MEMS Deformable Mirrors for Space-Based High-Contrast Imaging
Abstract
:1. Introduction
2. Background
2.1. High Contrast Imaging of Exoplanets
2.2. Deformable Mirror Technology
2.3. MEMS Deformable Mirrors
Suppliers of MEMS DMs
2.4. Ground-Based Astronomy Applications
2.5. Design Considerations
3. Technology Demonstrations
3.1. Ground Testing
3.2. Technology Development For Exoplanet Missions Program
3.3. The PICTURE Missions
3.3.1. PICTURE Sounding Rocket Design
3.3.2. PICTURE Testing and Flight Results
3.3.3. PICTURE-B Flight Results
3.3.4. PICTURE-C High Altitude Balloon Project
3.4. The High-Contrast Imaging Balloon System
3.5. The Deformable Mirror (DeMi) CubeSat Payload
3.5.1. Design
3.5.2. Integration and Testing
4. Technology Development and Path Forward
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morzinski, K.M.; Evans, J.W.; Severson, S.; Macintosh, B.; Dillon, D.; Gavel, D.; Max, C.; Palmer, D. Characterizing the potential of MEMS deformable mirrors for astronomical adaptive optics. In Proceedings of the SPIE 6272 Advances in Adaptive Optics II, Orlando, FL, USA, 24–31 May 2006. [Google Scholar] [CrossRef]
- Helmbrecht, M.A.; He, M.; Kempf, C.J.; Besse, M. MEMS DM development at Iris AO, Inc. In Proceedings of the SPIE 7931 MEMS Adaptive Optics V, San Francisco, CA, USA, 22–27 January 2011. [Google Scholar] [CrossRef]
- Bifano, T. MEMS deformable mirrors. Nat. Photonics 2011, 5, 21–23. [Google Scholar] [CrossRef]
- Macintosh, B.; Graham, J.R.; Ingraham, P.; Konopacky, Q.; Marois, C.; Perrin, M.; Poyneer, L.; Bauman, B.; Barman, T.; Burrows, A.; et al. The Gemini Planet Imager: First Light. Proc. Natl. Acad. Sci. USA 2014, 111, 12661–12666. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, G.; Lagrange, A.M.; Beust, H.; Bonnefoy, M.; Boccaletti, A.; Apai, D.; Allard, F.; Ehrenreich, D.; Girard, J.H.V.; Mouillet, D.; et al. Pictoris b giant planet. Astron. Astrophys. 2012, 542, A41. [Google Scholar] [CrossRef]
- Oppenheimer, B.R.; Baranec, C.; Beichman, C.; Brenner, D.; Burruss, R.; Cady, E.; Crepp, J.R.; Dekany, R.; Fergus, R.; Hale, D.; et al. Reconnaissance of the hr 8799 exosolar system. I. near-infrared spectroscopy. Astrophys. J. 2013, 768, 24. [Google Scholar] [CrossRef]
- Kalas, P.; Graham, J.R.; Fitzgerald, M.P.; Clampin, M. Stis coronagraphic imaging of fomalhaut: Main belt structure and the orbit of fomalhaut b. Astrophys. J. 2013, 775, 56. [Google Scholar] [CrossRef]
- Seager, S.; Deming, D. Exoplanet Atmospheres. Annu. Rev. Astron. Astrophys. 2010, 48, 631–672. [Google Scholar] [CrossRef] [Green Version]
- Traub, W.A.; Oppenheimer, B.R.; Seager, S.E. Direct Imaging of Exoplanets. In Exoplanets; University of Arizona Press: Tucson, AZ, USA, 2010; pp. 111–156. [Google Scholar]
- Wyatt, M.C. Evolution of Debris Disks. Annu. Rev. Astron. Astrophys. 2008, 46, 339–383. [Google Scholar] [CrossRef]
- Schneider, G.; Grady, C.A.; Hines, D.C.; Stark, C.C.; Debes, J.H.; Carson, J.; Kuchner, M.J.; Perrin, M.D.; Weinberger, A.J.; Wisniewski, J.P.; et al. Probing for exoplanets hiding in dusty debris disks: Disk imaging, characterization, and exploration with HST/STIS multi-roll coronagraphy. Astron. J. 2014, 148. [Google Scholar] [CrossRef]
- Crill, B.; Siegler, N.; Domagal-goldman, S.; Mamajek, E.; Stapelfeldt, K. Key Technology Challenges for the Study of Exoplanets and the Search for Habitable Worlds. arXiv 2018, arXiv:1803.04457. [Google Scholar]
- Nemati, B.; Stahl, M.T.; Stahl, H.P.; Shaklan, S.B. Effects of space telescope primary mirror segment errors on coronagraph instrument performance. In Proceedings of the SPIE 10398 UV/Optical/IR SPace Telescopes and Instruments: Innovative Technologies and Concepts VIII, San Diego, CA, USA, 6–10 August 2017. [Google Scholar] [CrossRef]
- Malbet, F.; Yu, J.W.; Shao, M. High-Dynamic-Range Imaging Using a Deformable Mirror for Space Coronography. Publ. Astron. Soc. Pac. 1995, 107, 386–398. [Google Scholar] [CrossRef]
- Pueyo, L.; Kasdin, N.J. Polychromatic Compensation of Propagated Aberrations for High-Contrast Imaging. Astrophys. J. 2007, 666, 609–625. [Google Scholar] [CrossRef]
- Trauger, J.T.; Traub, W.A. A laboratory demonstration of the capability to image an Earth-like extrasolar planet. Nature 2007, 446, 771–773. [Google Scholar] [CrossRef] [PubMed]
- Babcock, H.W. The Possibility of Compensating Astronomical Seeing. Publ. Astron. Soc. Pac. 1953, 65, 229–236. [Google Scholar] [CrossRef]
- Jovanovic, N.; Absil, O.; Baudoz, P.; Beaulieu, M.; Bottom, M.; Cady, E.; Carlomagno, B.; Carlotti, A.; Doelman, D.; Fogarty, K.; et al. Review of high-contrast imaging systems for current and future ground-based and space-based telescopes II. Common path wavefront sensing/control and Coherent Differential Imaging. In Proceedings of the SPIE Astronomical Telescopes and Instrumentation, Austin, TX, USA, 10–15 June 2018. [Google Scholar]
- Madec, P.Y. Overview of deformable mirror technologies for adaptive optics and astronomy. In Proceedings of the SPIE Adaptive Optics Systems III, Amsterdam, The Netherlands, 1–6 July 2012. [Google Scholar] [CrossRef]
- Haughout, C. Electronics Development for the Deformable Mirror Demonstration Mission (DeMi). Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2018. [Google Scholar]
- Wirth, A.; Cavaco, J.; Bruno, T.; Ezzo, K.M. Deformable mirror technologies at AOA Xinetics. In Proceedings of the SPIE 8780 High-Power, High-Energy, and High-Intensity Laser Technology, and Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers, Prague, Czech Republic, 15–18 April 2013; Volume 8780, p. 87800M. [Google Scholar] [CrossRef]
- Poberezhskiy, I.; Zhao, F.; An, X.; Balasubramanian, K.; Belikov, R.; Cady, E.; Demers, R.; Diaz, R.; Gong, Q.; Gordon, B.; et al. Technology development towards WFIRST-AFTA coronagraph. In Proceedings of the SPIE 9143 Optical, Infrared, and Millimeter Wave, Montréal, QC, Canada, 22–27 June 2014. [Google Scholar] [CrossRef]
- Bonora, S.; Pilar, J.; Lucianetti, A.; Mocek, T. Design of deformable mirrors for high power lasers. High Power Laser Sci. Eng. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Biasi, R.; Gallieni, D.; Salinari, P.; Riccardi, A.; Mantegazza, P. Contactless thin adaptive mirror technology: Past, present, and future. In Adaptive Optics Systems II; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar] [CrossRef]
- Vdovin, G.; Sarro, P.M. Flexible mirror micromachined in silicon. Appl. Opt. 1995, 34, 2968–2972. [Google Scholar] [CrossRef] [PubMed]
- Bifano, T.G.; Perreault, J.; Krishnamoorthy Mali, R.; Horenstein, M.N. Microelectromechanical deformable mirrors. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 83–89. [Google Scholar] [CrossRef]
- Roggeman, M.C.; Bright, V.M.; Welsh, B.M.; Hick, S.R.; Roberts, P.C.; Cowan, W.D.; Comtois, J.H. Use of micro-electro-mechanical deformable mirrors to control aberrations in optical systems: Theoretical and experimental results. Opt. Eng. 1997, 36, 1326–1338. [Google Scholar] [CrossRef]
- Mali, R.K.; Bifano, T.G.; Vandelli, N.; Horenstein, M.N. Development of microelectromechanical deformable mirrors for phase modulation of light. Opt. Eng. 1997, 36, 542–548. [Google Scholar] [CrossRef]
- Morzinski, K.M.; Gavel, D.T.; Norton, A.P.; Dillon, D.R.; Reinig, M.R. Characterizing MEMS deformable mirrors for open-loop operation: High-resolution measurements of thin-plate behavior. In MEMS Adaptive Optics II; International Society for Optics and Photonics: Bellingham, WA, USA, 2008. [Google Scholar] [CrossRef]
- Cornelissen, S.A.; Bierden, P.A.; Bifano, T.G.; Lam, C.V. A 4096 element continuous facesheet MEMS deformable mirror for high-contrast imaging. MEMS Adapt. Opt. 2009, 8. [Google Scholar] [CrossRef]
- Mawet, D. Adaptive Optics I: Principles, Wavefront Sensors, Deformable Mirrors. 2015. Available online: http://www.astro.caltech.edu/dmawet/teaching/ay122aadaptiveoptics1.pdf (accessed on 30 May 2019).
- Morzinski, K.M.; Norton, A.P.; Evans, J.W.; Reza, L.; Severson, S.A.; Dillon, D.; Reinig, M.; Gavel, D.T.; Cornelissen, S.; Macintosh, B.A.; et al. MEMS practice, from the lab to the telescope. In MEMS Adaptive Optics VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Evans, J.W.; Macintosh, B.; Poyneer, L.; Morzinski, K.; Severson, S.; Dillon, D.; Gavel, D.; Reza, L. Demonstrating sub-nm closed loop MEMS flattening. Opt. Express 2006, 14. [Google Scholar] [CrossRef]
- Poyneer, L.A.; Bauman, B.; Macintosh, B.A.; Dillon, D.; Severson, S. Experimental demonstration of phase correction with a 32 × 32 microelectromechanical systems mirror and a spatially filtered wavefront sensor. Opt. Lett. 2006, 31, 293. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.K.; Bartos, R.; Rao, S.; Samuele, R.; Schmidtlin, E. A laboratory experiment for demonstrating post-coronagraph wavefront sensing and control for extreme adaptive optics. In Advances in Adaptive Optics II; International Society for Optics and Photonics: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- Rao, S.R.; Wallace, J.K.; Chakrabarti, S.; Cook, T.; Schmidtlin, E.; Stewart, J.B.; Levine, B.M.; Jung, P.; Lane, B.; Shao, M.; et al. Path length control in a nulling coronagraph with a MEMS deformable mirror and a calibration interferometer. In MEMS Adaptive Optics II; International Society for Optics and Photonics: Bellingham, WA, USA, 2008. [Google Scholar] [CrossRef]
- Doble, N.; Williams, D.R. The Application of MEMS Technology for Adaptive Optics in Vision Science. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 629–635. [Google Scholar] [CrossRef]
- Wilks, S.C.; Morris, J.R.; Brase, J.M.; Olivier, S.S.; Henderson, J.R.; Thompson, C.A.; Kartz, M.W.; Ruggerio, A.J. Modeling of adaptive optics-based free-space communications systems. In Free-Space Laser Communication and Laser Imaging II; International Society for Optics and Photonics: Bellingham, WA, USA, 2002. [Google Scholar]
- Hallibert, P.; Marchi, A.Z. Developments in active optics for space instruments: An ESA perspective. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar]
- Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; et al. A telescope for observation from space of extreme lightnings in the upper atmosphere. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2008, 588, 197–200. [Google Scholar] [CrossRef]
- McCandliss, S.R.; Carter, A.; Redwine, K.; Teste, S.; Pelton, R.; Hagopian, J.G.; Kutyrev, A.S.; Li, M.J.; Moseley, H.H. Scattered light characterization of FORTIS. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XX; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Fleming, B.T.; McCandliss, S.R.; Martin, K.R.; Adrian, M.E.K.; Kruk, J.; Feldman, P.D.; Kutyrev, A.S.; Li, M.J.; Moseley, S.H.; Siegmun, O.; et al. Calibration and flight qualification of FORTIS. In UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XVIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2013. [Google Scholar]
- Clements, E.; Aniceto, R.; Barnes, D.; Caplan, D.; Clark, J.; Portillo, I.D.; Haughwout, C.; Khatsenko, M.; Kingsbury, R.; Lee, M.; et al. Nanosatellite optical downlink experiment: Design, simulation, and prototyping. Opt. Eng. 2016, 55, 111610. [Google Scholar] [CrossRef]
- Zamkotsian, F.; Lanzoni, P.; Grassi, E.; Barette, R.; Fabron, C.; Tangen, K.; Valenziano, L.; Marchand, L.; Duvet, L. Space evaluation of 2048 × 1080 mirrors DMD chip for ESA’s EUCLID Mission. In Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Ryan, P.J.; Cornelissen, S.A.; Lam, C.V.; Bierden, P.A. Performance analysis of two high actuator count MEMS deformable mirrors. In MEMS Adaptive Optics VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2013. [Google Scholar] [CrossRef]
- Cornelissen, S.A.; Bierden, P.A.; Bifano, T.G.; Stewart, J.B. MEMS Deformable Mirrors for Adaptive Optics in Astronomical Imaging. In The Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, Maui, Hawaii; Citeseer: Princeton, NJ, USA, 2006. [Google Scholar]
- Bifano, T.; Bierden, P.; Perreault, J. Micromachined deformable mirrors for dynamic wavefront control. In Advanced Wavefront Control: Methods, Devices, and Applications II; International Society for Optics and Photonics: Bellingham, WA, USA, 2004. [Google Scholar] [CrossRef]
- Helmbrecht, M.A.; He, M.; Kempf, C.J. Scaling of the Iris AO segmented MEMS DM to larger arrays. In MEMS Adaptive Optics III; International Society for Optics and Photonics: Bellingham, WA, USA, 2009. [Google Scholar] [CrossRef]
- Helmbrecht, M.A.; He, M.; Kempf, C.J.; Rhodes, P. The Iris AO S163-X, a 489 actuator, 163-piston/tip/tilt-segment MEMS DM. In Advanced Wavefront Control: Methods, Devices, and Applications VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2009. [Google Scholar] [CrossRef]
- Vdovin, G.; Sarro, P.M.; Middelhoek, S. Technology and applications of micromachined silicon adaptive mirrors. J. Micromech. Microeng. 1999, 9, R8–R20. [Google Scholar] [CrossRef]
- Wu, X.; Yao, L.; Ou, H. Novel hierarchically dimensioned deformable mirrors with integrated ASIC driver electronics. In MEMS Adaptive Optics VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar]
- Wu, T.; Roberts, L.; Shelton, J.; Wu, Y.; Yao, L. Driver ASICs for Deformable Mirrors. In Proceedings of the OSA Adaptive Optics Meeting, Arlington, VA, USA, 7–11 June 2015. [Google Scholar]
- Prada, C.M.; Yao, L.; Wu, Y.; Roberts, L.C.; Shelton, C.; Wu, X. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging. In Techniques and Instrumentation for Detection of Exoplanets VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar]
- Roberts, L.C.; Prada, C.M.; Shelton, J.C.; Meeker, S.R.; Yao, L.; Wu, Y.; Wu, X. Testing and Characterization of deformable mirrors. In Adaptive Optics Systems VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar]
- Ma, W.; Ma, C.; Wang, W. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator. J. Phys. Conf. Ser. 2017, 986, 012021. [Google Scholar] [CrossRef]
- Lin, P.Y.; Hsieh, H.T.; Su, G.D.J. Design and fabrication of a large-stroke MEMS deformable mirror for wavefront control. J. Opt. 2011, 13, 055404. [Google Scholar] [CrossRef]
- Dagel, D.J.; Cowan, W.D.; Spahn, O.B.; Grossetete, G.D.; Griñe, A.J.; Shaw, M.J.; Resnick, P.J.; Jokiel, B. Large-stroke MEMS deformable mirrors for adaptive optics. J. Microelectromech. Syst. 2006, 15, 572–583. [Google Scholar] [CrossRef]
- Yang, E.H.; Hishinuma, Y.; Cheng, J.G.; Trolier-Mckinstry, S.; Bloemhof, E.; Levine, B.M. Thin-Film Piezoelectric Unimorph Actuator-Based Deformable Mirror With a Transferred Silicon Membrane. J. Microelectromech. Syst. 2006, 15, 1214–1225. [Google Scholar] [CrossRef]
- Xu, X.H.; Li, B.Q.; Feng, Y.; Chu, J.R. Design, fabrication and characterization of a bulk-PZT-actuated MEMS deformable mirror. J. Micromech. Microeng. 2007, 17, 2439. [Google Scholar] [CrossRef]
- Macintosh, B.; Graham, J.; Palmer, D.; Doyon, R.; Gavel, D.; Saddlemyer, L.; Erikson, D.; Bauman, B.; Poyneer, L.; Morzinski, K.; et al. The Gemini Planet Imager. In Advances in Adaptive Optics II; International Society for Optics and Photonics: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- Poyneer, L.A.; Bauman, B.; Cornelissen, S.; Isaacs, J.; Jones, S.; Macintosh, B.A.; Palmer, D.W. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager. In MEMS Adaptive Optics V; International Society for Optics and Photonics: Bellingham, WA, USA, 2011. [Google Scholar] [CrossRef]
- Baranec, C.; Riddle, R.; Ramaprakash, A.N.; Law, N.; Tendulkar, S.; Kulkarni, S.; Dekany, R.; Bui, K.; Davis, J.; Burse, M.; et al. Robo-AO: Autonomous and replicable laser-adaptive-optics and science system. In Adaptive Optics Systems III; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Gavel, D.; Kupke, R.; Dillon, D.; Norton, A.; Ratliff, C.; Cabak, J.; Phillips, A.; Rockosi, C.; McGurk, R.; Srinath, S.; et al. ShaneAO: Wide science spectrum adaptive optics system for the Lick Observatory. In Adaptive Optics Systems IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
- Sahoo, A.; Guyon, O.; Clergeon, C.S.; Skaf, N.; Minowa, Y.; Lozi, J.; Jovanovic, N.; Martinache, F. Subaru Coronagraphic Extreme-AO (SCExAO) wavefront control: Current status and ongoing developments. In Adaptive Optics Systems VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Martinache, F.; Jovanovic, N.; Guyon, O. Closed-loop focal plane wavefront control with the SCExAO instrument. Instrum. Methods Astrophys. 2016, 33, 1–8. [Google Scholar] [CrossRef]
- Van Gorkom, K.; Miller, K.L.; Males, J.R.; Guyon, O.; Rodack, A.T.; Lumbres, J.; Knight, J.M. Characterization of deformable mirrors for the MagAO-X project. In Proceedings of the SPIE Astronomical Telescopes and Instrumentation, Austin, TX, USA, 10–15 June 2018. [Google Scholar] [CrossRef]
- Stapelfeldt, K.R. Extrasolar planets and star formation: Science opportunities for future ELTs. Proc. Int. Astron. Union 2005, 1, 149–158. [Google Scholar] [CrossRef]
- Guyon, O. Limits of Adaptive Optics for high contrast imaging. Astrophys. J. 2005, 629, 592–614. [Google Scholar] [CrossRef]
- Cavarroc, C.; Boccaletti, A.; Baudoz, P.; Fusco, T.; Rouan, D. Earth-like planet detection with Extremely Large Telescopes. Astron. Astrophys. 2006, 447, 397–403. [Google Scholar] [CrossRef]
- Douglas, E.S.; Males, J.R.; Clark, J.; Guyon, O.; Lumbres, J.R.; Marlow, W.A.; Cahoy, K.L. Laser Guide Star for Large Segmented-Aperture Space Telescopes, Part I: Implications for Terrestrial Exoplanet Detection and Observatory Stability. Astron. J. 2019, 157. [Google Scholar] [CrossRef]
- Snik, F.; Absil, O.; Baudoz, P.; Beaulieu, M.; Bendek, E.; Cady, E.; Carlomagno, B.; Carlotti, A.; Cvetojevic, N.; Doelman, D.; et al. Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III. Technology opportunities and pathways. In Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar]
- Seager, S.; Turnbull, M.; Sparks, W.; Thomson, M.; Shaklan, S.B.; Roberge, A.; Kuchner, M.; Kasdin, N.J.; Domagal-Goldman, S.; Cash, W.; et al. The Exo-S probe class starshade mission. In Techniques and Instrumentation for Detection of Exoplanets VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015. [Google Scholar] [CrossRef]
- Sidick, E.; Shi, F. Effect of DM actuator errors on the WFIRST/AFTA coronagraph contrast performance. Tech. Instrum. Detect. Exopl. 2015, 9605, 960506. [Google Scholar] [CrossRef]
- Macintosh, B.; Graham, J.; Oppenheimer, B.; Poyneer, L.; Sivaramakrishnan, A.; Veran, J.P. MEMS-based extreme adaptive optics for planet detection. In MEMS/MOEMS Components and Their Applications III; International Society for Optics and Photonics: Bellingham, WA, USA, 2006. [Google Scholar] [CrossRef]
- Bendek, E.; Lynch, D.; Pluzhnik, E.; Belikov, R.; Klamm, B.; Hyde, E.; Mumm, K. Development of a miniaturized deformable mirror controller. In Adaptive Optics Systems V; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar] [CrossRef]
- Mazoyer, J.; Pueyo, L.; N’Diaye, M.; Fogarty, K.; Zimmerman, N.; Soummer, R.; Shaklan, S.; Norman, C. Active correction of aperture discontinuities—Optimized stroke minimization II: Optimization for future missions. Astron. J. 2017, 155, 8. [Google Scholar] [CrossRef]
- Groff, T.D.; Eldorado Riggs, A.J.; Kern, B.; Jeremy Kasdin, N. Methods and limitations of focal plane sensing, estimation, and control in high-contrast imaging. J. Astron. Telesc. Instrum. Syst. 2015. [Google Scholar] [CrossRef]
- Give’on, A.; Kern, B.; Shaklan, S.; Moody, D.C.; Pueyo, L. Broadband wavefront correction algorithm for high-contrast imaging systems. In Astronomical Adaptive Optics Systems and Applications III; International Society for Optics and Photonics: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Mazoyer, J.; Pueyo, L.; N’Diaye, M.; Fogarty, K.; Zimmerman, N.; Leboulleux, L.; Laurent, K.E.S.; Soummer, R.; Shaklan, S.; Norman, C. Active correction of aperture discontinuities—Optimized stroke minimization I: A new adaptive interaction matrix algorithm. Astron. J. 2017, 155, 7. [Google Scholar] [CrossRef]
- Pueyo, L.; Kay, J.; Kasdin, N.J.; Groff, T.; McElwain, M.; Give’on, A.; Belikov, R. Optimal dark hole generation via two deformable mirrors with stroke minimization. Appl. Opt. 2009, 48. [Google Scholar] [CrossRef]
- Saxena, P.; Rizzo, M.J.; Mejia Prada, C.; Llop Sayson, J.D.; Gong, Q.; Cady, E.J.; Mandell, A.M.; Groff, T.D.; McElwain, M.W. Commissioning and performance results of the PISCES instrument. In These Proceedings; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Helmbrecht, M.A.; He, M.; Kempf, C.J.; Marchis, F. Long-term stability and temperature variability of Iris AO segmented MEMS deformable mirrors. In Adaptive Optics Systems V; International Society for Optics and Photonics: Bellingham, WA, USA, 2016. [Google Scholar] [CrossRef]
- Wallace, B.P.; Hampton, P.J.; Bradley, C.H.; Conan, R. Evaluation of a MEMS deformable mirror for an adaptive optics test bench. Opt. Express 2006, 14, 10132–10138. [Google Scholar] [CrossRef]
- Evans, J.W.; Morzinski, K.; Reza, L.; Severson, S.; Poyneer, L.; Macintosh, B.A.; Dillon, D.; Sommargren, G.; Palmer, D.; Gavel, D.; et al. Extreme adaptive optics testbed: High contrast measurements with a MEMS deformable mirror. In Techniques and Instrumentation for Detection of Exoplanets II; International Society for Optics and Photonics: Bellingham, WA, USA, 2005. [Google Scholar] [CrossRef]
- Lozi, J.; Belikov, R.; Thomas, S.J.; Pluzhnik, E.; Bendek, E.; Guyon, O.; Schneider, G. Experimental study of a low-order wavefront sensor for high-contrast coronagraphic imagers: Results in air and in vacuum. In Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar] [CrossRef]
- Sirbu, D.; Thomas, S.J.; Belikov, R.; Lozi, J.; Bendek, E.; Pluzhnik, E.; Lynch, D.H.; Hix, T.; Zell, P.; Schneider, G.; et al. EXCEDE technology development IV: Demonstration of polychromatic contrast in vacuum at 1.2 λ/D. In Techniques and Instrumentation for Detection of Exoplanets VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2015. [Google Scholar] [CrossRef]
- Lyon, R.G.; Clampin, M.; Petrone, P.; Mallik, U.; Madison, T.; Bolcar, M.R. High contrast vacuum nuller testbed (VNT) contrast, performance, and null control. In Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Enya, K.; Kataza, H.; Bierden, P. A Micro Electrical Mechanical Systems (MEMS)-based Cryogenic Deformable Mirror. Publ. Astron. Soc. Pac. 2009, 121, 260–265. [Google Scholar] [CrossRef]
- Takahashi, A.; Enya, K.; Haze, K.; Kataza, H.; Kotani, T.; Matsuhara, H.; Kamiya, T.; Yamamuro, T.; Bierden, P.; Cornelissen, S.; et al. Laboratory demonstration of a cryogenic deformable mirror for wavefront correction of space-borne infrared telescopes. Appl. Opt. 2017, 56, 6694–6708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyson, H.; Sharples, R.; Dipper, N.; Vdovin, G. Cryogenic wavefront correction using membrane deformable mirrors. Opt. Express 2009, 8, 17. [Google Scholar] [CrossRef]
- Shea, H. Radiation sensitivity of microelectromechanical system devices. J. Micro/Nanolithograph. MEMS MOEMS 2009, 8, 031303. [Google Scholar] [CrossRef] [Green Version]
- Miyahira, T.F.; Becker, H.N.; McClure, S.S.; Edmonds, L.D.; Johnston, A.H. Total Dose Degradation of MEMS Optical Mirrors. IEEE Trans. Nucl. Sci. 2003, 50, 1860–1866. [Google Scholar] [CrossRef]
- Bierden, P.; Bifano, T.; Cornelissen, S.; Kasdin, J.; Levine, M. Technology Development for Exoplanet Missons Technology Milestone White Paper: MEMS Deformable Mirror Technology; Technical Report; California Institute of Technology: Pasadena, CA, USA, 2013. [Google Scholar]
- Mendillo, C.B.; Hicks, B.A.; Cook, T.A.; Bifano, T.G.; Content, D.A.; Lane, B.F.; Levine, B.M.; Rabin, D.; Rao, S.R.; Samuele, R.; et al. PICTURE: A sounding rocket experiment for direct imaging of an extrasolar planetary environment. In Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Bracewell, R.; MacPhie, R. Searching for Nonsolar Planets. Icarus 1979, 38, 136–147. [Google Scholar] [CrossRef]
- NASA Sounding Rocket Program Handbook; Goddard Space Flight Center: Wallops Island, VA, USA, 2005.
- Douglas, E.S.; Mendillo, C.B.; Cook, T.A.; Cahoy, K.L.; Chakrabarti, S. Wavefront Sensing in Space: Flight Demonstration II of the PICTURE Sounding Rocket Payload. J. Astron. Telesc. Instrum. Syst. 2018, 4, 019003. [Google Scholar] [CrossRef]
- Cook, T.; Cahoy, K.; Chakrabarti, S.; Douglas, E.; Finn, S.C.; Kuchner, M.; Lewis, N.; Marinan, A.; Martel, J.; Mawet, D.; et al. Planetary Imaging Concept Testbed Using a Recoverable Experiment–Coronagraph (PICTURE C). J. Astron. Telesc. Instrum. Syst. 2015, 1, 044001. [Google Scholar] [CrossRef]
- Mendillo, C.B.; Howe, G.A.; Hewawasam, K.; Martel, J.; Finn, S.C.; Cook, T.A.; Chakrabarti, S. Optical tolerances for the PICTURE-C mission: Error budget for electric field conjugation, beam walk, surface scatter, and polarization aberration. In Techniques and Instrumentation for Detection of Exoplanets VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Côté, O.; Allain, G.; Brousseau, D.; Lord, M.P.; Ouahbi, S.; Ouellet, M.; Patel, D.; Thibault, S.; Vallée, C.; Belikov, R.; et al. A precursor mission to high contrast imaging balloon system. In Ground-based and Airborne Instrumentation for Astronomy VII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Thomas, K. HiCIBaS—Up, up, and away. SPIE Newsroom 2018. [Google Scholar] [CrossRef]
- Allain, G.; Brousseau, D.; Thibault, S.; Vallée, C.; Ouellet, M.; Véran, J.P.; Daigle, O. First on-sky results, performance, and future of the HiCIBaS-LOWFS. In Adaptive Optics Systems VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Cahoy, K.L.; Marinan, A.D.; Novak, B.; Kerr, C.; Nguyen, T.; Webber, M.; Falkenburg, G.; Barg, A. Wavefront control in space with MEMS deformable mirrors for exoplanet direct imaging. J. Micro/Nanolithograph. MEMS MOEMS 2014, 13. [Google Scholar] [CrossRef]
- Marinan, A.; Cahoy, K. CubeSat Deformable Mirror Demonstration. In Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2014. [Google Scholar]
- Marinan, A.; Cahoy, K.; Merck, J.; Belikov, R.; Bendek, E. Improving Nanosatellite Imaging with Adaptive Optics. Small Satell. Conf. 2016, 4, 1–12. [Google Scholar]
- Douglas, E.S.; Allan, G.; Barnes, D.; Figura, J.S.; Haughwout, C.A.; Gubner, J.N.; Knoedler, A.A.; LeClair, S.; Murphy, T.J.; Skouloudis, N.; et al. Design of the deformable mirror demonstration CubeSat (DeMi). In Techniques and Instrumentation for Detection of Exoplanets VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Allan, G.W. Simulation and Testing of Wavefront Reconstruction Algorithms for the Deformable Mirror (DeMi) Cubesat. Master’s Thesis, Massachusetts Institute of Techonology, Cambridge, MA, USA, 2018. [Google Scholar]
- Allan, G.; Douglas, E.S.; Barnes, D.; Egan, M.; Furesz, G.; Grunwald, W.; Gubner, J.; Holden, B.G.; Haughwout, C.; do Vale Pereira, P.; et al. The deformable mirror demonstration mission (DeMi) CubeSat: Optomechanical design validation and laboratory calibration. In Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Gubner, J. Payload Configuration, Integration and Testing of the Deformable Mirror Demonstration Mission ( DeMi ) CubeSat. Small Satell. Conf. 2016, 8, 1–6. [Google Scholar]
- Boston Micromachines Corporation. Boston Micromachines Successfully Delivers High Actuator Count MEMS Deformable Mirror to NASA and Continues Development for the WFIRST Program; Technical Report; Boston Micromachines Corporation: Cambridge, MA, USA, 2018. [Google Scholar]
- The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Interim Report, Technical Report; NASA Jet Propulsion Laboratory Astronomy, Pysics, and Space Technology Directorate, 2018; unpublished.
- Bolcar, M.R. The Large UV/Optical/Infrared (LUVOIR) surveyor: Decadal Mission concept technology development overview. In UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Bolcar, M.R.; Crooke, J.A.; Hylan, J.E.; Bronke, G.; Collins, C.; Corsetti, J.A.; Generie, J.; Gong, Q.; Groff, T.; Hayden, W.; et al. The large UV/optical/infrared surveyor (LUVOIR): Decadal mission study update. In UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2018. [Google Scholar] [CrossRef]
- Pueyo, L.; Zimmerman, N.; Bolcar, M.; Groff, T.; Stark, C.; Ruane, G.; Jewell, J.; Soummer, R.; St Laurent, K.; Wang, J.; et al. The LUVOIR architecture “A” coronagraph instrument. In UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII; International Society for Optics and Photonics: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, R.E.; Douglas, E.S.; Allan, G.W.; Bierden, P.; Chakrabarti, S.; Cook, T.; Egan, M.; Furesz, G.; Gubner, J.N.; Groff, T.D.; et al. MEMS Deformable Mirrors for Space-Based High-Contrast Imaging. Micromachines 2019, 10, 366. https://doi.org/10.3390/mi10060366
Morgan RE, Douglas ES, Allan GW, Bierden P, Chakrabarti S, Cook T, Egan M, Furesz G, Gubner JN, Groff TD, et al. MEMS Deformable Mirrors for Space-Based High-Contrast Imaging. Micromachines. 2019; 10(6):366. https://doi.org/10.3390/mi10060366
Chicago/Turabian StyleMorgan, Rachel E., Ewan S. Douglas, Gregory W. Allan, Paul Bierden, Supriya Chakrabarti, Timothy Cook, Mark Egan, Gabor Furesz, Jennifer N. Gubner, Tyler D. Groff, and et al. 2019. "MEMS Deformable Mirrors for Space-Based High-Contrast Imaging" Micromachines 10, no. 6: 366. https://doi.org/10.3390/mi10060366