Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge
Abstract
:1. Introduction
2. Geological Context
3. Materials and Methods
3.1. Slab of Calcare Massiccio Fm
3.2. Numerical Model of Stress Fields Between Stylolite Tips
3.3. Analytical Methods for Past Temperature Estimation
3.3.1. O, C Isotope Measurements
3.3.2. Carbonate Clumped-Isotope Paleothermometry
3.4. Stylolite Roughness Inversion
4. Results
4.1. Characterization of Stylolites and Petrography of Mineralization
4.2. Stylolite Tips and Jog Simulations
4.3. Stable Isotope Results
4.4. Clumped Isotope Thermometry
4.5. Stylolite Roughness Inversion
5. Interpretation
5.1. Depth of Calcite Precipitation in Jogs
5.2. Depth of Active Pressure Solution from SRIT
6. Discussion
6.1. Independent Validation of SRIT on BPSs as a Reliable Vertical Stress Gauge
6.2. Timing of Stylolite Development Regarding Burial History and Favourable p,T Conditions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez-Rivas, E.; Butler, R.W.H.; Healy, D.; Alsop, I. From Hot to Cold–The Temperature Dependence on Rock Deformation Processes: An Introduction. J. Struct. Geol. 2020, 132, 103977. [Google Scholar] [CrossRef]
- Alvarez, W.; Engelder, T.; Lowrie, W. Formation of Spaced Cleavage and Folds in Brittle Limestone by Dissolution. Geology 1976, 4, 698–701. [Google Scholar] [CrossRef]
- Alvarez, W.; Engelder, T.; Geiser, P.A. Classification of Solution Cleavage in Pelagic Limestones. Geology 1978, 6, 263–266. [Google Scholar] [CrossRef]
- Park, W.C.; Schot, E.H. Stylolites; Their Nature and Origin. J. Sediment. Res. 1968, 38, 175–191. [Google Scholar] [CrossRef]
- Stockdale, P.B. Stylolites, Primary or Secondary? J. Sediment. Res. 1943, 13, 3–12. [Google Scholar] [CrossRef]
- Renard, F.; Ortoleva, P.; Gratier, J.P. Pressure Solution in Sandstones: Influence of Clays and Dependence on Temperature and Stress. Tectonophysics 1997, 280, 257–266. [Google Scholar] [CrossRef]
- Cavailhes, T.; Sizun, J.P.; Labaume, P.; Chauvet, A.; Buatier, M.; Soliva, R.; Mezri, L.; Charpentier, D.; Leclere, H.; Trave, A.; et al. Influence of Fault Rock Foliation on Fault Zone Permeability: The Case of Deeply Buried Arkosic Sandstones (Grès d’Annot, Southeastern France). Am. Assoc. Pet. Geol. Bull. 2013, 97, 1521–1543. [Google Scholar] [CrossRef]
- Nenna, F.; Aydin, A. The Role of Pressure Solution Seam and Joint Assemblages in the Formation of Strike-Slip and Thrust Faults in a Compressive Tectonic Setting; The Variscan of South-Western Ireland. J. Struct. Geol. 2011, 33, 1595–1610. [Google Scholar] [CrossRef]
- Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. Stylolites: A Review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef]
- Vandeginste, V.; Swennen, R.; Allaeys, M.; Ellam, R.M.; Osadetz, K.; Roure, F. Challenges of Structural Diagenesis in Foreland Fold-and-Thrust Belts: A Case Study on Paleofluid Flow in the Canadian Rocky Mountains West of Calgary. Mar. Pet. Geol. 2012, 35, 235–251. [Google Scholar] [CrossRef]
- Roure, F.; Swennen, R.; Schneider, F.; Faure, J.L.; Ferket, H.; Guilhaumou, N.; Osadetz, K.; Robion, P.; Vandeginste, V. Incidence and Importance of Tectonics and Natural Fluid Migration on Reservoir Evolution in Foreland Fold-and-Thrust Belts. Oil Gas Sci. Technol. 2005, 60, 67–106. [Google Scholar] [CrossRef]
- Bruna, P.O.; Lavenu, A.P.C.; Matonti, C.; Bertotti, G. Are Stylolites Fluid-Flow Efficient Features? J. Struct. Geol. 2019, 125, 270–277. [Google Scholar] [CrossRef]
- Nikbin, M.; Moussavi-Harami, R.; Moghaddas, N.H.; Aghli, G.; Ghaemi, F.; Aminshahidy, B. The Role of Stylolites as a Fluid Conductive, in the Heterogeneous Carbonate Reservoirs. J. Pet. Explor. Prod. Technol. 2024, 14, 2953–2971. [Google Scholar] [CrossRef]
- Martín-Martín, J.D.; Gomez-Rivas, E.; Gómez-Gras, D.; Travé, A.; Ameneiro, R.; Koehn, D.; Bons, P.D. Activation of Stylolites as Conduits for Overpressured Fluid Flow in Dolomitized Platform Carbonates. In Geological Society Special Publication; Geological Society of London: London, UK, 2018; Volume 459, pp. 157–176. [Google Scholar]
- Baud, P.; Rolland, A.; Heap, M.; Xu, T.; Nicolé, M.; Ferrand, T.; Reuschlé, T.; Toussaint, R.; Conil, N. Impact of Stylolites on the Mechanical Strength of Limestone. Tectonophysics 2016, 690, 4–20. [Google Scholar] [CrossRef]
- Meredith, P.; Baud, P.; Heap, M.J.; Rolland, A.; Toussaint, R. Influence of Compaction Bands and Stylolites on the Permeability of Porous Rocks. In Proceedings of the Pore2Field, IFP Energies Nouvelles, Rueil-Malmaison, France, 16 November 2011; pp. 1–4. [Google Scholar]
- Braithwaite, C.J.R. Stylolites as Open Fluid Conduits. Mar. Pet. Geol. 1989, 6, 93–96. [Google Scholar] [CrossRef]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C.W. Growth of Stylolite Teeth Patterns Depending on Normal Stress and Finite Compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef]
- Quintà, A.; Tavani, S. The Foreland Deformation in the South-Western Basque-Cantabrian Belt (Spain). Tectonophysics 2012, 576, 4–19. [Google Scholar] [CrossRef]
- Benedicto, A.; Schultz, R.A. Stylolites in Limestone: Magnitude of Contractional Strain Accommodated and Scaling Relationships. J. Struct. Geol. 2010, 32, 1250–1256. [Google Scholar] [CrossRef]
- Tavani, S.; Storti, F.; Lacombe, O.; Corradetti, A.; Muñoz, J.A.; Mazzoli, S. A Review of Deformation Pattern Templates in Foreland Basin Systems and Fold-and-Thrust Belts: Implications for the State of Stress in the Frontal Regions of Thrust Wedges. Earth Sci. Rev. 2015, 141, 82–104. [Google Scholar] [CrossRef]
- Köehn, D.; Köehler, S.; Toussaint, R.; Ghani, I.; Stollhofen, H. Scaling Analysis, Correlation Length and Compaction Estimates of Natural and Simulated Stylolites. J. Struct. Geol. 2022, 161, 104670. [Google Scholar] [CrossRef]
- Laronne Ben-Itzhak, L.; Aharonov, E.; Toussaint, R.; Sagy, A. Upper Bound on Stylolite Roughness as Indicator for Amount of Dissolution. Earth Planet. Sci. Lett. 2012, 337, 186–196. [Google Scholar] [CrossRef]
- Angheluta, L.; Mathiesen, J.; Aharonov, E. Compaction of Porous Rock by Dissolution on Discrete Stylolites: A One-Dimensional Model. J. Geophys. Res. Solid Earth 2012, 117, B08203. [Google Scholar] [CrossRef]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A New Stylolite Classification Scheme to Estimate Compaction and Local Permeability Variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Pinto-Coelho, C.V.; Oliveira, S.P.; de Assis, J.P.; Camargo, M.H.T.; Cavallari, M.L. Dominant Wavelength: A Tool for Morphological Simplification of Stylolites. Carbonates Evaporites 2024, 39, 4. [Google Scholar] [CrossRef]
- Schmittbuhl, J.; Renard, F.; Gratier, J.P.; Toussaint, R. Roughness of Stylolites: Implications of 3D High Resolution Topography Measurements. Phys. Rev. Lett. 2004, 93, 238501. [Google Scholar] [CrossRef]
- Renard, F.; Schmittbuhl, J.; Gratier, J.; Meakin, P.; Merino, E. Three-dimensional Roughness of Stylolites in Limestones. J. Geophys. Res. Solid Earth 2004, 109, B03209. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F. The Influence of Rock Heterogeneity on the Scaling Properties of Simulated and Natural Stylolites. J. Struct. Geol. 2009, 31, 72–82. [Google Scholar] [CrossRef]
- Rolland, A.; Toussaint, R.; Baud, P.; Conil, N.; Landrein, P. Morphological Analysis of Stylolites for Paleostress Estimation in Limestones. Int. J. Rock. Mech. Min. Sci. 2014, 67, 212–225. [Google Scholar] [CrossRef]
- Beaudoin, N.; Gasparrini, M.; David, M.E.; Lacombe, O.; Koehn, D. Bedding-Parallel Stylolites as a Tool to Unravel Maximum Burial Depth in Sedimentary Basins: Application to Middle Jurassic Carbonate Reservoirs in the Paris Basin, France. Bull. Geol. Soc. Am. 2019, 131, 1239–1254. [Google Scholar] [CrossRef]
- Zeboudj, A.; Bah, B.; Lacombe, O.; Beaudoin, N.E.; Gout, C.; Godeau, N.; Girard, J.P.; Deschamps, P. Depicting Past Stress History at Passive Margins: A Combination of Calcite Twinning and Stylolite Roughness Paleopiezometry in Supra-Salt Sendji Deep Carbonates, Lower Congo Basin, West Africa. Mar. Pet. Geol. 2023, 152, 106219. [Google Scholar] [CrossRef]
- Bah, B.; Beaudoin, N.E.; Lacombe, O.; Girard, J.P.; Gout, C.; Godeau, N.; Deschamps, P. Multi-Proxy Reconstruction of the Burial History and Porosity Evolution of the TOCA Carbonate Formation in the Lower Congo Basin (South West Africa). Mar. Pet. Geol. 2023, 148, 106018. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; Koehn, D.; David, M.E.; Farrell, N.; Healy, D. Vertical Stress History and Paleoburial in Foreland Basins Unravelled by Stylolite Roughness Paleopiezometry: Insights from Bedding-Parallel Stylolites in the Bighorn Basin, Wyoming, USA. J. Struct. Geol. 2020, 136, 104061. [Google Scholar] [CrossRef]
- Beaudoin, N.; Koehn, D.; Lacombe, O.; Lecouty, A.; Billi, A.; Aharonov, E.; Parlangeau, C. Fingerprinting Stress: Stylolite and Calcite Twinning Paleopiezometry Revealing the Complexity of Progressive Stress Patterns during Folding—The Case of the Monte Nero Anticline in the Apennines, Italy. Tectonics 2016, 35, 1687–1712. [Google Scholar] [CrossRef]
- Labeur, A.; Beaudoin, N.E.; Lacombe, O.; Emmanuel, L.; Petracchini, L.; Daëron, M.; Klimowicz, S.; Callot, J.P. Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines). Geosciences 2021, 11, 135. [Google Scholar] [CrossRef]
- Beaudoin, N.E.; Labeur, A.; Lacombe, O.; Koehn, D.; Billi, A.; Hoareau, G.; Boyce, A.; John, C.M.; Marchegiano, M.; Roberts, N.M.; et al. Regional-Scale Paleofluid System across the Tuscan Nappe-Umbria-Marche Apennine Ridge (Northern Apennines) as Revealed by Mesostructural and Isotopic Analyses of Stylolite-Vein Networks. Solid Earth 2020, 11, 1617–1641. [Google Scholar] [CrossRef]
- Bertotti, G.; de Graaf, S.; Bisdom, K.; Oskam, B.; Vonhof, H.B.; Bezerra, F.H.R.; Reijmer, J.J.G.; Cazarin, C.L. Fracturing and Fluid-Flow during Post-Rift Subsidence in Carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. Basin Res. 2017, 29, 836–853. [Google Scholar] [CrossRef]
- Labeur, A.; Beaudoin, N.E.; Lacombe, O.; Gout, C.; Callot, J.P. Constraining the Onset of Orogenic Contraction in Fold-and-Thrust Belts Using Sedimentary Stylolite Populations (Umbria-Marche Apennines, Italy). J. Struct. Geol. 2024, 182, 105098. [Google Scholar] [CrossRef]
- Choudhury, D.; Mondal, T.K.; Mondal, S.; Debnath, A.; Majumder, P.; Banerjee, A. Estimation of Burial Depth Using Stylolite Roughness from the Neoproterozoic Narji Limestone, Cuddapah Basin, India. J. Earth Syst. Sci. 2024, 133, 49. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F.; Schmittbuhl, J. Stress Sensitivity of Stylolite Morphology. Earth Planet. Sci. Lett. 2009, 277, 394–398. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; David, M.E.; Koehn, D. Does Stress Transmission in Forelands Depend on Structural Style? Distinctive Stress Magnitudes during Sevier Thin-Skinned and Laramide Thick-Skinned Layer-Parallel Shortening in the Bighorn Basin (USA) Revealed by Stylolite and Calcite Twinning Paleopiezometry. Terra Nova 2020, 32, 225–233. [Google Scholar] [CrossRef]
- Hou, Z.; Fusseis, F.; Schöpfer, M.; Grasemann, B. Synkinematic Evolution of Stylolite Porosity. J. Struct. Geol. 2023, 173, 104916. [Google Scholar] [CrossRef]
- Peacock, D.C.P.; Korneva, I.; Nixon, C.W.; Rotevatn, A. Changes of Scaling Relationships in an Evolving Population: The Example of “Sedimentary” Stylolites. J. Struct. Geol. 2017, 96, 118–133. [Google Scholar] [CrossRef]
- Lacombe, O.; Beaudoin, N.E.; Hoareau, G.; Labeur, A.; Pecheyran, C.; Callot, J.P. Dating Folding beyond Folding, from Layer-Parallel Shortening to Fold Tightening, Using Mesostructures: Lessons from the Apennines, Pyrenees, and Rocky Mountains. Solid Earth 2021, 12, 2145–2157. [Google Scholar] [CrossRef]
- Karcz, Z.; Scholz, C.H. The Fractal Geometry of Some Stylolites from the Calcare Massiccio Formation, Italy. J. Struct. Geol. 2003, 25, 1301–1316. [Google Scholar] [CrossRef]
- Laronne Ben-Itzhak, L.; Aharonov, E.; Karcz, Z.; Kaduri, M.; Toussaint, R. Sedimentary Stylolite Networks and Connectivity in Limestone: Large-Scale Field Observations and Implications for Structure Evolution. J. Struct. Geol. 2014, 63, 106–123. [Google Scholar] [CrossRef]
- Aharonov, E.; Karcz, Z. How Stylolite Tips Crack Rocks. J. Struct. Geol. 2019, 118, 299–307. [Google Scholar] [CrossRef]
- Scisciani, V.; Agostini, S.; Calamita, F.; Pace, P.; Cilli, A.; Giori, I.; Paltrinieri, W. Positive Inversion Tectonics in Foreland Fold-and-Thrust Belts: A Reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by Integrating Geological and Geophysical Data. Tectonophysics 2014, 637, 218–237. [Google Scholar] [CrossRef]
- Lavecchia, G.; Minelli, G.; Pialli, G. The Umbria-Marche Arcuate Fold Belt (Italy). Tectonophysics 1988, 146, 125–137. [Google Scholar] [CrossRef]
- Elter, P.; Grasso, M.; Parotto, M.; Vezzani, L. Elter_2008_Structural Setting Apennines. Episodes 2012, 26, 205–211. [Google Scholar] [CrossRef]
- Tavani, S.; Smeraglia, L.; Fabbi, S.; Aldega, L.; Sabbatino, M.; Cardello, G.L.; Maresca, A.; Schirripa Spagnolo, G.; Kylander-Clark, A.; Billi, A.; et al. Timing, Thrusting Mode, and Negative Inversion Along the Circeo Thrust, Apennines, Italy: How the Accretion-To-Extension Transition Operated During Slab Rollback. Tectonics 2023, 42, e2022TC007679. [Google Scholar] [CrossRef]
- Carminati, E.; Lustrino, M.; Cuffaro, M.; Doglioni, C. Tectonics, Magmatism and Geodynamics of Italy: What We Know and What We Imagine. J. Virtual Explor. 2010, 36, 226. [Google Scholar] [CrossRef]
- Scisciani, V. Styles of Positive Inversion Tectonics in the Central Apennines and in the Adriatic Foreland: Implications for the Evolution of the Apennine Chain (Italy). J. Struct. Geol. 2009, 31, 1276–1294. [Google Scholar] [CrossRef]
- Guerrera, F.; Tramontana, M.; Donatelli, U.; Serrano, F. Space/Time Tectono-Sedimentary Evolution of the Umbria-Romagna-Marche Miocene Basin (Northern Apennines, Italy): A Foredeep Model. Swiss J. Geosci. 2012, 105, 325–341. [Google Scholar] [CrossRef]
- Mazzoli, S.; Deiana, G.; Galdenzi, S.; Cello, G. Miocene Fault-Controlled Sedimentation and Thrust Propagation in the Previously Faulted External Zones of the Umbria-Marche Apennines, Italy. Stephan Mueller Spec. Publ. Ser. 2002, 1, 195–209. [Google Scholar] [CrossRef]
- Calamita, F.; Cello, G.; Deiana, G. Structural Styles, Chronology Rates of Deformation, and Time-Space Relationships in the Umbria-Marche Thrust System (Central Apennines, Italy). Tectonics 1994, 13, 873–881. [Google Scholar] [CrossRef]
- Galluzzo, F.; Santantonio, M. Geologia e paleogeografia giurassica dell'area comresa tra la valle del Vernino e Monte Murano (Monti della Rossa, Appennio Marchigiano). Ital. J. Geosci. 1994, 113, 587–612. [Google Scholar]
- Brandano, M.; Corda, L.; Tomassetti, L.; Tagliavento, M. Frequency Analysis across the Drowning of a Lower Jurassic Carbonate Platform: The Calcare Massiccio Formation (Apennines, Italy). Mar. Pet. Geol. 2016, 78, 606–620. [Google Scholar] [CrossRef]
- Caricchi, C.; Aldega, L.; Corrado, S. Reconstruction of Maximum Burial along the Northern Apennines Thrust Wedge (Italy) by Indicators of Thermal Exposure and Modeling. Bull. Geol. Soc. Am. 2014, 127, 428–442. [Google Scholar] [CrossRef]
- Bons, P.D.; Koehn, D.; Jessell, M.W. Microdynamics Simulation; Bons, P.D., Koehn, D., Jessell, M.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Piazolo, S.; Bons, P.D.; Griera, A.; Llorens, M.G.; Gomez-Rivas, E.; Koehn, D.; Wheeler, J.; Gardner, R.; Godinho, J.R.A.; Evans, L.; et al. A Review of Numerical Modelling of the Dynamics of Microstructural Development in Rocks and Ice: Past, Present and Future. J. Struct. Geol. 2019, 125, 111–123. [Google Scholar] [CrossRef]
- Rosenbaum, J.; Sheppard, S.M.F. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochim. Cosmochim. Acta 1986, 50, 1147–1150. [Google Scholar] [CrossRef]
- Kim, S.-T.; O’neil, J.R. Equilibrium and Nonequilibrium Oxygen Isotope Effects in Synthetic Carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Daëron, M.; Bergmann, K.D.; Bonifacie, M.; Meckler, A.N.; Affek, H.P.; Anderson, N.; Bajnai, D.; Barkan, E.; Beverly, E.; et al. InterCarb: A Community Effort to Improve Interlaboratory Standardization of the Carbonate Clumped Isotope Thermometer Using Carbonate Standards. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009588. [Google Scholar] [CrossRef] [PubMed]
- Daëron, M. Full Propagation of Analytical Uncertainties in Δ47 Measurements. Geochem. Geophys. Geosyst. 2021, 22, e2020GC009592. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995; ISBN 9780511599798. [Google Scholar]
- Power, W.L.; Tullis, T.E.; Brown, S.R.; Boitnott, G.N.; Scholz, C.H. Roughness of Natural Fault Surfaces. Geophys. Res. Lett. 1987, 14, 29–32. [Google Scholar] [CrossRef]
- Simonsen, I.; Hansen, A.; Nes, O.M. Determination of the Hurst Exponent by Use of Wavelet Transforms. Phys. Rev. E 1998, 58, 2779. [Google Scholar] [CrossRef]
- Candela, T.; Renard, F.; Bouchon, M.; Brouste, A.; Marsan, D.; Schmittbuhl, J.; Voisin, C. Characterization of Fault Roughness at Various Scales: Implications of Three-Dimensional High Resolution Topography Measurements. Pure Appl. Geophys. 2009, 166, 1817–1851. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions; Ribbe, P.H., Ed.; Reviews in MINERALO; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, ISBN 978-0-939950-16-4. [Google Scholar]
- Fletcher, R.C.; Pollard, D.D. Anticrack Model for Pressure Solution Surfaces. Geology 1981, 9, 419–424. [Google Scholar] [CrossRef]
- Daëron, M.; Vermeesch, P. Omnivariant Generalized Least Squares Regression: Theory, Geochronological Applications, and Making the Case for Reconciled Δ47 Calibrations. Chem. Geol. 2024, 647, 121881. [Google Scholar] [CrossRef]
- Wright, K.; Cygan, R.T.; Slater, B. Structure of the (1014) Surfaces of Calcite, Dolomite, and Magnesite under Wet and Dry Conditions. Phys. Chem. Chem. Phys. 2001, 3, 839–844. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Geraghty Ward, E.M. Reactivation of Pressure-Solution Seams by a Strike-Slip Fault-Sequential, Dilational Jog Formation and Fluid Flow. Am. Assoc. Pet. Geol. Bull. 2006, 90, 1187–1200. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Cawood, A.J.; Evans, M.A.; Smart, K.J.; King, R.R.; Zanoni, G. Thrust v. Stylolite. J. Struct. Geol. 2024, 182, 105113. [Google Scholar] [CrossRef]
- Ballas, G.; Raynaud, S.; Lopez, M.; Oliot, E.; Sizun, J.P.; Caillaud, J.; Barou, F.; Ildefonse, B. Initiation and Development of Tectonic Stylolite–Vein System in Micritic Limestone (Les Matelles, France). J. Struct. Geol. 2024, 183, 105130. [Google Scholar] [CrossRef]
- Koehn, D.; Arnold, J.; Jamtveit, B.; Malthe-Sørenssen, A. Free Surface Dissolution of Stressed Solids. J. Virtual Explor. 2003, 15, 1–18. [Google Scholar] [CrossRef]
- De Graaf, S.; Nooitgedacht, C.W.; Goff, J.L.; Van Der Lubbe, J.H.J.L.; Vonhof, H.B.; Reijmer, J.J.G. Fluid-Flow Evolution in the Albanide Fold-Thrust Belt: Insights from Hydrogen and Oxygen Isotope Ratios of Fluid Inclusions. Am. Assoc. Pet. Geol. Bull. 2019, 103, 2421–2445. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-19715-9. [Google Scholar]
- Hu, W.X.; Kang, X.; Cao, J.; Wang, X.L.; Fu, B.; Wu, H.G. Thermochemical Oxidation of Methane Induced by High-Valence Metal Oxides in a Sedimentary Basin. Nat. Commun. 2018, 9, 5131. [Google Scholar] [CrossRef]
- Seewald, J.S. Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature 2003, 426, 327–333. [Google Scholar] [CrossRef]
- Mazzullo, S.J.; Harris, P.M. Mesogenetic Dissolution: Its Role in Porosity Development in Carbonate Reservoirs. Am. Assoc. Pet. Geol. Bull. 1992, 76, 607–620. [Google Scholar] [CrossRef]
- Surdam, R.C.; Crossey, L.J.; Hagen, E.S.; Heasler, H.P. Organic-Inorganic Interactions and Sandstone Diagenesis. Am. Assoc. Pet. Geol. Bull. 1989, 73, 1–23. [Google Scholar] [CrossRef]
- Irwin, H.; Curtis, C.; Coleman, M. Isotopic Evidence for Source of Diagenetic Carbonates Formed during Burial of Organic-Rich Sediments. Nature 1977, 269, 209–213. [Google Scholar] [CrossRef]
- Sun, F.; Hu, W.; Wu, H.; Fu, B.; Wang, X.; Tang, Y.; Cao, J.; Yang, S.; Hu, Z. Two-Stage Mineral Dissolution and Precipitation Related to Organic Matter Degradation: Insights from in Situ C–O Isotopes of Zoned Carbonate Cements. Mar. Pet. Geol. 2021, 124, 104812. [Google Scholar] [CrossRef]
- Schulz, H.; Wirth, R.; Geofluids, A.S. Organic–Inorganic Rock–Fluid Interactions in Stylolitic Micro-environments of Carbonate Rocks: A FIB-TEM Study Combined with a Hydrogeochemical Modelling. Geofluids 2016, 16, 909–924. [Google Scholar] [CrossRef]
- Petrash, D.A.; Bialik, O.M.; Bontognali, T.R.R.; Vasconcelos, C.; Roberts, J.A.; McKenzie, J.A.; Konhauser, K.O. Microbially Catalyzed Dolomite Formation: From near-Surface to Burial. Earth Sci. Rev. 2017, 171, 558–582. [Google Scholar] [CrossRef]
- Mazzullo, S.J. Organogenic Dolomitization in Peritidal to Deep-Sea Sediments. J. Sediment. Res. 2000, 70, 10–23. [Google Scholar] [CrossRef]
- Stolper, D.A.; Eiler, J.M. The Kinetics of Solid-State Isotope-Exchange Reactions for Clumped Isotopes: A Study of Inorganic Calcites and Apatites from Natural and Experimental Samples. Am. J. Sci. 2015, 315, 363–411. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Henkes, G.A. A Disordered Kinetic Model for Clumped Isotope Bond Reordering in Carbonates. Earth Planet. Sci. Lett. 2021, 566, 116962. [Google Scholar] [CrossRef]
- Lloyd, M.K.; Ryb, U.; Eiler, J.M. Experimental Calibration of Clumped Isotope Reordering in Dolomite. Geochim. Cosmochim. Acta 2018, 242, 1–20. [Google Scholar] [CrossRef]
- Benz, S.A.; Irvine, D.J.; Rau, G.C.; Bayer, P.; Menberg, K.; Blum, P.; Jamieson, R.C.; Griebler, C.; Kurylyk, B.L. Global Groundwater Warming Due to Climate Change. Nat. Geosci. 2024, 17, 545–551. [Google Scholar] [CrossRef]
- Emiliani, C. The Temperature Decrease of Surface Sea-Water in High Latitudes and of Abyssal-Hadal Water in Open Oceanic Basins during the Past 75 Million Years. Deep Sea Res. 1961, 8, 144–147. [Google Scholar] [CrossRef]
- Simone, L.; Bravi, S.; Carannante, G.; Masucci, I.; Pomoni-Papaioannou, F. Arid versus Wet Climatic Evidence in the “Middle Cretaceous” Calcareous Successions of the Southern Apennines (Italy). Cretac. Res. 2012, 36, 6–23. [Google Scholar] [CrossRef]
- Basilone, L.; Perri, F.; Sulli, A.; Critelli, S. Paleoclimate and Extensional Tectonics of Short-Lived Lacustrine Environments. Lower Cretaceous of the Panormide Southern Tethyan Carbonate Platform (NW Sicily). Mar. Pet. Geol. 2017, 88, 428–439. [Google Scholar] [CrossRef]
- Slowey, N.C. The Modern and Glacial Thermoclines along the Bahama Banks; MIT: Boston, MA, USA, 1990. [Google Scholar]
- Lacombe, O.; Beaudoin, N.E. Timing, Sequence, Duration and Rate of Deformation in Fold-and-Thrust Belts: A Review of Traditional Approaches and Recent Advances from Absolute Dating (K–Ar Illite/U–Pb Calcite) of Brittle Structures. Comptes Rendus–Geosci. 2024, 366, 467–494. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Müller, I.A.; Bergmann, K.D.; Breitenbach, S.F.M.; Fernandez, A.; Hodell, D.A.; Meckler, A.N.; Millan, I.; Ziegler, M. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 2018, 19, 2895–2914. [Google Scholar] [CrossRef] [PubMed]
- Brand, W.A.; Assonov, S.S.; Coplen, T.B. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1719–1733. [Google Scholar] [CrossRef]
- Daëron, M.; Blamart, D.; Peral, M.; Affek, H.P. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chem. Geol. 2016, 442, 83–96. [Google Scholar] [CrossRef]
- Daëron, M.; Drysdale, R.N.; Peral, M.; Huyghe, D.; Blamart, D.; Coplen, T.B.; Lartaud, F.; Zanchetta, G. Most Earth-surface calcites precipitate out of isotopic equilibrium. Nat. Commun. 2019, 10, 429. [Google Scholar] [CrossRef]
- Kim, S.-T.; Mucci, A.; Taylor, B.E. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chem. Geol. 2007, 246, 135–146. [Google Scholar] [CrossRef]
- Kim, S.-T.; O’Neil, J.R.; Hillaire-Marcel, C.; Mucci, A. Oxygen isotope fractionation between synthetic aragonite and water: Influence of temperature and Mg2+ concentration. Geochim. Cosmochim. Acta 2007, 71, 4704–4715. [Google Scholar] [CrossRef]
Sample Name | δ 13C (‰VPDB) | δ 18O (‰VPDB) | Structure | Calc. Temperature * (°C) | Corr. Depth ** (m) |
---|---|---|---|---|---|
s01a | −3.71 | −6.35 | Jog | ||
s01b | −2.47 | −5.99 | Jog | ||
s02a | −2.31 | −8.35 | Jog | 40 | 1300 |
s02b | −3.28 | −8.55 | Jog | 41 | 1350 |
s02c | −1.90 | −8.36 | Jog | 40 | 1300 |
s06a | −1.29 | −8.56 | Jog | 41 | 1350 |
s10a | −1.69 | −9.66 | Jog | 48 | 1650 |
s10b | −2.72 | −10.57 | Jog | 53 | 1870 |
s10c | −0.52 | −7.75 | Jog | 36 | 1130 |
s13a | −1.49 | −9.38 | Jog | 46 | 1570 |
s15a | −2.83 | −5.70 | Jog | 25 | 650 |
s15b | −3.11 | −6.68 | Jog | 30 | 870 |
s17a.ii | −0.75 | −8.08 | Jog | 38 | 1220 |
s01a | −4.76 | −7.14 | Jog | 33 | 1000 |
s01b | −3.80 | −6.10 | Jog | 27 | 740 |
s20a | −1.07 | −6.25 | Jog | 28 | 780 |
s23a | −2.15 | −9.32 | Jog | 46 | 1570 |
s24a | −0.83 | −5.42 | Jog | 23 | 570 |
s24b | −1.12 | −6.23 | Jog | 28 | 780 |
s27a | −2.24 | −6.31 | Jog | 28 | 780 |
s28 | −4.94 | −6.77 | Jog | ||
s28a | −5.29 | −6.90 | Jog | 31 | 910 |
s29b | −4.82 | −6.56 | Jog | 29 | 830 |
s33a | −3.68 | −7.17 | Jog | 33 | 1000 |
s37a | −0.56 | −6.61 | Jog | 30 | 870 |
s08a | −1.00 | −6.18 | Jog | 27 | 740 |
s03a | −1.86 | −9.62 | Jog | 47 | 1610 |
s03b | −1.97 | −8.55 | Jog | 41 | 1350 |
s04a | −2.18 | −8.29 | Jog | 39 | 1260 |
s09a | −1.18 | −8.63 | Jog | 41 | 1350 |
s02v | −8.21 | −6.82 | vein | ||
s17v | −0.80 | −9.34 | vein | ||
s23v | 1.41 | −5.07 | vein | ||
s25v | −4.28 | −10.26 | vein | ||
s06p | −1.47 | −8.27 | Vug | ||
s32p | −3.60 | −6.02 | Vug | ||
s03m | 1.25 | −4.32 | Matrix | ||
s12m | 1.51 | −3.78 | Matrix | ||
s13m | 1.26 | −4.56 | Matrix | ||
s17m | 1.50 | −3.88 | Matrix | ||
s01m | 1.36 | −3.91 | Matrix | ||
s23m | 1.56 | −3.82 | Matrix | ||
s25m | 1.33 | −4.22 | Matrix | ||
s33m | 1.07 | −4.29 | matrix | ||
s37m | 1.28 | −4.27 | Matrix | ||
s8m | 1.16 | −4.12 | matrix | ||
s04m | 1.61 | −3.52 | Matrix | ||
s06m | 1.61 | −3.60 | Matrix | ||
s09m | 1.45 | −3.75 | Matrix |
Sample Name | Type | δ13C (‰VPDB) | δ18O Calcite (‰VPDB) | Δ47-ICDES | 95% Uncertainty | T47 (°C) | 95% Uncertainty | δ18OH2O (‰VSMOW) | 95% Uncertainty |
---|---|---|---|---|---|---|---|---|---|
S01a | Jog | −3.71 | −6.35 | 0.5512 | 0.0103 | 40.1 | 4.0 | −1.1 | 0.7 |
S01b | Jog | −2.47 | −5.99 | 0.5639 | 0.0104 | 35.3 | 3.8 | −1.6 | 0.7 |
S28 | Jog | −4.94 | −6.77 | 0.5511 | 0.0103 | 40.1 | 4.0 | −1.5 | 0.7 |
S32C | Vug | −3.6 | −6.02 | 0.5350 | 0.0103 | 46.6 | 4.2 | 0.4 | 0.7 |
Sample Name | Inversion Quality | AWS Lc (mm) | 2σ | Compaction (mm) | σ1 (MPa) | Uncertainty (MPa) | Depth (m) | Uncertainty (m) |
---|---|---|---|---|---|---|---|---|
S3 | A | 0.25 | 0.06 | 0.64 | 41 | 6 | 1750 | 250 |
S10-1 | A | 0.42 | 0.10 | 4.95 | 32 | 4 | 1350 | 200 |
S10-2 | A | 0.77 | 0.18 | 5.82 | 23 | 3 | 1000 | 100 |
S23-1 | A | 1.41 | 0.32 | 6.11 | 17 | 3 | 700 | 150 |
S23-2 | A | 1.40 | 0.32 | 9.98 | 17 | 3 | 700 | 150 |
S30-1 | A | 2.23 | 0.51 | 10.13 | 14 | 2 | 600 | 100 |
S37 | A | 1.09 | 0.25 | 6.75 | 20 | 2 | 850 | 100 |
S29 | A | 1.61 | 0.37 | 7.08 | 16 | 2 | 700 | 50 |
S6 | A | 1.03 | 0.24 | 4.73 | 20 | 3 | 850 | 150 |
S33-1 | B | 1.68 | 0.39 | 10.87 | 16 | 2 | 700 | 50 |
S33-2 | B | 0.75 | 0.17 | 5.48 | 24 | 3 | 1000 | 150 |
S1 | B | 0.38 | 0.09 | 33 | 4 | 1400 | 150 | |
S2-2 | A | 0.65 | 0.15 | 5.59 | 25 | 4 | 1050 | 200 |
S20-1 | A | 0.91 | 0.21 | 2.39 | 21 | 3 | 900 | 100 |
S28-1 | A | 1.07 | 0.25 | 9.09 | 20 | 2 | 850 | 100 |
S8-1 | A | 0.35 | 0.08 | 5.65 | 35 | 4 | 1500 | 150 |
S26-2 | A | 0.23 | 0.05 | 2.67 | 42 | 6 | 1800 | 250 |
S32-a | A | 1.06 | 0.24 | 11.17 | 20 | 2 | 850 | 100 |
S32-b | A | 0.42 | 0.10 | 6.10 | 32 | 4 | 1350 | 200 |
S32-c | A | 0.94 | 0.22 | 4.69 | 21 | 3 | 900 | 100 |
S32-d | A | 0.20 | 0.05 | 5.35 | 46 | 6 | 1950 | 250 |
S26-1 | A | 0.36 | 0.08 | 9.66 | 34 | 5 | 1450 | 200 |
S2-3 | A | 0.26 | 0.06 | 4.37 | 40 | 5 | 1700 | 200 |
s9-1 | A | 0.26 | 0.06 | 6.42 | 40 | 5 | 1700 | 200 |
S19-1 | A | 0.36 | 0.08 | 6.14 | 34 | 5 | 1450 | 200 |
s26-1 | A | 0.31 | 0.07 | 9.00 | 37 | 5 | 1550 | 250 |
s16-1 | A | 1.08 | 0.25 | 6.88 | 20 | 2 | 850 | 100 |
s16-2 | A | 0.39 | 0.09 | 4.36 | 33 | 4 | 1400 | 150 |
s16-3-g | A | 0.30 | 0.07 | 4.38 | 37 | 5 | 1550 | 250 |
s16-3-d | A | 0.30 | 0.07 | 7.57 | 37 | 5 | 1550 | 250 |
s16-4 | A | 0.19 | 0.04 | 1.20 | 46 | 7 | 1950 | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beaudoin, N.E.; Koehn, D.; Aharonov, E.; Billi, A.; Daeron, M.; Boyce, A. Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge. Minerals 2025, 15, 73. https://doi.org/10.3390/min15010073
Beaudoin NE, Koehn D, Aharonov E, Billi A, Daeron M, Boyce A. Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge. Minerals. 2025; 15(1):73. https://doi.org/10.3390/min15010073
Chicago/Turabian StyleBeaudoin, Nicolas E., Daniel Koehn, Einat Aharonov, Andrea Billi, Matthieu Daeron, and Adrian Boyce. 2025. "Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge" Minerals 15, no. 1: 73. https://doi.org/10.3390/min15010073
APA StyleBeaudoin, N. E., Koehn, D., Aharonov, E., Billi, A., Daeron, M., & Boyce, A. (2025). Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge. Minerals, 15(1), 73. https://doi.org/10.3390/min15010073