Origin of the El Dragón Selenium Mineralization, Quijarro Province, Potosí, Bolivia
Abstract
:1. Introduction
2. Regional Geology
3. Methods and Results
3.1. Petrography of Siltstone
3.2. The El Dragón Se-Vein
3.2.1. Mineralogy and Structural Features
3.2.2. Micro-Structural Features and Genetic Sequence
- Deformation (d1): First vein opening and brecciation of the siltstone host rock.
- Stage I corresponds to colloform/poikilitic k-p s.-(g1) growth generation.
- Deformation (d2): Second vein opening, fragmentation of stage I selenides.
- Stage II corresponds to k-p s.-(g2)–(g5) growth generations.
- Deformation (d3): Third vein opening, fragmentation of stage I–II selenides.
- Stage III corresponds to k-p s.-(g6) growth generation, forming fracture fillings.
- Deformation (d4): Fourth vein opening, fragmentation of stage I–III selenides.
- Stage IV corresponds to krut’aite-(g7) growth generation, cementing pores and fractures.
- Deformation (d5): Fifth vein opening, fragmentation of stage I–IV selenides.
- Stage V corresponds to various alteration products forming growth generation (g8), cementing all previous structures.
3.2.3. Mineral Chemistry
3.3. Petrography of Black Shale Country Rock
4. Discussion
4.1. Sources of Elements
4.2. Origin of Se Mineralization
- Eruption of the dacitic Porco tuff forming the Apo Porco stock at ~12 Ma. This volcanic event did not give rise to ore mineralization, but caused E–W trending compressional tectonism und subsequent fracturing perpendicular to the sedimentary bedding. Thus, it aided in the generation of the migration pathways (surface faults), along which subsequently the mineralizing fluids travelled.
- Formation of the andesitic-dacitic Huayna Porco stocks at ~8.6 Ma. This event is associated with the formation of the Porco Ag–Pb–Zn–sulfide vein deposit inside the Porco caldera, attesting to the strong hydrothermal activity connected with this volcanic event. It probably also triggered another episode of generation of new and re-opening of existing fractures perpendicular to the sedimentary bedding (d1 and d2). Along some of these faults, Cu–Ag–Ni–Co–Hg–Pb–Bi–Se mineralized oxidizing fluids multiply infiltrated the siltstone and deposited its metalliferous load wherever meeting a reducing environment. Reducing conditions were achieved at the interface siltstone/black shale, around pyrite grains and black-shale xenoliths inside the siltstone, or may have been microbially mediated [34,35]. The mineralizing low-T fluids (<110 °C considering the T-dependence of umangite stability, [36]) likely represent a mixture of convective low-T hydrothermal solutions and descending heated-up meteoric waters. Multiple fluid infiltration and mineral precipitation processes gave rise to the mineral growth generations g1–g5.
- Volcanic-hydrothermal activities continued over a time span of roughly 3 Ma, encompassing multiple eruptions of the andesitic to dacitic Los Frailes ash-flow tuffs. Early tuff eruptions caused strong fracturing of the Se-vein (rubble breccia, d3) associated with the local invasion of fluids that triggered the alteration of earlier formed g1–g5 Cu–Hg–Pb–Bi-bearing selenides and re-deposition of the thereby mobilized elements as selenides of growth generation g6 (Figure 23). Formation of these selenides cementing the earlier grown selenide assemblages is confined to fracture fillings inside the Se-vein. Brittle deformation (d3) significantly opened space for the circulating fluid that partly corroded or dissolved the fragmented early selenide generations, thus enriching it in elements incompatible with their structure, mainly Hg, Pb and Bi. Together with the omnipresent Cu and Se, these elements in solution were re-precipitated as generation-(g6) selenides.
- At some later stage, other andesitic to dacitic lavas erupted, probably forming a thin, only some tens-of-meters thick cover on the Se-vein and its neighboring rocks, which now is eroded. These volcanic rocks sealed the structure and likely expelled Cu-Fe-S-rich hydrothermal solutions (note the occurrence of thin chalcopyrite-bearing veinlets between the volcanics and the black shale, see Figure 22a). Brittle deformation of the existing mineralization (d4) resulted in a finely branched system of tension cracks that where subsequently cemented by Cu–Fe–Ni sulfides of growth generation g7. These S-minerals partially interacted with pre-existing selenides, in particular the main krut’aite-penroseite ore, which, for example, provided the Ni required to crystallize vaesite. Crystallization of sulfides and liberation of selenium from attacked selenides shifted the fluid composition towards a Se/S ratio sufficiently high to again precipitate selenides (partially S-bearing) at the end of this episode.
- Finally, at some unknown time between 6 Ma and today, another brittle deformation event (d5) caused re-opening of the Se-vein structure, associated with the infiltration of highly oxidized meteoric waters. Wherever these fluids got in contact with the pre-existing selenides along fractures and inside of voids, they severely altered and cannibalized the earlier mineral assemblages, giving rise to a plethora of secondary minerals (g8) shown in Figure 19.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sejkora, J.; Makovicky, E.; Topa, D.; Putz, H.; Zagler, G.; Plašil, J. Litochlebite, Ag2PbBi4Se8, a new selenide mineral species from Zálesí, Czech Republic, description and crystal structure. Can. Mineral. 2011, 49, 639–650. [Google Scholar] [CrossRef]
- Paar, W.H.; Cooper, M.A.; Moёlo, Y.; Stanley, C.J.; Putz, H.; Topa, D.; Roberts, A.C.; Stirling, J.; Raith, J.G.; Rowe, R. Eldragόnite, Cu6BiSe4(Se)2, a new mineral species from the El Dragόn mine, Potosí, Bolivia, and its crystal structure. Can. Mineral. 2012, 50, 281–294. [Google Scholar] [CrossRef]
- Mills, S.J.; Kampf, A.R.; Christy, A.G.; Housley, R.M.; Thorne, B.; Chen, Y.-S.; Steele, I.M. Favreauite, a new selenite mineral from the El Dragόn mine, Bolivia. Eur. J. Mineral. 2014, 26, 771–781. [Google Scholar] [CrossRef]
- Bindi, L.; Förster, H.-J.; Grundmann, G.; Keutsch, F.N.; Stanley, C.J. Petříčekite, CuSe2, a new member of the marcasite group from the Předbořice deposit, Central Bohemia Region, Czech Republic. Minerals 2016, 6, 33. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Stanley, C.J. Grundmannite, CuBiSe2, the Se-analogue of emplectite: A new mineral from the El Dragόn mine, Potosí, Bolivia. Eur. J. Mineral. 2016, 28, 467–477. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Stanley, C.J.; Grundmann, G. Hansblockite, (Cu,Hg)(Bi,Pb)Se2, the monoclinic polymorph of grundmannite, a new mineral from the Se mineralization at El Dragón (Bolivia). Mineral. Mag. 2016. [Google Scholar] [CrossRef]
- Förster, H.-J.; Bindi, L.; Stanley, C.J.; Grundmann, G. Quijarroite, Cu6HgPb2Bi4Se12, a new selenide from the El Dragόn mine, Bolivia. Minerals 2016, 6, 123. [Google Scholar] [CrossRef]
- Kampf, A.R.; Mills, S.J.; Nash, B.P.; Thorne, B.; Favreau, G. Alfredopetrovite: A new selenite mineral from the El Dragόn mine. Eur. J. Mineral. 2016. [Google Scholar] [CrossRef]
- Škácha, P.; Sejkora, J.; Plášil, J. Příbramite, IMA 2015–127, CNMNC Newsletter No. 31, June 2016, page 693. Mineral. Mag. 2016, 80, 691–697. [Google Scholar]
- Škácha, P.; Sejkora, J.; Plášil, J. Bytízite, IMA 2016–044, CNMNC Newsletter No. 33, October 2016, page 1138. Mineral. Mag. 2016, 80, 1135–1144. [Google Scholar]
- Cabral, A.R.; Ließmann, W.; Jian, W.; Lehmann, B. Bismuth selenides from St. Andreasberg, Germany: An oxidized five-element style of mineralization and its relation to post-Variscan vein-type deposits of central Europe. Int. J. Earth Sci. 2016. [Google Scholar] [CrossRef]
- Block, H.; Ahlfeld, F. Die Selenerzlagerstatte Pacajake, Bolivia. Z. Prakt. Geol. 1937, 45, 9–14. [Google Scholar]
- Redwood, S.D. Famous mineral localities: The Pacajake selenium mine, Potosí, Bolivia. Mineral. Rec. 2003, 34, 339–357. [Google Scholar]
- Grundmann, G.; Lehrberger, G.; Schnorrer-Köhler, G. The El Dragόn mine, Potosí, Bolivia. Mineral. Rec. 1990, 21, 133–146. [Google Scholar]
- Cunningham, C.A.; Aparicio, H.N.; Murillo, F.S.; Jiménez, N.C.; Lizeca, J.-L.B.; McKee, E.H.; Ericksen, G.E.; Tavera, F.V. The Relationship between the Porco, Bolivia, Ag–Zn–Pb–Sn Deposit, and the Porco Caldera; US Geological Survey Open-File Report 94–238; Society of Economic Geologists: Littleton, CO, USA, 1993. [Google Scholar]
- Frutos, J. The Andes Cordillera: A synthesis of the geological evolution. In Stratabound Ore Deposits of the Andes; Fontbote, L., Amstutz, G., Cardozo, M., Cedillo, E., Frutos, J., Eds.; Springer: Berlin, Germany, 1990; pp. 3–36. [Google Scholar]
- Grundmann, G.; Lehrberger, G.; Schnorrer-Köhler, G. The “El Dragon Mine”, Porco, Potosí, Bolivia—Selenium Minerals. Mineral 2007, 1, 16–25. [Google Scholar]
- Johan, Z.; Picot, P.; Kvačeck, M. La krut’aite, CuSe2, un nouveau minéral du groupe da la pyrite. Bull. Soc. Fr. Minéral. Cristallogr. 1972, 95, 475–481. (In French) [Google Scholar]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbock of Mineralogy, Vol. I, Trogtalite; Mineralogical Society of America: Chantilly, VA, USA, 1990; Volume 1, p. 537. [Google Scholar]
- Paar, W.H.; Sureda, R.J.; de Brodtkorb, M.K. Mineralogía de los yaciminientos de selenio en La Rioja, Argentina. Krutaita, tyrrellita y trogtalita de Los Llantenes. Rev. Asoc. Geol. Argent. 1996, 51, 304–312. (In Spanish) [Google Scholar]
- Paar, W.H.; Topa, D.; Roberts, A.C.; Criddle, A.J.; Amann, G.; Sureda, R.J. The new mineral species Brodtkorbite, Cu2HgSe2, and the associated selenide assemblage from Tuminico, Sierra de Cacho, La Rioja, Argentina. Can. Mineral. 2002, 40, 225–237. [Google Scholar] [CrossRef]
- Keutsch, F.N.; Förster, H.-J.; Stanley, C.J.; Rhede, D. The discreditation of hastite, the orthorhombic dimorph of CoSe2, and observations on trogtalite, cubic CoSe2, from the type locality. Can. Mineral. 2009, 47, 969–976. [Google Scholar] [CrossRef]
- Criddle, A.J.; Stanley, C.J. The Quantitative Data File for Ore Minerals, 2nd ed.; British Museum (Natural History): London, UK, 1986; pp. 274–275. [Google Scholar]
- Stanley, C.J.; Criddle, A.J.; Lloyd, D. Precious and base metal selenide mineralization at Hope’s Nose, Torquay, Devon. Mineral. Mag. 1990, 54, 485–493. [Google Scholar] [CrossRef]
- Bindi, L.; Cipriani, C.; Pratesi, G.; Trosti-Ferroni, R. The role of isomorphous substitutions in natural selenides belonging to the pyrite group. J. Alloys Compd. 2008, 459, 553–556. [Google Scholar] [CrossRef]
- Large, D.J.; Sawłowicz, Z.; Spratt, J. A cobaltite-framboidal pyrite association from the Kupferschiefer: Possible implications for trace element behavior during the earliest stages of diagenesis. Mineral. Mag. 1999, 63, 353–361. [Google Scholar] [CrossRef]
- Zur Geschichte des Mansfelder Kupferschiefer-Bergbaus; Jankowski, G. (Ed.) GDMB Informationsgesellschaft: Clausthal-Zellerfeld, Germany, 1995. [Google Scholar]
- Speczik, S. The Kupferschiefer mineralization of Central Europe: New aspects and major areas for future research. Ore Geol. Rev. 1995, 9, 411–426. [Google Scholar] [CrossRef]
- Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals; evidence for multiple episodes of pyrite formation. Int. J. Coal Geol. 2012, 94, 238–249. [Google Scholar] [CrossRef]
- Kiss, G.B.; Zaccarini, F. Development of framboidal pyrite in the upper Permian marly limestone of the NE-Hungarian Darnó Hill. Geol. Croat. 2012, 66, 233–244. [Google Scholar] [CrossRef]
- Parnell, J.; Brolly, C.; Spinks, S.; Bowden, S. Selenium enrichment in Carboniferous shales, Britain and Ireland: Problem or opportunity for shale gas extraction. Appl. Geochem. 2016, 66, 82–87. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Selenium in coal: A review. Int. J. Coal Geol. 2006, 67, 112–126. [Google Scholar] [CrossRef]
- Ryser, A.L.; Strawn, D.G.; Marcus, M.A.; Johnson-Maynard, J.L.; Gunter, M.E.; Möller, G. Micro-spectroscopic investigation of selenium-bearing minerals from the Western US phosphate resource area. Geochem. Trans. 2005, 6, 1–11. [Google Scholar] [CrossRef]
- Matlakowska, R.; Skłodowska, A.; Nejbert, K. Bioweathering of Kupferschiefer black shale (Fore-Sudetic Monocline, SW Poland) by indigenous bacteria: Implications for dissolution and precipitation of minerals in deep underground mine. FEMS Microbiol. Ecol. 2012, 81, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Spinks, S.C.; Parnell, J.; Still, J.W. Redox-controlled selenide mineralization in the Upper Old Red Sandstone. Scott. J. Geol. 2014, 50, 173–182. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.C. The Cu–Se (copper–selenium) system. Bull. Alloy Phase Diagr. 1981, 2, 305–315. [Google Scholar] [CrossRef]
- Simon, G.; Kesler, S.E.; Essene, E.J. Phase relations among selenides, sulphides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Econ. Geol. 1997, 92, 468–484. [Google Scholar] [CrossRef]
Element/# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Cu (wt %) | 20.36 | 13.33 | 4.03 | 10.45 | 5.32 | 0.54 | 0.78 | 5.64 | 6.57 | 12.62 | 12.54 |
Pb | 0 | 0 | 0.15 | 0 | 0 | 0.20 | 0.10 | 0 | 0 | 0.35 | 0.65 |
Fe | 0 | 0 | 0.28 | 0 | 0.40 | 0 | 0.36 | 0.28 | 0.10 | 0 | 0.05 |
Co | 0.79 | 1.14 | 10.88 | 0.68 | 9.57 | 0.43 | 0.63 | 12.04 | 11.88 | 3.72 | 5.00 |
Ni | 7.14 | 13.91 | 12.45 | 16.47 | 11.70 | 25.90 | 26.06 | 8.69 | 8.75 | 19.73 | 18.96 |
S | 0 | 0 | 0.07 | 0.03 | 0.12 | 0.07 | 0.08 | 0.10 | 0.10 | 0.15 | 0.19 |
Se | 71.79 | 72.07 | 71.92 | 71.88 | 72.23 | 72.23 | 71.88 | 72.72 | 72.23 | 63.26 | 62.92 |
Total | 100.24 | 100.45 | 99.78 | 100.02 | 99.33 | 99.37 | 99.89 | 99.48 | 99.62 | 99.83 | 100.30 |
Element/# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Cu (wt %) | 23.43 | 22.42 | 43.55 | 44.99 | 52.60 | 54.66 | 56.10 | 57.19 |
Ag | 0.04 | 0.04 | 0.85 | 0.09 | 0 | 0 | 0.17 | 0.06 |
Hg | 0 | 0.23 | 0 | 0 | 0 | 0.26 | 0 | 0 |
Pb | 0.07 | 0.11 | 0.05 | 0 | 0 | 0.09 | 0.17 | 0.61 |
Fe | 19.99 | 19.74 | 0 | 0 | 0.03 | 0 | 0.33 | 0.18 |
Co | 0 | 0.04 | 0.04 | 0.16 | 0.21 | 0 | 0.65 | 0.19 |
Ni | 0 | 0.43 | 0.34 | 0.73 | 1.49 | 0.10 | 0.89 | 0.37 |
Bi | 0 | 0.16 | 0 | 0 | 0 | 0.13 | 0.22 | 0.12 |
S | 0.05 | 0.03 | 0.19 | 0.02 | 0 | 0 | 11.93 | 11.08 |
Se | 56.55 | 56.29 | 54.89 | 54.51 | 45.26 | 44.96 | 29.14 | 30.48 |
Total | 100.13 | 99.49 | 99.84 | 99.99 | 99.60 | 100.20 | 100.12 | 99.83 |
Element/# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cu (wt %) | 14.80 | 14.79 | 33.95 | 34.12 | 6.07 | 3.49 | 8.95 | 9.45 | 13.00 | 13.47 | 15.67 | 14.99 |
Ag | 0 | 0 | 0.21 | 0.08 | 1.33 | 5.16 | 1.29 | 0.58 | 1.49 | 0.77 | 0.15 | 0.84 |
Hg | 0 | 0.25 | 0 | 0 | 0.56 | 1.21 | 11.55 | 11.28 | 7.76 | 7.77 | 16.56 | 16.67 |
Pb | 1.37 | 1.25 | 0 | 0 | 12.09 | 12.34 | 13.78 | 13.45 | 16.97 | 16.79 | 17.21 | 17.24 |
Fe | 0 | 0 | 1.65 | 1.69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Co | 0 | 0 | 0 | 0.11 | 0 | 0 | 0.06 | 0 | 0.05 | 0 | 0 | 0 |
Ni | 0 | 0.05 | 0.07 | 0.48 | 0.05 | 0.14 | 0.40 | 0.05 | 0.23 | 0 | 0 | 0 |
Bi | 44.62 | 44.90 | 19.82 | 19.64 | 44.83 | 43.86 | 30.71 | 31.50 | 27.45 | 27.86 | 17.90 | 17.80 |
S | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Se | 39.15 | 38.98 | 44.18 | 44.39 | 34.71 | 33.95 | 33.99 | 33.84 | 33.46 | 33.39 | 32.60 | 32.41 |
Total | 99.95 | 100.22 | 99.87 | 100.51 | 99.63 | 100.03 | 100.72 | 100.15 | 100.39 | 100.04 | 100.10 | 99.95 |
Element/# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Cu (wt %) | 0.41 | 0.07 | 64.63 | 64.07 | 0.48 | 0.52 | 28.58 | 28.51 | 28.31 | 28.16 0.19 |
Ag | 0 | 0 | 0.51 | 0.52 | 0 | 0 | 0.05 | 0.05 | 0.02 | 0.19 |
Hg | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Pb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Fe | 42.92 | 45.71 | 1.21 | 1.16 | 18.24 | 16.52 | 0 | 0 | 0 | 0 |
Co | 0.19 | 0.11 | 0.04 | 0 | 4.39 | 3.78 | 0.03 | 0.02 | 0.14 | 0.02 0.06 |
Ni | 2.82 | 0.61 | 0.09 | 0.09 | 23.33 | 25.60 | 0.09 | 0.09 | 0.27 | 0.06 |
As | 0 | 0.06 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Bi | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
S | 52.35 | 53.27 | 32.04 | 31.81 | 52.81 | 51.38 | 0.03 | 0.02 | 0.02 | 0.02 |
Se | 1.30 | 0.42 | 2.11 | 2.51 | 0.59 | 2.19 | 71.39 | 71.50 | 71.04 | 71.87 |
Total | 99.49 | 100.25 | 100.72 | 100.16 | 99.20 | 99.98 | 100.17 | 99.88 | 99.79 | 100.32 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grundmann, G.; Förster, H.-J. Origin of the El Dragón Selenium Mineralization, Quijarro Province, Potosí, Bolivia. Minerals 2017, 7, 68. https://doi.org/10.3390/min7050068
Grundmann G, Förster H-J. Origin of the El Dragón Selenium Mineralization, Quijarro Province, Potosí, Bolivia. Minerals. 2017; 7(5):68. https://doi.org/10.3390/min7050068
Chicago/Turabian StyleGrundmann, Günter, and Hans-Jürgen Förster. 2017. "Origin of the El Dragón Selenium Mineralization, Quijarro Province, Potosí, Bolivia" Minerals 7, no. 5: 68. https://doi.org/10.3390/min7050068