Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Media, and Seed Culture Conditions
2.2. Mutagenesis by ALE
2.3. Batch Fermentation
2.4. Whole-Genome Resequencing
2.5. Metabolite Analysis
2.6. Measurement of ε-PL Production and Dry Cell Weights
2.7. Statistical Analysis
3. Results and Discussion
3.1. Screening of Evolved S. albulus with Higher ε-PL Production by ALE
3.2. Comparisons of ε-PL Production by S. albulus CICC 11022 and S. albulus C214 in Batch Fermentation
3.3. Genomic Analysis
3.3.1. Transcriptional Regulation
3.3.2. Transporter
3.3.3. Cell Envelope
3.3.4. Energy Metabolism
3.3.5. Secondary Metabolite Synthesis
3.4. Metabolomic Analysis
3.4.1. Central Carbon Metabolism
3.4.2. l-Lysine Biosynthesis and Degradation
3.4.3. Lipids and Relative Amino Acids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhang, C.; Zhang, J.; Rao, Z.; Xu, X.; Mao, Z.; Chen, X. Epsilon-poly-l-lysine: Recent Advances in Biomanufacturing and Applications. Front. Bioeng. Biotechnol. 2021, 9, 748976. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Vad, B.S.; Stenvang, M.; Otzen, D.E.; Meyer, R.L. The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl. Environ. Microbiol. 2014, 80, 7758–7770. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Pan, L.; Chen, X. Improved Production of ε-Poly-l-Lysine in Streptomyces albulus Using Genome Shuffling and Its High-Yield Mechanism Analysis. Front. Microbiol. 2022, 13, 923526. [Google Scholar] [CrossRef]
- Cai, L.; Kuo, C.J. Epsilon poly-l-lysine as a novel antifungal agent for sustainable wood protection. Front. Microbiol. 2022, 13, 908541. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Huang, S.; Li, Y.; Zhou, C. Recent Advances in Epsilon-Poly-l-Lysine and l-Lysine-Based Dendrimer Synthesis, Modification, and Biomedical Applications. Front. Chem. 2021, 9, 659304. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Q.; Lan, D.; Cai, M.; Liu, Z.; Dai, F.; Cheng, L. ε-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties. Int. J. Biol. Macromol. 2022, 220, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Han, H.; Lu, Z.; Huang, Y.; Zhang, Y.; Chen, Y.; Zhang, X.; Ji, J.; Yao, K. ε-poly-l-lysine-modified polydopamine nanoparticles for targeted photothermal therapy of drug-resistant bacterial keratitis. Boeing. Transl. Med. 2023, 8, e10380. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, H.; Wu, J.; Hou, Y.; Sun, J.; Yuan, J.; Gu, S. Biotechnological production and application of epsilon-poly-l-lysine (ε-PL): Biosynthesis and its metabolic regulation. World J. Microbiol. Biotechnol. 2022, 38, 123. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Yang, Y.; Dabbour, M.; Mintah, B.K.; Zhang, Z.; Dai, C.; He, R.; Huang, G.; Ma, H. Metabolomic and genomic profiles of Streptomyces albulus with a higher ε-polylysine production through ARTP mutagenesis. Biochem. Eng. J. 2020, 162, 107720. [Google Scholar] [CrossRef]
- Wang, L.; Li, S.; Zhao, J.; Liu, Y.; Chen, X.; Tang, L.; Mao, Z. Efficiently activated ε-poly-l-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Microbiologyopen 2019, 8, e00728. [Google Scholar] [CrossRef]
- Huang, R.; Liu, H.; Zhao, W.; Wang, S.; Wang, S.; Cai, J.; Yang, C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb. Cell Factories 2022, 21, 60. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, D.; Kai, L.; Wang, L.; Zhang, H.; Zhang, J.; Chen, X. Engineering Streptomyces albulus to enhance ε-poly-l-lysine production by introducing a polyphosphate kinase-mediated ATP regeneration system. Microb. Cell Factories 2023, 22, 51. [Google Scholar] [CrossRef]
- Mavrommati, M.; Daskalaki, A.; Papanikolaou, S.; Aggelis, G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol. Adv. 2022, 54, 107795. [Google Scholar] [CrossRef] [PubMed]
- Harwani, D.; Begani, J.; Barupal, S.; Lakhani, J. Adaptive laboratory evolution triggers pathogen-dependent broad-spectrum antimicrobial potency in Streptomyces. J. Genet. Eng. Biotechnol. 2022, 20, 1. [Google Scholar] [CrossRef] [PubMed]
- Charusanti, P.; Fong, N.L.; Nagarajan, H.; Pereira, A.R.; Li, H.J.; Abate, E.A.; Su, Y.; Gerwick, W.H.; Palsson, B.O. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS ONE 2012, 7, e33727. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, Y.; Guo, Y.; Li, K.; Wang, C.; Liu, X. Dynamic Responses of Streptomyces albulus QLU58 and Its Acid-Tolerant Derivatives to the Autoacidification in ε-Poly-l-Lysine Production. Fermentation 2023, 9, 459. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Zhao, J.; Li, Q.; Mao, Z. Improvement of ε-poly-l-lysine production of Streptomyces albulus by continuous introduction of streptomycin resistance. Process Biochem. 2019, 82, 10–18. [Google Scholar] [CrossRef]
- Ochi, K. Insights into microbial cryptic gene activation and strain improvement: Principle, application and technical aspects. J. Antibiot. 2017, 70, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ren, X.; Yu, C.; Wang, J.; Wang, L.; Xin, Z.; Liu, X. Physiological and Transcriptional Responses of Streptomyces albulus to Acid Stress in the Biosynthesis of ε-Poly-l-lysine. Front. Microbiol. 2020, 11, 1379. [Google Scholar] [CrossRef]
- Rebets, Y.; Tsolis, K.C.; Guðmundsdóttir, E.E.; Koepff, J.; Wawiernia, B.; Busche, T.; Bleidt, A.; Horbal, L.; Horbal, L.; Ahmed, Y.; et al. Characterization of sigma factor genes in Streptomyces lividans TK24 using a genomic library-based approach for multiple gene deletions. Front. Microbiol. 2018, 9, 3033. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, T.; Zhang, J.; Zhang, P.; Tao, M.; Pang, X. A novel XRE family regulator that controls antibiotic production and development in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2020, 104, 10075–10089. [Google Scholar] [CrossRef]
- Chiu, M.L.; Viollier, P.H.; Katoh, T.; Ramsden, J.J.; Thompson, C.J. Ligand-induced changes in the Streptomyces lividans TipAL protein imply an alternative mechanism of transcriptional activation for MerR-like proteins. Biochemistry 2001, 40, 12950–12958. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Cai, Q.L.; Wang, Y.Q.; Li, W.X.; Yu, J.; Yang, G.D.; Lin, W.X.; Lin, X.M. Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila. World J. Microbiol. Biotechnol. 2019, 35, 127. [Google Scholar] [CrossRef]
- Kahmann, J.D.; Sass, H.J.; Allan, M.G.; Seto, H.; Thompson, C.J.; Grzesiek, S. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. EMBO J. 2003, 22, 1824–1834. [Google Scholar] [CrossRef]
- Hillerich, B.; Westpheling, J. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 2006, 188, 7477–7487. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, N.; Wu, S.; Li, Y.-Q.; Wang, Y. Genomic data mining reveals a rich repertoire of transport proteins in Streptomyces. BMC Genom. 2016, 17, 510. [Google Scholar] [CrossRef]
- Nag, A.; Mehra, S. A Major Facilitator Superfamily (MFS) Efflux Pump, SCO4121, from Streptomyces coelicolor with Roles in Multidrug Resistance and Oxidative Stress Tolerance and Its Regulation by a MarR Regulator. Appl. Environ. Microbiol. 2021, 87, e02238-20. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Calderón, M.; Guan, Z.; Sohlenkamp, C. Knowns and unknowns of membrane lipid synthesis in streptomycetes. Biochimie 2017, 141, 21–29. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, S.J.; Li, X.H.; Choi, Y.S.; Im, D.S.; Lee, J.H. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ. Microbiol. 2018, 20, 3992–4008. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.N.; Foster, T.J. Molecular analysis of the tagF gene, encoding CDP-glycerol: Poly (glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J. Bacteriol. 2000, 182, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Sigle, S.; Ladwig, N.; Wohlleben, W.; Muth, G. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. Int. J. Med. Microbiol. 2015, 305, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Itkes, A.V.; Turpaev, K.T.; Kartasheva, O.N.; Kafiani, C.A.; Severin, E.S. Cyclic AMP-dependent regulation of activities of synthetase and phosphodiesterase of 2′,5′-oligoadenylate in NIH 3T3 cells. Mol. Cell Biochem. 1984, 58, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Trisolini, L.; Gambacorta, N.; Gorgoglione, R.; Montaruli, M.; Laera, L.; Colella, F.; Volpicella, M.; De Grassi, A.; Pierri, C.L. FAD/NADH dependent oxidoreductases: From different amino acid sequences to similar protein shapes for playing an ancient function. J. Clin. Med. 2019, 8, 2117. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, P.; Tang, L. Self-protection of Streptomyces to ε-poly-l-lysine improves fermentation efficacy. Biochem. Eng. J. 2021, 168, 107935. [Google Scholar] [CrossRef]
- Yamanaka, K.; Kito, N.; Imokawa, Y.; Maruyama, C.; Utagawa, T.; Hamano, Y. Mechanism of epsilon-poly-l-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-l-lysine-degrading enzyme. Appl. Environ. Microbiol. 2010, 76, 5669–5675. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Z.; Yu, H.; Ye, J.; Long, Y.; Zhou, P.; He, B. Systematic stress adaptation of Bacillus subtilis to tetracycline exposure. Ecotoxicol. Environ. Saf. 2020, 188, 109910. [Google Scholar] [CrossRef]
- Wu, P.; Zhu, Q.; Yang, R.; Mei, Y.; Chen, Z.; Liang, Y. Differences in Acid Stress Response of Lacticaseibacillus paracasei Zhang Cultured from Solid-State Fermentation and Liquid-State Fermentation. Microorganisms 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
Classification | Gene | Mutation | pos | SNP/Indel | Function | |
---|---|---|---|---|---|---|
WT | MT | |||||
Transcriptional regulation | SALB_RS22375 | nonsynonymous | 4370355 | T | C | RNA polymerase sigma-70 factor, ECF subfamily |
SALB_RS03255 | nonsynonymous | 12915 | G | A | XRE family transcriptional regulator | |
SALB_RS15530 | nonsynonymous | 2788378 | G | A | MerR family transcriptional regulator | |
SALB_RS11990 | stoploss | 1999574 | A | AC | LysR family transcriptional regulator | |
Transporter | SALB_RS20610 | insertion | 3943524 | C | CG | ABC transporter substrate-binding protein |
SALB_RS11770 | insertion | 1954790 | C | CG | ATP-binding protein | |
SALB_RS21360 | insertion | 4138325 | G | GC | MFS transporter | |
SALB_RS43140 | insertion | 1787771 | G | GC | MFS transporter | |
SALB_RS42470 | insertion | 2245592 | G | GC | MFS transporter | |
SALB_RS43175 | insertion | 3276917 | G | GC | MFS transporter | |
SALB_RS21805 | insertion | 4234696 | T | TG | MFS transporter | |
SALB_RS43140 | insertion | 1787771 | G | GC | MFS transporter, NRE family | |
SALB_RS31895 | insertion | 1049041 | G | GC | ATPase | |
Cell envelope | SALB_RS17270 | insertion | 3189305 | A | AG | lyso-ornithine lipid O-acyltransferase |
SALB_RS01500 | insertion | 71361 | T | TG | [acyl-carrier-protein] S-malonyltransferase | |
SALB_RS43310 | insertion | 21999 | C | CG | fatty acid synthase | |
SALB_RS28520 | insertion | 248414 | G | GC | cholesterol oxidase | |
SALB_RS44660 | insertion | 3949616 | C | CG | CDP-glycerol glycerophosphotransferase | |
Energy metabolism | SALB_RS44690 | nonsynonymous | 5057006 | A | G | NAD(P)H dehydrogenase |
5057027 | A | G | ||||
insertion | 5056987 | T | TR | |||
SALB_RS44480 | nonsynonymous | 190230 | C | G | AMP-dependent synthetase | |
insertion | 190228 | G | GGC | |||
SALB_RS37945 | insertion | 2444045 | G | GC | FAD-binding oxidoreductase | |
Secondary metabolite synthesis | SALB_RS42445 | nonsynonymous | 1741660 | G | C | polyketide synthase |
SALB_RS31335 | insertion | 878148 | C | CG | polyketide synthase, PKSL | |
SALB_RS31375 | insertion | 909312 | G | GC | polyketide synthase. PKSJ | |
SALB_RS31405 | insertion | 927895 | G | GC | polyketide synthase, PKSM | |
SALB_RS31345 | insertion | 884938 | G | GC | polyketide synthase, PKSM | |
SALB_RS25230 | insertion | 4982823 | C | CG | diaminopimelate decarboxylase |
Classification | Metabolites | m/z | Rt(s) | Formula | Log2 Ratio (MT/WT) |
---|---|---|---|---|---|
Central carbon metabolism | Glucose 6-phosphate | 261.0375 | 92 | C6H13O9P | −1.08 * |
Gluconic acid | 197.154 | 636.5 | C6H12O7 | 2.2 *** | |
Succinate | 119.0357 | 291.6 | C4H6O4 | 4.38 ** | |
Propionyl-CoA | 822.1295 | 330.9 | C24H40N7O17P3S | 0.86 * | |
α-ketoglutarate | 146.0301 | 71.6 | C5H6O5 | −1.68 ** | |
l-Lysine biosynthesis and degradation | N6-(l-1,3-Dicarboxypropyl)-l-lysine | 277.1392 | 87.2 | C11H20N2O6 | −0.4 * |
l-Asparagine | 133.1023 | 635 | C4H8N2O3 | 3.82 * | |
l-2-Aminoadipate | 142.0511 | 102.1 | C6H11NO4 | 0.74 * | |
l-Lysine | 147.1133 | 77.6 | C6H14N2O2 | 2.55 *** | |
5-Acetamidovalerate | 159.0922 | 401.5 | C7H13NO3 | 4.43 ** | |
Lipids and relative amino acids | Myristic acid | 229.1797 | 703.2 | C14H28O2 | 1.99 *** |
N-Acetyl-l-citrulline | 217.1181 | 130.9 | C8H15N3O4 | 4.2 * | |
Citrulline | 176.1032 | 89.7 | C6H13N3O3 | 2.06 * | |
Ornithine | 133.0975 | 77.6 | C5H12N2O2 | 3.1 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, X.; Sun, X.; Chen, Y.; Xi, X.; Ma, Y.; Jiang, X.; Zhang, X.; Wang, C.; Zhu, D.; Liu, X. Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution. Microorganisms 2025, 13, 149. https://doi.org/10.3390/microorganisms13010149
Ren X, Sun X, Chen Y, Xi X, Ma Y, Jiang X, Zhang X, Wang C, Zhu D, Liu X. Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution. Microorganisms. 2025; 13(1):149. https://doi.org/10.3390/microorganisms13010149
Chicago/Turabian StyleRen, Xidong, Xinjie Sun, Yan Chen, Xiangheng Xi, Yunzhe Ma, Xinyue Jiang, Xian Zhang, Chenying Wang, Deqiang Zhu, and Xinli Liu. 2025. "Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution" Microorganisms 13, no. 1: 149. https://doi.org/10.3390/microorganisms13010149
APA StyleRen, X., Sun, X., Chen, Y., Xi, X., Ma, Y., Jiang, X., Zhang, X., Wang, C., Zhu, D., & Liu, X. (2025). Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution. Microorganisms, 13(1), 149. https://doi.org/10.3390/microorganisms13010149