Squeezing Droplet Formation in a Flow-Focusing Micro Cross-Junction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulations
2.2. Experimental Set-Up
3. Results
3.1. Validation of the Numerical Simulations
3.2. Interface Dynamics during Droplet Breakup
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
PIV | Particle image velocimetry |
References
- Christopher, G.F.; Anna, S.L. Microfluidic methods for generating continuous droplet streams. J. Phys. D Appl. Phys. 2007, 40, R319–R336. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef] [PubMed]
- Garstecki, P.; Fuerstman, M.J.; Stone, H.A.; Whitesides, G.M. Formation of droplets and bubbles in a microfluidic T-junction—Scaling and mechanism of break-up. Lab Chip 2006, 6, 437. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.; Fischer, P.; Windhab, E.J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 2004, 59, 3045–3058. [Google Scholar] [CrossRef]
- Garstecki, P.; Stone, H.A.; Whitesides, G.M. Mechanism for Flow-Rate Controlled Breakup in Confined Geometries: A Route to Monodisperse Emulsions. Phys. Rev. Lett. 2005, 94, 164501. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; Guo, W.; Leniart, M.; Chong, Z.Z.; Tan, S.H. AC electric field induced droplet deformation in a microfluidic T-junction. Lab Chip 2016, 16, 2982–2986. [Google Scholar] [CrossRef] [PubMed]
- Guillot, P.; Colin, A. Stability of parallel flows in a microchannel after a T junction. Phys. Rev. E 2005, 72, 066301. [Google Scholar] [CrossRef]
- Tan, S.H.; Nguyen, N.T.; Yobas, L.; Kang, T.G. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microeng. 2010, 20, 045004. [Google Scholar] [CrossRef]
- Xiong, Q.; Chen, Z.; Li, S.; Wang, Y.; Xu, J. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel. Chem. Eng. Sci. 2018, 185, 157–167. [Google Scholar] [CrossRef]
- Rostami, B.; Morini, G. Experimental characterisation of a micro cross-juntion as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers. Exp. Therm. Fluid Sci. 2019, 103, 191–200. [Google Scholar] [CrossRef]
- De Menech, M.; Garstecki, P.; Jousse, F.; Stone, H.A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 2008, 595, 141–161. [Google Scholar] [CrossRef]
- Steegmans, M.; Schroën, K.; Boom, R. Generalised insights in droplet formation at T-junctions through statistical analysis. Chem. Eng. Sci. 2009, 64, 3042–3050. [Google Scholar] [CrossRef]
- Dolomite Microfluidics. Available online: https://www.dolomite-microfluidics.com/ (accessed on 1 January 2024).
- Malekzadeh, S.; Roohi, E. Investigation of different droplet formation regimes in a T-junction microchannel using the VOF technique in OpenFOAM. Microgravity Sci. Technol. 2015, 27, 231–243. [Google Scholar] [CrossRef]
- Zadeh, S.A.; Rolf, R. Numerical Study on Droplet Formation in a Microchannel T-Junction Using the VOF Method. Int. Conf. Nanochannels Microchannels Minichannels 2010, 54501, 1601–1610. [Google Scholar]
- Nekouei, M.; Vanapalli, S.A. Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size. Phys. Fluids 2017, 29, 032007. [Google Scholar] [CrossRef]
- Chen, Q.; Jingkun, L.; Song, Y.; Christopher, D.; Li, X. Modeling of Newtonian droplet formation in power-law non-Newtonian fluids in a flow-focusing device. Heat Mass Transf. 2020, 56, 2711–2723. [Google Scholar] [CrossRef]
- Lindken, R.; Rossi, M.; Große, S.; Westerweel, J. Micro-particle image velocimetry (µPIV): Recent developments, applications, and guidelines. Lab Chip 2009, 9, 2551–2567. [Google Scholar] [CrossRef] [PubMed]
- Barnkob, R.; Rossi, M. DefocusTracker: A Modular Toolbox for Defocusing-based, Single-Camera, 3D Particle Tracking. J. Open Res. Softw. 2021, 9, 22. [Google Scholar] [CrossRef]
- Olsen, M.; Adrian, R. Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids 2000, 29, S166–S174. [Google Scholar] [CrossRef]
- Rostami, B.; Morini, G. Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross-junction. Int. J. Multiph. Flow 2018, 105, 202–216. [Google Scholar] [CrossRef]
- Yeom, S.; Lee, S.Y. Size prediction of drops formed by dripping at a micro T-junction in liquid–liquid mixing. Exp. Therm. Fluid Sci. 2011, 35, 387–394. [Google Scholar] [CrossRef]
- Yu, W.; Liu, X.; Zhao, Y.; Chen, Y. Droplet generation hydrodynamics in the microfluidic cross-junction with different junction angles. Chem. Eng. Sci. 2019, 203, 259–284. [Google Scholar] [CrossRef]
- Maurya, T.; Dutta, S. Pinch-off dynamics of droplet formation in microchannel flow. Chem. Eng. Sci. 2023, 282, 119296. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Y.; Wang, X.; Pang, Y.; Ren, Y.; Li, D. Experimental and theoretical studies on neck thinning dynamics of droplets in cross junction microchannels. Exp. Therm. Fluid Sci. 2022, 139, 110739. [Google Scholar] [CrossRef]
- Loizou, K.; Wong, V.L.; Hewakandamby, B. Examining the Effect of Flow Rate Ratio on Droplet Generation and Regime Transition in a Microfluidic T-Junction at Constant Capillary Numbers. Inventions 2018, 3, 54. [Google Scholar] [CrossRef]
Q* | Drop Length NS [µm] | Drop Length EXP [µm] | Error [%] |
---|---|---|---|
0.08 | 178 | 171 | 4.0 |
0.15 | 188 | 191 | 1.6 |
0.25 | 198 | 203 | 2.9 |
0.35 | 206 | 216 | 5.0 |
0.65 | 224 | 232 | 3.1 |
Sim. | Q* | Drop Length l [µm] | |
---|---|---|---|
1 | 0.08 | 178 | 0.913 |
2 | 0.10 | 180 | 0.923 |
3 | 0.15 | 188 | 0.964 |
4 | 0.20 | 192 | 0.984 |
5 | 0.25 | 198 | 1.015 |
6 | 0.30 | 202 | 1.036 |
7 | 0.35 | 206 | 1.056 |
8 | 0.40 | 208 | 1.067 |
9 | 0.45 | 212 | 1.087 |
10 | 0.55 | 222 | 1.128 |
11 | 0.65 | 224 | 1.149 |
12 | 0.75 | 230 | 1.179 |
13 | 0.85 | 236 | 1.210 |
14 | 0.90 | 238 | 1.221 |
15 | 0.95 | 242 | 1.241 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzini, F.; Pulvirenti, B.; Rossi, M.; Morini, G.L. Squeezing Droplet Formation in a Flow-Focusing Micro Cross-Junction. Micromachines 2024, 15, 339. https://doi.org/10.3390/mi15030339
Azzini F, Pulvirenti B, Rossi M, Morini GL. Squeezing Droplet Formation in a Flow-Focusing Micro Cross-Junction. Micromachines. 2024; 15(3):339. https://doi.org/10.3390/mi15030339
Chicago/Turabian StyleAzzini, Filippo, Beatrice Pulvirenti, Massimiliano Rossi, and Gian Luca Morini. 2024. "Squeezing Droplet Formation in a Flow-Focusing Micro Cross-Junction" Micromachines 15, no. 3: 339. https://doi.org/10.3390/mi15030339