Protecting-Group-Free Synthesis of 2-Deoxy-Aza-Sugars
Abstract
:Introduction
Results and Discussion
Entry | Alkenylamine | Carbamate | Diastereoselectivity | Yielda |
---|---|---|---|---|
1 | > 20:1 | 95% | ||
2b | > 20:1 | 93% | ||
3b | > 20:1 | 99% |
Experimental
General procedures
Conclusions
Acknowledgements
- Sample Availability: Contact the authors.
References
- Borges de Melo, E.; da Silveira Gomes, A.; Carvalho, I. α- and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 2006, 62, 10277–10302. [Google Scholar] [CrossRef]
- Ganem, B. Inhibitors of carbohydrate-processing enzymes: Design and synthesis of sugar-shaped heterocycles. Acc. Chem. Res. 1996, 29, 340–347. [Google Scholar] [CrossRef]
- Asano, N.; Nash., R.J.; Molyneux, R.J.; Fleet, G.W. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 2000, 11, 1645–1680. [Google Scholar] [CrossRef]
- Watson, A.A.; Fleet, G.W.J.; Asano, N.; Molyneux, R.J.; Nash, R.J. Polyhydroxylated alkaloids – natural occurrence and therapeutic applications. Phytochemistry 2001, 56, 265–295. [Google Scholar]
- Dwek, R.A.; Butters, T.D.; Platt, F.M.; Zitzmann, N. Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug Discov. 2002, 1, 65–75. [Google Scholar] [CrossRef]
- Butters, T.D.; Dwek, R.A.; Platt, F.M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 2005, 15, 43R–53R. [Google Scholar] [CrossRef]
- Greimel, P.; Spreitz, J.; Stutz, A.E.; Wrodnigg, T.M. Iminosugars and relatives as antiviral and potential anti-infective agents. Curr. Top. Med. Chem. 2003, 3, 513–523. [Google Scholar] [CrossRef]
- Caines, M.E.C.; Hancock, S.M.; Tarling, C.A.; Wrodnigg, T.M.; Stick, R.V.; Stutz, A.E.; Vasella, A.; Withers, S.G.; Strynadka, N.C.J. The structural basis of glycosidase inhibition by five-membered iminocyclitols: The clan a glycoside hydrolase endoglycoceramidase as a model system. Angew. Chem. Int. Ed. 2007, 46, 4474–4476. [Google Scholar]
- Wrodnigg, T.M.; Steiner, A.J.; Ueberbacher, B.J. Natural and synthetic iminosugars as carbohydrate processing enzyme inhibitors for cancer therapy. Anti-Cancer Agents Med. Chem. 2008, 8, 77–85. [Google Scholar] [CrossRef]
- Cox, T.; Lachmann, R.; Hollak, C.; Aerts, J.; van Weely, S.; Hrebícek, M.; Platt, F.; Butters, T.; Dwek, R.; Moyses, C.; Gow, I.; Elstein, D.; Zimran, A. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000, 355, 1481–1485. [Google Scholar]
- Dangerfield, E.M.; Timmer, M.S.M.; Stocker, B.L. Total synthesis without protecting groups: Pyrrolidines and cyclic carbamates. Org. Lett. 2009, 11, 535–538. [Google Scholar]
- Sobin, B.A.; Tanner, F.W., Jr. Anisomycin, a new anti-protozoan antibiotic. J. Am. Chem. Soc. 1954, 76, 4053. [Google Scholar]
- Fleet, G.W.J.; Smith, P.W.; Evans, S.V.; Fellows, L.E. Design, synthesis and preliminary evaluation of a potent α-mannosidase inhibitor: 1,4-dideoxy-1,4-imino-D-mannitol. J. Chem. Soc. Chem. Commun. 1984, 1240–1241. [Google Scholar]
- Yu, Z.; Sawkar, A.R.; Whalen, L.J.; Wong, C.H.; Kelly, J.W. Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention. J. Med. Chem. 2007, 50, 94–100. [Google Scholar] [CrossRef]
- Fleet, G.W.J.; Nicholas, S.J.; Smith, P.W.; Evans, S.V.; Fellows, L.E.; Nash, R.J. Potent competitive inhibition of α-galactosidase and α-glucosidase activity by 1,4-dideoxy-1,4-iminopentitols: Synthesis of 1,4-dideoxy-1,4-imino-D-lyxitol and of both enantiomers of 1,4-dideoxy-1,4-iminoarabinitol. Tetrahedron Lett. 1985, 26, 3127–3130. [Google Scholar]
- Nash, R.J.; Bell, E.A.; Williams, J.M. 2-Hydroxymethyl-3,4-dihydroxypyrrolidine in fruits of angylocalyx-boutiqueanus. Phytochemistry 1985, 24, 1620–1622. [Google Scholar]
- Saludes, J.P.; Lievens, S.C.; Molinski, T.F. Occurrence of the α-glucosidase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol and related iminopentitols in marine sponges. J. Nat. Prod. 2007, 70, 436–438. [Google Scholar] [CrossRef]
- Hoffer, M. a-Thymidin. Chem. Ber. 1960, 93, 2777–2781. [Google Scholar] [CrossRef]
- Wang, D.; Nugent, W.A. 2-Deoxyribose as a rich source of chiral 5-carbon building blocks. J. Org. Chem. 2007, 72, 7307–7312. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, J.E.; Yang, M.S.; Kang, K.Y.; Park, K.H. Efficient synthesis of 3-hydroxyprolines and 3-hydroxyprolinols from sugars. Tetrahedron 2001, 57, 10071–10076. [Google Scholar] [CrossRef]
- Merino, P.; Delso, I.; Tejero, T.; Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A. Nucleophilic additions to cyclic nitrones en route to iminocyclitols – total syntheses of DMDP, 6-deoxy-DMDP, DAB-1, CYB-3, Nectrisine, and Radicamie B. Eur. J. Org. Chem. 2008, 2929–2947. [Google Scholar]
- Mascavage, L.M.; Lu, Q.; Vey, J.; Dalton, D.R.; Carroll, P.J. Enantioselective synthesis of aza sugars from amino acids. 2. The 3-hydroxy-2-hydroxymethylpyrrolidines. J. Org. Chem. 2001, 66, 3621–3626. [Google Scholar] [CrossRef]
- Jurczak, J.; Prokopowicz, P.; Golebiowski, A. Highly selective synthesis of cis-(2R, 3S)-3-hydroxyproline. Tetrahedron Lett. 1993, 34, 7107–7110. [Google Scholar] [CrossRef]
- Chamberlin, A.R.; Dezube, M.; Dussault, P.; McMills, M.C. Iodocyclization of allylic alcohol derivatives containing internal nucleophiles. Control of stereoselectivity by substituents in the acyclic precursors. J. Am. Chem. Soc. 1983, 105, 5819–5825. [Google Scholar] [CrossRef]
- Kahn, S.D.; Pau, C.F.; Chamberlin, A.R.; Hehre, W.J. Modeling chemical-reactivity .4. Regiochemistry and stereochemistry of electrophilic additions to allylic double-bonds. J. Am. Chem. Soc. 1987, 109, 650–663. [Google Scholar] [CrossRef]
- Chamberlin, A.R.; Mulholland, R.L.; Kahn, S.D.; Hehre, W.J. Modeling chemical-reactivity.7. The effect of a change in rate-limiting step on the stereoselectivity of electrophilic addition to allylic alcohols and related chiral alkenes. J. Am. Chem. Soc. 1987, 109, 672–677. [Google Scholar] [CrossRef]
- Tredwell, M.; Luft, J.A.; Schuler, M.; Tenza, K.; Houk, K.N.; Gouverneur, V. Fluorine-directed diastereoselective iodocyclizations. Angew. Chem. Int. Ed. Engl. 2008, 47, 357–360. [Google Scholar]
- Bürgi, H.B.; Dunitz, J.D.; Shefter, E. Geometrical reaction coordinates. 2. nucleophilic addition to a carbonyl group. J. Am. Chem. Soc. 1973, 95, 5065–5067. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dangerfield, E.M.; Plunkett, C.H.; Stocker, B.L.; Timmer, M.S.M. Protecting-Group-Free Synthesis of 2-Deoxy-Aza-Sugars. Molecules 2009, 14, 5298-5307. https://doi.org/10.3390/molecules14125298
Dangerfield EM, Plunkett CH, Stocker BL, Timmer MSM. Protecting-Group-Free Synthesis of 2-Deoxy-Aza-Sugars. Molecules. 2009; 14(12):5298-5307. https://doi.org/10.3390/molecules14125298
Chicago/Turabian StyleDangerfield, Emma Marie, Catherine Heather Plunkett, Bridget Louise Stocker, and Mattie Simon Maria Timmer. 2009. "Protecting-Group-Free Synthesis of 2-Deoxy-Aza-Sugars" Molecules 14, no. 12: 5298-5307. https://doi.org/10.3390/molecules14125298