Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach
2.2. Preparation of Bacterial Strains
2.3. Microscopic Characterization
2.4. Zeta Potential
2.5. Aptasensor Fabrication
2.6. Aptamer Concentration and Incubation Time Effect
2.7. Parametric CV Analysis
2.8. Analysis of Aptamer-Target Binding Conditions
2.9. S. aureus Detection
3. Results and Discussions
3.1. Characterization Techniques
3.2. Electrochemical Analysis of Aptasensor Binding
3.3. Zeta Potential Analysis
3.4. Analysis of Aptamer Concentration and Incubation Time Effect
3.5. CV Scan Rate Analysis
3.6. CV Potential Range Analysis
3.7. Analysis of the Effect of Temperature
3.8. Analysis of pH Effect on IsdA/Aptamer Complex Formation
3.9. S. aureus Detection in Real Samples
3.10. Limitations and Challenges
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdallah, E.M.; Sulieman, A.M.E. Staphylococcus aureus. In Microbial Toxins in Food Systems: Causes, Mechanisms, Complications, and Metabolism; Springer: Berlin/Heidelberg, Germany, 2024; p. 235. [Google Scholar]
- Ibrahim, O.O. Staphylococcus aureus a gram-positive coccid bacterium causing microbial infections, and toxins symptoms including food poisoning. EC Microbiol. 2020, 16, 61–76. [Google Scholar]
- Baron, F.; Cochet, M.-F.; Ablain, W.; Grosset, N.; Madec, M.-N.; Gonnet, F.; Jan, S.; Gautier, M. Rapid and cost-effective method for micro-organism enumeration based on miniaturization of the conventional plate-counting technique. Le Lait 2006, 86, 251–257. [Google Scholar] [CrossRef]
- Kato, H.; Ide, K.; Fukase, F.; Shimura, Y.; Yasuda, S.; Goto, H.; Fukuyama, A.; Nakajima, H. Polymerase chain reaction-based open reading frame typing (POT) method analysis for a methicillin-resistant Staphylococcus aureus (MRSA) outbreak through breast-feeding in the neonatal intensive care unit. IDCases 2018, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Nouri, A.; Ahari, H.; Shahbazzadeh, D. Designing a direct ELISA kit for the detection of Staphylococcus aureus enterotoxin A in raw milk samples. Int. J. Biol. Macromol. 2018, 107, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Nemr, C.R.; Smith, S.J.; Liu, W.; Mepham, A.H.; Mohamadi, R.M.; Labib, M.; Kelley, S.O. Nanoparticle-mediated capture and electrochemical detection of methicillin-resistant Staphylococcus aureus. Anal. Chem. 2019, 91, 2847–2853. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Norouz-Sarvestani, F.; Noori, A.; Soltani, N. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosens. Bioelectron. 2015, 68, 149–155. [Google Scholar] [CrossRef]
- Soleimani, S.; Arkan, E.; Jalalvand, A.R.; Goicoechea, H.C. Fabrication of a novel electrochemical aptasensor assisted by a novel computerized monitoring system for real-time determination of the prostate specific antigen: A computerized experimental method brought elegancy. Microchem. J. 2020, 157, 104898. [Google Scholar] [CrossRef]
- Costentin, C. Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem. Rev. 2008, 108, 2145–2179. [Google Scholar] [CrossRef]
- Sundfors, F.; Bobacka, J.; Ivaska, A.; Lewenstam, A. Kinetics of electron transfer between Fe (CN) 63−/4− and poly (3, 4-ethylenedioxythiophene) studied by electrochemical impedance spectroscopy. Electrochim. Acta 2002, 47, 2245–2251. [Google Scholar] [CrossRef]
- Park, J.-S.; Choi, J.-H.; Woo, J.-J.; Moon, S.-H. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 2006, 300, 655–662. [Google Scholar] [CrossRef]
- Grossi, M.; Riccò, B. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review. J. Sens. Sens. Syst. 2017, 6, 303–325. [Google Scholar] [CrossRef]
- Soleimani, S.; Arkan, E.; Farshadnia, T.; Mahnam, Z.; Jalili, F.; Goicoechea, H.C.; Jalalvand, A.R. The first attempt on fabrication of a nano-biosensing platform and exploiting first-order advantage from impedimetric data: Application to simultaneous biosensing of doxorubicin, daunorubicin and idarubicin. Sens. Bio-Sens. Res. 2020, 29, 100366. [Google Scholar] [CrossRef]
- Castle, L.M.; Schuh, D.A.; Reynolds, E.E.; Furst, A.L. Electrochemical sensors to detect bacterial foodborne pathogens. ACS Sens. 2021, 6, 1717–1730. [Google Scholar] [CrossRef]
- Pal, A.; Levy, Y. Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Comput. Biol. 2019, 15, e1006768. [Google Scholar] [CrossRef] [PubMed]
- Elskens, J.P.; Elskens, J.M.; Madder, A. Chemical modification of aptamers for increased binding affinity in diagnostic applications: Current status and future prospects. Int. J. Mol. Sci. 2020, 21, 4522. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. Biosensors 2023, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Malinee, M.; Dhiman, A.; Kumar, A.; Sharma, T.K. Aptamer technology for the detection of foodborne pathogens and toxins. In Advanced Biosensors for Health Care Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 45–69. [Google Scholar]
- Kalita, J.J.; Sharma, P.; Bora, U. Recent developments in application of nucleic acid aptamer in food safety. Food Control 2023, 145, 109406. [Google Scholar] [CrossRef]
- Lönne, M.; Bolten, S.; Lavrentieva, A.; Stahl, F.; Scheper, T.; Walter, J.-G. Development of an aptamer-based affinity purification method for vascular endothelial growth factor. Biotechnol. Rep. 2015, 8, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Perret, G.; Boschetti, E. Aptamer-based affinity chromatography for protein extraction and purification. In Aptamers in Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 93–139. [Google Scholar]
- Zhu, G.; Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev. 2018, 134, 65–78. [Google Scholar] [CrossRef]
- Park, D.; Lee, S.J.; Park, J.-W. Aptamer-Based Smart Targeting and Spatial Trigger–Response Drug-Delivery Systems for Anticancer Therapy. Biomedicines 2024, 12, 187. [Google Scholar] [CrossRef]
- Baldrich, E.; Restrepo, A.; O’Sullivan, C.K. Aptasensor development: Elucidation of critical parameters for optimal aptamer performance. Anal. Chem. 2004, 76, 7053–7063. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Mohamed, M.A.; Vinu Mohan, A.; Zhu, Z.; Sharma, V.; Mishra, G.K.; Mishra, R.K. Application of electrochemical aptasensors toward clinical diagnostics, food, and environmental monitoring. Sensors 2019, 19, 5435. [Google Scholar] [CrossRef] [PubMed]
- Vidotti, M.; Carvalhal, R.F.; Mendes, R.K.; Ferreira, D.; Kubota, L.T. Biosensors based on gold nanostructures. J. Braz. Chem. Soc. 2011, 22, 3–20. [Google Scholar] [CrossRef]
- Zhao, K.; Ge, L.; Wong, T.I.; Zhou, X.; Lisak, G. Gold-silver nanoparticles modified electrochemical sensor array for simultaneous determination of chromium (III) and chromium (VI) in wastewater samples. Chemosphere 2021, 281, 130880. [Google Scholar] [CrossRef]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef]
- Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S. Core–shell gold/silver nanoparticles for localized surface plasmon resonance-based naked-eye toxin biosensing. ACS Appl. Mater. Interfaces 2019, 11, 46462–46471. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Janani, R.; Deepa, C.; Rajeshkumar, L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2022, 13, 40. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.; Stoltenburg, R.; Strehlitz, B.; Frense, D.; Beckmann, D. Development of an impedimetric aptasensor for the detection of Staphylococcus aureus. Int. J. Mol. Sci. 2017, 18, 2484. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z.; Wei, X. Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim. Acta 2014, 181, 967–974. [Google Scholar] [CrossRef]
- Xiao, T.; Huang, J.; Wang, D.; Meng, T.; Yang, X. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications. Talanta 2020, 206, 120210. [Google Scholar] [CrossRef] [PubMed]
- Atapour, A.; Khajehzadeh, H.; Shafie, M.; Abbasi, M.; Mosleh-Shirazi, S.; Kasaee, S.R.; Amani, A.M. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Mater. Today Commun. 2022, 30, 103181. [Google Scholar] [CrossRef]
- Song, H.; Lim, H.J.; Son, A. Development of an aptasensor for dibutyl phthalate detection and the elucidation of assay inhibition factors. RSC Adv. 2024, 14, 20585–20594. [Google Scholar] [CrossRef]
- Lim, Y.; Kouzani, A.; Duan, W. Aptasensors: A review. J. Biomed. Nanotechnol. 2010, 6, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Kalra, P.; Dhiman, A.; Cho, W.C.; Bruno, J.G.; Sharma, T.K. Simple methods and rational design for enhancing aptamer sensitivity and specificity. Front. Mol. Biosci. 2018, 5, 41. [Google Scholar] [CrossRef] [PubMed]
- Sabbih, G.O.; Wijesinghe, K.M.; Algama, C.; Dhakal, S.; Danquah, M.K. Computational generation and characterization of IsdA-binding aptamers with single-molecule FRET analysis. Biotechnol. J. 2023, 18, 2300076. [Google Scholar] [CrossRef]
- Skeens, J.W.; Wiedmann, M.; Martin, N.H. Spore-forming bacteria associated with dairy powders can be found in bacteriological grade agar–agar supply. J. Food Prot. 2020, 83, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- Raghuraman, H.; Chatterjee, S.; Das, A. Site-directed fluorescence approaches for dynamic structural biology of membrane peptides and proteins. Front. Mol. Biosci. 2019, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Petty, H.R. Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology. Microsc. Res. Tech. 2007, 70, 687–709. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Dong, H.; Yang, J. Surface potential/charge sensing techniques and applications. Sensors 2020, 20, 1690. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, S.; Bruce-Tagoe, T.A.; Ullah, N.; Rippy, M.G.; Spratt, H.G.; Danquah, M.K. Development and characterization of a portable electrochemical aptasensor for IsdA protein and Staphylococcus aureus detection. Anal. Bioanal. Chem. 2024, 416, 4619–4634. [Google Scholar] [CrossRef]
- Fischer, M.J. Amine coupling through EDC/NHS: A practical approach. Methods Mol. Biol. 2010, 627, 55–73. [Google Scholar]
- Keleştemur, S.; Altunbek, M.; Culha, M. Influence of EDC/NHS coupling chemistry on stability and cytotoxicity of ZnO nanoparticles modified with proteins. Appl. Surf. Sci. 2017, 403, 455–463. [Google Scholar] [CrossRef]
- Bini, A.; Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Development of an optical RNA-based aptasensor for C-reactive protein. Anal. Bioanal. Chem. 2008, 390, 1077–1086. [Google Scholar] [CrossRef]
- Włodarska, K.; Pawlak-Lemańska, K.; Górecki, T.; Sikorska, E. Classification of commercial apple juices based on multivariate analysis of their chemical profiles. Int. J. Food Prop. 2017, 20, 1773–1785. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Liu, H.; Liu, J.; Jiao, Z. Profiles of sugar and organic acid of fruit juices: A comparative study and implication for authentication. J. Food Qual. 2020, 2020, 7236534. [Google Scholar] [CrossRef]
- Grel, H.; Ratajczak, K.; Jakiela, S.; Stobiecka, M. Gated resonance energy transfer (gRET) controlled by programmed death protein ligand 1. Nanomaterials 2020, 10, 1592. [Google Scholar] [CrossRef]
- UniProt. Available online: https://www.uniprot.org/uniprotkb/A6QG31/entry#sequences (accessed on 12 September 2024).
- Bruce-Tagoe, T.A.; Harnish, M.T.; Soleimani, S.; Ullah, N.; Shen, T.; Danquah, M.K. Surface plasmon resonance aptasensing and computational analysis of Staphylococcus aureus IsdA surface protein. Biotechnol. Prog. 2024, 40, e3475. [Google Scholar] [CrossRef] [PubMed]
- Doose, S.; Neuweiler, H.; Sauer, M. A close look at fluorescence quenching of organic dyes by tryptophan. ChemPhysChem 2005, 6, 2277–2285. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Singh, K. Analyte detection: A decade of progress in the development of optical/fluorescent sensing probes. Chem. Rec. 2023, 23, e202200184. [Google Scholar] [CrossRef]
- Goldstein, J.I.; Newbury, D.E.; Michael, J.R.; Ritchie, N.W.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Guadagnini, L.; Ballarin, B.; Mignani, A.; Scavetta, E.; Tonelli, D. Microscopy techniques for the characterization of modified electrodes in the development of glucose biosensors. Sens. Actuators B: Chem. 2007, 126, 492–498. [Google Scholar] [CrossRef]
- Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Van Vlierberghe, S.; Blust, R.; Strehlitz, B.; De Wael, K. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sens. Actuators B: Chem. 2017, 240, 1024–1035. [Google Scholar] [CrossRef]
- Qu, L.; Xu, J.; Tan, X.; Liu, Z.; Xu, L.; Peng, R. Dual-aptamer modification generates a unique interface for highly sensitive and specific electrochemical detection of tumor cells. ACS Appl. Mater. Interfaces 2014, 6, 7309–7315. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; O’Hare, D.; Ladame, S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens. Bioelectron. 2023, 237, 115440. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E.J.; Wain, A.J. The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application. J. Electroanal. Chem. 2020, 872, 114145. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Z.; Yang, G.-M.; Li, J.; Li, M.-Q.; Liu, J.-H.; Huang, X.-J. Electrical nanogap devices for biosensing. Mater. Today 2010, 13, 28–41. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Q. A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens. Bioelectron. 2020, 167, 112478. [Google Scholar] [CrossRef]
- Bahari, H.R.; Mousavi Khaneghah, A.; Eş, I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13369. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, X.; Yu, B.; Liu, Z. Electrochemical biosensors for clinical detection of bacterial pathogens: Advances, applications, and challenges. Chem. Commun. 2024, 60, 9513–9525. [Google Scholar] [CrossRef]
- Lautenbach, V.; Hosseinpour, S.; Peukert, W. Isoelectric Point of Proteins at Hydrophobic Interfaces. Front. Chem. 2021, 9, 712978. [Google Scholar] [CrossRef]
- Ferraris, S.; Cazzola, M.; Peretti, V.; Stella, B.; Spriano, S. Zeta Potential Measurements on Solid Surfaces for in Vitro Biomaterials Testing: Surface Charge, Reactivity Upon Contact With Fluids and Protein Absorption. Front. Bioeng. Biotechnol. 2018, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Mapiour, M.; Abdelrasoul, A. Critical Influences of Plasma pH on Human Protein Properties for Modeling Considerations: Size, Charge, Conformation, Hydrophobicity, and Denaturation. J. Compos. Sci. 2023, 7, 28. [Google Scholar] [CrossRef]
- Abdi, Z.; Vandichel, M.; Sologubenko, A.S.; Willinger, M.-G.; Shen, J.-R.; Allakhverdiev, S.I.; Najafpour, M.M. The importance of identifying the true catalyst when using Randles-Sevcik equation to calculate turnover frequency. Int. J. Hydrogen Energy 2021, 46, 37774–37781. [Google Scholar] [CrossRef]
- Chin, T.T.; Geiger, W.E.; Rheingold, A.L. Relation of Structural Changes to Electron-Transfer Parameters in Fulvalenediyl Dirhodium Complexes Demonstrating Quasi-Reversible Two-Electron Voltammetry. J. Am. Chem. Soc. 1996, 118, 5002–5010. [Google Scholar] [CrossRef]
- Bollo, S.; Finger, S.; Sturm, J.; Nunez-Vergara, L.; Squella, J. Cyclic voltammetry and scanning electrochemical microscopy studies of the heterogeneous electron transfer reaction of some nitrosoaromatic compounds. Electrochim. Acta 2007, 52, 4892–4898. [Google Scholar] [CrossRef]
- Hulbert, M.H.; Shain, I. Rate-controlled adsorption of product in stationary electrode polarography. Anal. Chem. 1970, 42, 162–171. [Google Scholar] [CrossRef]
- Yadav, D.K.; Chauhan, D.; Ahamad, I.; Quraishi, M. Electrochemical behavior of steel/acid interface: Adsorption and inhibition effect of oligomeric aniline. RSC Adv. 2013, 3, 632–646. [Google Scholar] [CrossRef]
- Venton, B.J.; Cao, Q. Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst 2020, 145, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Jalalvand, A.R.; Akbari, V.; Soleimani, S.; Mohammadi, G.; Farshadnia, T.; Farshadnia, P. Developing a novel nano-drug delivery system for delivery of quinapril according to experimental and chemometrical evidence. J. Drug Deliv. Sci. Technol. 2023, 81, 104271. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Hua, X.; Feng, X.; Su, S.; Huang, Y.; Fan, Q.; Wang, L.; Huang, W. An Improved Turn-On Aptasensor for Thrombin Detection Using Split Aptamer Fragments and Graphene Oxide. Chin. J. Chem. 2015, 33, 981–986. [Google Scholar] [CrossRef]
- Wang, K.; He, M.-Q.; Zhai, F.-H.; He, R.-H.; Yu, Y.-L. A novel electrochemical biosensor based on polyadenine modified aptamer for label-free and ultrasensitive detection of human breast cancer cells. Talanta 2017, 166, 87–92. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Guo, X.; Zheng, Q.; Peng, J.; Tang, H.; Yao, S. Carbon nanotubes labeled with aptamer and horseradish peroxidase as a probe for highly sensitive protein biosensing by postelectropolymerization of insoluble precipitates on electrodes. Anal. Chem. 2015, 87, 7610–7617. [Google Scholar] [CrossRef]
- Helbing, J.; Devereux, M.; Nienhaus, K.; Nienhaus, G.U.; Hamm, P.; Meuwly, M. Temperature dependence of the heat diffusivity of proteins. J. Phys. Chem. A 2012, 116, 2620–2628. [Google Scholar] [CrossRef]
- Jeuken, L.J.; McEvoy, J.P.; Armstrong, F.A. Insights into gated electron-transfer kinetics at the electrode–protein interface: A square wave voltammetry study of the blue copper protein azurin. J. Phys. Chem. B 2002, 106, 2304–2313. [Google Scholar] [CrossRef]
- Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V.; Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Fick’s laws of diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer: Berlin/Heidelberg, Germany, 2014; pp. 115–139. [Google Scholar]
- Gamal, O.; Eldin, M.H.; Refaat, A.A.; Hassan, R.Y. Advances in nanocomposites-based electrochemical biosensors for the early diagnosis of breast cancer. Front. Sens. 2024, 5, 1399441. [Google Scholar] [CrossRef]
Measurement | IsdA | Aptamer/IsdA Complex | ||||
---|---|---|---|---|---|---|
pH = 4.5 | pH = 7.5 | pH = 10.5 | pH = 4.5 | pH = 7.5 | pH = 10.5 | |
Mean zeta potential (mV) | −3.25 | −7.01 | −5.58 | −3.61 | −2.42 | −5.90 |
Standard deviation (mV) | ±1.72 | ±1.74 | ±1.48 | ±1.20 | ±2.32 | ±1.48 |
Electrophoretic mobility (μm·cm/Vs) | −0.25 | −0.54 | −0.43 | −0.28 | −0.18 | −0.46 |
Conductivity (mS/cm) | 19.09 | 16.95 | 18.22 | 16.92 | 23.28 | 17.36 |
Distribution peak (mV) | −1.74 | 3.24 | −2.16 | −3.71 | −0.65 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimani, S.; Bruce-Tagoe, T.A.; Ullah, N.; Danquah, M.K. Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. Micromachines 2025, 16, 162. https://doi.org/10.3390/mi16020162
Soleimani S, Bruce-Tagoe TA, Ullah N, Danquah MK. Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. Micromachines. 2025; 16(2):162. https://doi.org/10.3390/mi16020162
Chicago/Turabian StyleSoleimani, Shokoufeh, Tracy Ann Bruce-Tagoe, Najeeb Ullah, and Michael K. Danquah. 2025. "Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection" Micromachines 16, no. 2: 162. https://doi.org/10.3390/mi16020162
APA StyleSoleimani, S., Bruce-Tagoe, T. A., Ullah, N., & Danquah, M. K. (2025). Parametric Cyclic Voltammetric Analysis of an Electrochemical Aptasensor for Staphylococcus aureus Iron-Regulated Surface Determinant Protein A Detection. Micromachines, 16(2), 162. https://doi.org/10.3390/mi16020162