Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope De-Noising
Abstract
:1. Introduction
2. Adaptive Multi-Scale CGMF Combined with the VMD
2.1. Theories of the CGMF
2.2. Influence Parameters about MF
Algorithm 1: CGMF algorithm. |
SE construction: Generate a pixel pitch P of SEs Input row data df |
Estimate a priori-knowledge SE length N for i = 1, …, N do assign amplitude variable NHOD (i), OSE (i) and NH (i) end for |
Construct triangular SE: =strel (‘arbitrary’, NHOD (i), OSE (i)) Construct semicircular SE: =strel (‘arbitrary’, NHOD (i), NH (i)) Operators combination: Construct closing and opening operators using Equations (3) and (4) Construct gradient filter and gradient filter using Equations (8) and (9) Compute average weighted combination using Equation (10) |
2.3. Implementing the VMD Theory
2.4. The Proposed Multi-Scale Adaptive CGMF Combined with the VMD
- Power spectral entropy (PSE)
- (1)
- Derive the power spectral calculation formula from Equation (16):
- (2)
- According to the energy conservation law, the spectrum density function can be obtained using the normalization of the frequency components:
- (3)
- The power spectral entropy is defined as
- Conclusively formulae for length determination
- (1)
- TSE dimension selection:
- (2)
- SSE dimension selection:
Algorithm 2: improved CGMF algorithm combined with VMD. |
VMD decomposition: Input row data df Select a decomposition mode value k Generate decomposed k modes SE construction: Run Algorithm 1 to generate pixel pitch P for i = 1, …, N do assign amplitude variable NHOD (i), OSE (i) and NH (i) end for Construct TSE: =strel (‘arbitrary’, NHOD (i), OSE (i)) Construct SSE: =strel (‘arbitrary’, NHOD (i), NH (i)) SE length determination:Compute PSE and RMSE values of using Equations (17)–(19) Assign index PSE → Gaussian white noise ϕ → SSE Assign index RMSE → impulse noise η → TSE Compute corresponding SE length N using Equations (21) and (22) Operators combination: Construct closing and opening operators using Equations (3) and (4) Construct gradient filter and gradient filter using Equations (8) and (9) Compute average weighted combination using Equation (10) Estimate reconstruction signal Y= |
3. Simulation Signal Analysis
3.1. Simulated Sinusoidal Signal
3.2. Signal Decomposition of the VMD
3.3. Application of the Multi-Scale CGMF
3.4. Computation Complexity of CGMF-Based on VMD Denoising Algorithm
4. Experimental Results and Analysis
4.1. Rotation Experimental Data Acquisition
4.2. De-Noising Results and Comparisons
4.3. Results Analysis and Consideration
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Qiu, T.Q.; Wu, J.F.; Strandjord, L.K.; Sanders, G.A. Performance of resonator fiber optic gyroscope using external-cavity laser stabilization and optical filtering. In Proceedings of the SPIE 23rd International Conference on Optical Fiber sensors, Santander, Spain, 2–6 June 2014; p. 9157. [Google Scholar]
- Fsaifes, I.; Feugnet, G.; Baz, A.; Ravaille, A.; Debord, B.; Gerome, F.; Humbert, G.; Schwartz, S.; Benabid, F.; Bretenaker, F. Hollow-core photonic-bandgap fiber resonator for rotation sensing. In Proceedings of the 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016; pp. 1–2. [Google Scholar]
- Dell’Olio, F.; Cimineli, C.; Armenise, M.N.; Soares, F.M.; Rehbein, W. Design, fabrication, and preliminary test results of a new InGaAsP/InP high-Q ring resonator for gyro applications. In Proceedings of the 2012 International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, 27–30 August 2012; pp. 124–127. [Google Scholar]
- Liang, W.; IIchenko, V.S.; Savchenkov, A.A.; Dale, E.; Eliyahu, D.; Matsko, A.B.; Maleki, L. Resonant microphotonic gyroscope. Optica 2017, 4, 114–117. [Google Scholar] [CrossRef]
- Xia, D.Z.; Huang, L.C.; Xu, L.; Gao, H.Y. Structural analysis of disk resonance gyroscope. Micromachines 2017, 8, 296. [Google Scholar] [CrossRef]
- Guo, X.T.; Sun, C.K.; Wang, P.; Huang, L. Hybrid methods for MEMS gyro signal noise reduction with fast convergence rate and small steady-state error. Sen. Actuators A Phys. 2018, 269, 145–159. [Google Scholar] [CrossRef]
- Liu, J.Y.; Shen, Q.; Qin, W.W. Signal processing technique for combining numerous MEMS gyroscopes based on dynamic conditional correlation. Micromachines 2015, 6, 684–698. [Google Scholar] [CrossRef]
- Du, J.; Gerdtman, C.; Gharehbaghia, A.; Lindén, M. A signal processing algorithm for improving the performance of a gyroscopic head-borne computer mouse. Biomed. Signal Process. Control 2017, 35, 30–37. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Luo, H.; Chen, B.Y.; Tao, J.; Feng, Z.H.; Zhang, H.; Guo, W.L.; Zhang, D.H. MEMS Gyroscopes Based on Acoustic Sagnac Effect. Micromachines 2016, 8, 2. [Google Scholar] [CrossRef]
- Xu, Q.; Li, X.; Chan, C.Y. A cost-effective vehicle localization solution using an interacting multiple model unscented kalman filters (IMM-UKF) algorithm and grey neural network. Sensors 2017, 17, 1431. [Google Scholar] [CrossRef] [PubMed]
- Kownacki, C. Optimization approach to adapt Kalman filters for the real-time application of accelerometer and gyroscope signals’ filtering. Dig. Signal Process. 2011, 21, 131–140. [Google Scholar] [CrossRef]
- Feng, J.B.; Ding, M.Y.; Zhang, X.M. Decision-based adaptive morphological filter for fixed-value impulse noise removal. Opt. Int. J. Light Electr. Opt. 2014, 125, 4288–4294. [Google Scholar] [CrossRef]
- Lv, J.X.; Yu, J.B. Average combination difference morphological filters for fault feature extraction of bearing. Mech. Syst. Signal Process. 2018, 100, 827–845. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Wang, C.; Zhu, J.; Liu, X.C.; Kong, F. Bearing fault diagnosis based on an improved morphological filter. Measurement 2016, 80, 163–178. [Google Scholar] [CrossRef]
- Meng, L.J.; Xiang, J.W.; Wang, Y.X.; Jiang, Y.Y.; Gao, H.F. A hybrid fault diagnosis method using morphological filter–translation invariant wavelet and improved ensemble empirical mode decomposition. Mech. Syst. Signal Process. 2015, 50–51, 101–115. [Google Scholar] [CrossRef]
- Li, B.; Zhang, P.L.; Wang, Z.J.; Mi, S.S.; Zhang, Y.T. Gear fault detection using multi-scale morphological filters. Measurement 2011, 44, 2078–2089. [Google Scholar]
- Chen, L.P.; Wang, P.; Xu, L.J. Novel detection method for DC series arc faults by using morphological filtering. J. China Univ. Posts Telecommun. 2015, 22, 84–91. [Google Scholar]
- Yang, W.; Peng, Z.; Wei, K.; Shi, P.; Tian, W. Superiorities of variational mode decomposition over empirical mode decomposition particularly in time–frequency feature extraction and wind turbine condition monitoring. IET Renew. Power Gener. 2016, 11, 443–452. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Guo, Q.; Hu, C.; Peng, Z. Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations. Renew. Energy 2018, 116, 55–73. [Google Scholar] [CrossRef]
- Wang, D.; Luo, H.; Grunder, O.; Lin, Y. Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction. Renew. Energy 2017, 113, 1345–1358. [Google Scholar] [CrossRef]
- SV, L. Measurement of the amplitudes of the harmonics of a periodic signal using a fast Fourier transform algorithm. Meas. Tech. 2016, 49, 173–177. [Google Scholar]
- Li, Y.; Li, Y.; Chen, X.; Yu, J. Research on Ship-Radiated Noise Denoising Using Secondary Variational Mode Decomposition and Correlation Coefficient. Sensors 2017, 18, 48. [Google Scholar]
- Tan, W.; Chen, X.A.; Dong, S.J. A new method for machinery fault diagnoses based on an optimal multiscale morphological filter. Stroj. V. J. Mech. Eng. 2013, 59, 719–724. [Google Scholar] [CrossRef]
- Li, Y.F.; Zuo, M.J.; Lin, J.H.; Liu, J.H. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter. Mech. Syst. Signal Process. 2017, 84, 642–658. [Google Scholar] [CrossRef]
- Satish, M.; Gupta, K.K.; Raju, K.S. Comparative study between VMD and EMD in bearing fault diagnosis. In Proceedings of the 2014 9th International Conference on Industrial and Information Systems (ICIIS), Gwalior, India, 15–17 December 2014; pp. 1–6. [Google Scholar]
- Wang, Y.X.; Markert, R.; Xiang, J.W.; Zheng, W. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system. Mech. Syst. Signal Process. 2015, 60, 243–251. [Google Scholar] [CrossRef]
- Wang, Y.X.; Liu, F.Y.; Jiang, Z.S.; He, S. Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 2017, 86, 75–85. [Google Scholar] [CrossRef]
- Zhen, J.; Bai, N.; Qi, L.; Wu, Q.W. A soft morphological filter for periodic noise reduction. Chin. J. Electron. 2007, 16, 289–294. [Google Scholar]
- Li, H.; Xiao, D.Y. Fault diagnosis using pattern classification based on one-dimensional adaptive rank-order morphological filter. J. Process Control 2012, 22, 436–449. [Google Scholar] [CrossRef]
- Li, Y.Y.; Liang, X.H.; Lin, J.H.; Liu, J. Train axle bearing fault detection using a feature selection scheme based multi-scale morphological filter. Mech. Syst. Signal Process. 2018, 101, 435–448. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Yang, G.L.; Li, M.; Yin, H.G. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Process. 2016, 125, 349–364. [Google Scholar] [CrossRef]
- Hu, A.J.; Ling, X. An optimal selection method for morphological filter’s parameters and its application in bearing fault diagnosis. J. Mech. Sci. Technol. 2016, 30, 1055–1063. [Google Scholar] [CrossRef]
- Ji, Y.J.; Wang, X.B.; Liu, Z.B.; Yan, Z.H.; Li, J.; Wang, D.Q.; Wang, J.Q. EEMD-based online milling chatter detection by fractal dimension and power spectral entropy. Int. J. Adv. Manuf. Technol. 2017, 92, 1185–1200. [Google Scholar] [CrossRef]
- Zhang, A.H.; Yang, B.; Huang, L. Feature extraction of EEG signals using power spectral entropy. In Proceedings of the International Conference on BioMedical Engineering and Informatics, BMEI 2008, Sanya, China, 27–30 May 2008; pp. 435–439. [Google Scholar]
- Yang, G.; Liu, Y.; Wang, Y.; Zhu, Z. EMD interval thresholding denoising based on similarity measure to select relevant modes. Signal Process. 2015, 109, 95–109. [Google Scholar] [CrossRef]
- Kang, Y.Y.; Zhao, L.; Cheng, J.H.; Wu, M.Y.; Fan, X.L. A novel grid SINS/DVL integrated navigation algorithm for marine application. Sensors 2018, 18, 364. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.B.; Chen, X.Y. Improved hybrid filter for fiber optic gyroscope signal denoising based on EMD and forward linear prediction. Sens. Actuators A Phys. 2015, 230, 150–155. [Google Scholar] [CrossRef]
- Shen, C.; Li, J.; Zhang, X.M.; Shi, Y.B.; Tang, J.; Cao, H.L.; Liu, J. A noise reduction method for dual-mass micro-electro Mech. gyroscopes based on sample entropy empirical mode decomposition and time-frequency peak filtering. Sensors 2016, 16, 796. [Google Scholar] [CrossRef] [PubMed]
Mode | Parameter Values | Corresponding Scale | ||
---|---|---|---|---|
RMSE | PSE | TSE | SSE | |
Mode1 | 1.13 | 0.45 | 1 | 1 |
Mode2 | 4.83 | 1.73 | 18 | 15 |
Mode3 | 4.82 | 1.69 | 18 | 14 |
Mode4 | 4.83 | 1.79 | 18 | 16 |
Mode5 | 4.82 | 1.84 | 17 | 17 |
Mode6 | 4.83 | 1.92 | 18 | 19 |
SNR (dB) | −10 | −8 | −5 | −2 | 0 | 2 | 5 | 8 | 10 | 12 | 15 | 18 |
TSE | −2.20 | 2.84 | 6.78 | 5.03 | 7.94 | 12.19 | 13.76 | 14.93 | 18.45 | 20.13 | 23.89 | 25.14 |
SSE | −1.64 | 3.14 | 4.99 | 5.94 | 8.03 | 10.21 | 14.35 | 15.16 | 17.31 | 21.70 | 24.13 | 25.64 |
CSE | 2.12 | 4.21 | 5.26 | 8.03 | 11.17 | 9.03 | 22.01 | 22.79 | 22.01 | 25.84 | 26.71 | 30.81 |
DFA-VMD | 4.01 | 5.23 | 7.06 | 12.36 | 14.56 | 17.23 | 18.92 | 23.22 | 27.90 | 30.14 | 30.89 | 36.23 |
EMD-G-FLP | 3.49 | 6.78 | 8.21 | 11.99 | 14.12 | 16.48 | 23.04 | 24.76 | 28.34 | 29.45 | 31.97 | 35.14 |
ARKF | 2.31 | 7.97 | 9.01 | 11.17 | 15.34 | 19.65 | 20.34 | 21.08 | 27.31 | 30.31 | 32.10 | 35.28 |
VMD-CGMF | 7.46 | 10.99 | 13.91 | 16.34 | 19.77 | 23.13 | 27.94 | 31.53 | 33.95 | 37.23 | 38.51 | 42.83 |
Function | T | M |
---|---|---|
Initialize | 5DEF·S | [4 + S] float |
B1 SE Construction | (4DEF + 1CMP)·S·N + 1DEF | [5N] float |
B2 SE Construction | (3DEF + 1ADD + 3SUB + 1DIV + 2DEF)·S·N | [12N + 6]·S float |
Operator Run | (4DEF + 4ADD + 4DIV + 4CMP)·S | [4N·S] float |
CGMF Basic Arithmetic Unit | (1ADD + 1DIV)·S | [2S] float |
Complexity | O ( | O (N |
Function | T | M |
---|---|---|
Initialize | O ( | [(3 + K·N + N)·2S + K·N] float |
Update | (6ADD + 2MUL + 2DIV)·K·N·2S | [2S] float |
Update | (2CMP + 3MUL + 2ADD)·K·N·S | 0 |
Dual Ascent | (4ADD + 1MUL)·N·2S | 0 |
Convergence | (4ADD + 2MUL)·N·2S | 0 |
Complexity | O ( | O (N |
Function | T | M |
---|---|---|
CGMF | O ( | [(16N + 9)·S + 5N + 4] float |
VMD | O ( | [(4 + K·N + N)·2S + K·N] float |
CGMF based on VMD | O ( + (K + 1)·O (+·1ADD·S | [(4 + K·N + N) ·2S + K·N] + (K + 1)·[(16N + 9)·S + 5N + 4] + S float |
Complexity | O ( | O (N |
n | EMD-G-FLP | DFA-VMD | CSE | ARKF | CGMF-VMD |
---|---|---|---|---|---|
0.1918 | 0.1934 | 0.1783 | 0.2098 | 0.1813 | |
0.3784 | 0.3516 | 0.2716 | 0.6832 | 0.3125 | |
0.6347 | 0.5927 | 0.4917 | 0.9246 | 0.5482 | |
1.9672 | 1.3638 | 1.2588 | 2.2351 | 1.3094 | |
1.8981 | 1.4824 | 1.2763 | 2.8735 | 1.3803 | |
3.4597 | 3.1249 | 2.8081 | 8.8931 | 3.0341 | |
7.0560 | 6.8691 | 6.2113 | 14.3721 | 6.4283 | |
28.4978 | 25.2678 | 20.2587 | 31.8724 | 22.4589 | |
47.3541 | 46.1564 | 39.5411 | 63.1963 | 44.5622 |
Mode | Parameter Values | Corresponding Scale | ||
---|---|---|---|---|
RMSE | PSE | TSE | SSE | |
Mode 1 | 0.12 | 0.92 | 1 | 1 |
Mode 2 | 0.67 | 2.00 | 31 | 5 |
Mode 3 | 0.66 | 2.20 | 30 | 6 |
Mode 4 | 0.69 | 2.17 | 33 | 6 |
Mode 5 | 0.70 | 2.30 | 34 | 7 |
Mode 6 | 0.71 | 2.24 | 35 | 7 |
Nosie Reduction Methods | RMSE | PSE | STD |
---|---|---|---|
Original Signal | 0.0931 | 0.959 | 0.865 |
CSE | 0.0590 | 0.633 | 0.614 |
Single SSE | 0.0709 | 0.737 | 0.785 |
Single TSE | 0.0757 | 0.694 | 0.681 |
DFA-VMD | 0.0430 | 0.431 | 0.439 |
EMD-G-FLP | 0.0413 | 0.393 | 0.456 |
ARKF | 0.0274 | 0.348 | 0.267 |
Experimental Reconstruction Signal | 0.0208 | 0.192 | 0.201 |
Noise Reduction Methods | Q ( rad) | N (°/h1/2) | B (°/h) | K (°/h3/2) | R (°/h2) |
---|---|---|---|---|---|
Original Signal | 5.764 | 0.408 | 11.329 | 6.76 | 4.64 |
CSE | 3.766 | 0.304 | 10.330 | 6.36 | 4.62 |
Single SSE | 4.239 | 0.388 | 11.021 | 6.28 | 4.63 |
Single TSE | 2.654 | 0.291 | 10.829 | 6.37 | 4.61 |
DFA-VMD | 2.071 | 0.279 | 9.331 | 6.58 | 4.61 |
EMD-G-FLP | 1.768 | 0.263 | 9.535 | 6.29 | 4.62 |
ARKF | 1.973 | 0.227 | 9.336 | 6.28 | 4.63 |
Experimental Reconstruction Signal | 1.672 | 0.203 | 9.017 | 6.27 | 4.61 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Shen, C.; Cao, H.; Che, X. Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope De-Noising. Micromachines 2018, 9, 246. https://doi.org/10.3390/mi9050246
Wu Y, Shen C, Cao H, Che X. Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope De-Noising. Micromachines. 2018; 9(5):246. https://doi.org/10.3390/mi9050246
Chicago/Turabian StyleWu, Yicheng, Chong Shen, Huiliang Cao, and Xu Che. 2018. "Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope De-Noising" Micromachines 9, no. 5: 246. https://doi.org/10.3390/mi9050246
APA StyleWu, Y., Shen, C., Cao, H., & Che, X. (2018). Improved Morphological Filter Based on Variational Mode Decomposition for MEMS Gyroscope De-Noising. Micromachines, 9(5), 246. https://doi.org/10.3390/mi9050246