana, J.P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009, 276, 3148–3162. [Google Scholar] [PubMed]
- Sakata, T.; Oshino, T.; Miura, S.; Tomabechi, M.; Tsunaga, Y.; Higashitani, N.; Miyazawa, Y.; Takahashi, H.; Watanabe, M.; Higashitani, A. Auxins reverse plant male sterility caused by high temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 8569–8574. [Google Scholar]
- Rudich, J.; Zamski, E.; Regev, Y. Genotypic variation for sensitivity to high temperature in the tomato: Pollination and fruit set. Bot. Gaz. 2013, 138, 448–452. [Google Scholar]
- Nyquist, W.E.; Baker, R.J. Estimation of heritability and prediction of selection response in plant populations. Crit. Rev. Plant Sci. 1991, 10, 235–322. [Google Scholar]
- Acquaah, G. Principles of Plant Genetics and Breeding, 1st ed.; Blackwell Publishing: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hanson, P.M.; Chen, J.-T.; Kuo, G. Gene action and heritability of high-temperature fruit set in tomato line cl5915. HortScience 2002, 37, 172–175. [Google Scholar]
- Hazra, P.; Ansary, S.H.; Dutta, A.K.; Balacheva, E.; Atanassova, B. Breeding tomato tolerant to high temperature stress. Acta Hort. 2009, 830, 241–248. [Google Scholar]
- Jain, S.M.; Brar, D.S. (Eds.) Molecular Techniques in Crop Improvement, 2nd ed.; Springer: New York, NY, USA, 2009.
- Sadat, S.; Saeid, K.A.; Bihamta, M.R.; Torabi, S.; Salekdeh, S.G.H.; Ayeneh, G.A.L. Marker assisted selection for heat tolerance in bread wheat. J. World Appl. Sci. 2013, 21, 1181–1189. [Google Scholar]
- Frova, C.; Sari-Gorla, M. Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol. Gen. Genet. 1994, 245, 424–430. [Google Scholar] [PubMed]
- Xiao, Y.-H.; Pan, Y.; Luo, L.-H.; Deng, H.-B.; Zhang, G.-L.; Tang, W.-B.; Chen, L.-Y. Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Sci. 2011, 18, 204–209. [Google Scholar]
- Kardivel, P. Molecular breeding in vegetable crops-challenges and opportunities. In Proceeding of 2nd National Workshop on Marker-Assisted Selection for Crop Improvement, ICRISAT, Patancheru, India, 27–29 October 2010.
- Grilli, G.V.G.; Braz, L.T.; Lemos, E.G.M. QTL identification for tolerance to fruit set in tomato by faflp markers. Crop Breed. Appl. Biotechnol. 2007, 7, 234–241. [Google Scholar]
- Lin, K.-H.; Yeh, W.-L.; Chen, H.-M.; Lo, H.-F. Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica 2010, 174, 119–135. [Google Scholar]
- Ye, C.; Argayoso, M.A.; Redoña, E.D.; Sierra, S.N.; Laza, M.A.; Dilla, C.J.; Mo, Y.; Thomson, M.J.; Chin, J.; Delaviña, C.B.; et al. Mapping qtl for heat tolerance at flowering stage in rice using snp markers. Plant Breed. 2012, 131, 33–41. [Google Scholar]
- Jagadish, S.V.K.; Cairns, J.; Lafitte, R.; Wheeler, T.R.; Price, A.H.; Craufurd, P.Q. Genetic analysis of heat tolerance at anthesis in rice. Crop Sci. 2010, 50, 1633–1641. [Google Scholar]
- Lucas, M.R.; Ehlers, J.D.; Huynh, B.-L.; Diop, N.-N.; Roberts, P.A.; Close, T.J. Markers for breeding heat-tolerant cowpea. Mol. Breed. 2012, 31, 529–536. [Google Scholar]
- Colbert, T.; Till, B.J.; Tompa, R.; Reynolds, S.; Steine, M.N.; Yeung, A.T.; McCallum, C.M.; Comai, L.; Henikoff, S. High-throughput screening for induced point mutations. Plant Physiol. 2001, 126, 480–484. [Google Scholar] [PubMed]
- Arbona, V.; Manzi, M.; Ollas, C.; Gomez-Cadenas, A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 4885–4911. [Google Scholar] [PubMed]
- Fernie, A.R.; Schauer, N. Metabolomics-assisted breeding: A viable option for crop improvement? Trends Genet. 2009, 25, 39–48. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paupière, M.J.; Van Heusden, A.W.; Bovy, A.G. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding. Metabolites 2014, 4, 889-920. https://doi.org/10.3390/metabo4040889
Paupière MJ, Van Heusden AW, Bovy AG. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding. Metabolites. 2014; 4(4):889-920. https://doi.org/10.3390/metabo4040889
Chicago/Turabian StylePaupière, Marine J., Adriaan W. Van Heusden, and Arnaud G. Bovy. 2014. "The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding" Metabolites 4, no. 4: 889-920. https://doi.org/10.3390/metabo4040889