Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays
Abstract
:Introduction
Results and Discussion
Compound | αTEAC | FRAP | CL | Weighted average | |
---|---|---|---|---|---|
α-tocopherol | 1.0 | 1.0 | 1.0 | 0.7 | |
β-carotene isomers | (all-E)-β-carotene | 3.0 | 0.0 | 18.8 | 0.8 |
(9Z)-β-carotene | 3.1 | 0.0 | 19.8 | 0.8 | |
(13Z)-β-carotene | 3.1 | 0.0 | 19.6 | 0.8 | |
(15Z)-β-carotene | 2.5 | 0.0 | 9.5 | 0.5 | |
β-carotene metabolites | β-apo-8’-carotenal | 1.4 | 1.3 | 23.8 | 1.3 |
β-apo-8’-carotenoic acid ethyl ester | 2.5 | 1.3 | 25.1 | 1.5 | |
6’-methyl-β-apo-6’-carotene-6’-one | 3.7 | 1.3 | 24.5 | 1.7 | |
Average | 2.5 | 0.6 | 17.8 |
Conclusions
Experimental
General
Equipment
Compound | Solvent | Wavelength (nm) | Absorptivity value ( E1%,1 cm) | Solvent used for stock solution | |
---|---|---|---|---|---|
( all-E)-β-carotene | n-hexane | 453 | 2592 | T/CH (1+4, v/v) | |
( 9Z)-β-carotene | n-hexane | 445 | 2550 | T/CH (1+4, v/v) | |
( 13Z)-β-carotene | n-hexane | 443 | 2090 | T/CH (1+4, v/v) | |
( 15Z)-β-carotene | n-hexane | 447 | 1820 | T/CH (1+4, v/v) | |
β-apo-8’-carotenal | ethanol | 457 | 2640 | ethanol | |
β-apo-8’-carotinoic acid ethyl ester | cyclo-hexane | 446 | 2540 | ethanol | |
6’-methyl-β-apo-6’-carotene-6’-one | n-hexane | 468 | 2745 | T/CH (1+4, v/v) | |
DL-α-tocopherol | ethanol | 292 | 75.8 | ethanol |
Determination of antioxidant activity
Statistics
References
- Maiani, G.; Caston, M.J.; Catasta, G.; Toti, E.; Cambrodon, I.G.; Bysted, A.; Granado-Lorencio, F.; Olmedilla-Alonso, B.; Knuthsen, P.; Valoti, M.; Böhm, V.; Mayer-Miebach, E.; Behsnilian, D.; Schlemmer, U. Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in human. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef]
- Krinsky, N.I.; Johnson, E.J. Carotenoid actions and their relation to health and disease. Mol. Aspects Med. 2005, 26, 459–516. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B.; Kimura, M.; Godoy, H.T.; Amaya-Farfan, J. Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. J. Food Compos. Anal. 2008, 21, 445–463. [Google Scholar] [CrossRef]
- Zechmeister, L.; Tuzson, P. Isomerization of carotenoids. Biochem. J. 1938, 32, 1305–1311. [Google Scholar]
- Castenmiller, J.J.; West, C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr. 1998, 18, 19–38. [Google Scholar] [CrossRef]
- Failla, M.L.; Thakkar, S.K.; Kim, J.Y. In vitro bioaccessibility of β-carotene in orange fleshed sweet potato (Ipomoea batatas, Lam.). J. Agric. Food Chem. 2009, 57, 10922–10927. [Google Scholar] [CrossRef]
- Deming, D.M.; Erdman, J.W., Jr. Mammalian carotenoid absorption and metabolism. Pure Appl. Chem. 1999, 71, 2213–2223. [Google Scholar] [CrossRef]
- Khachik, F.; Spangler, C.J.; Smith, J.C., Jr.; Canfield, L.M. Identification, quantification, and relative concentrations of carotenoids and their metabolites in human milk and serum. Anal. Chem. 1997, 69, 1873–1881. [Google Scholar] [CrossRef]
- Stahl, W.; Schwarz, W.; Sundquist, A.R.; Sies, H. cis-trans isomers of lycopene and β-carotene in human serum and tissues. Arch. Biochem. Biophys. 1992, 294, 173–177. [Google Scholar] [CrossRef]
- Voutilainen, S.; Nurmi, T.; Mursu, J.; Rissanen, T.H. Carotenoids and cardiovascular health. Am. J. Clin. Nutr. 2006, 83, 1265–1271. [Google Scholar]
- Agte, V.; Tarwadi, K. The importance of nutrition in the prevention of ocular disease with special reference to cataract. Ophthalmic Res. 2010, 44, 166–172. [Google Scholar] [CrossRef]
- Kubo, A.; Corley, D.A.; Jensen, C.D.; Kaur, R. Dietary factors and the risks of oesophageal adenocarcinoma and Barrett's oesophagus. Nutr. Res. Rev. 2010, 23, 230–246. [Google Scholar] [CrossRef]
- Glauert, H.P.; Calfee-Mason, K.; Stemm, D.N.; Tharappel, J.C.; Spear, B.T. Dietary antioxidants in the prevention of hepatocarcinogenesis: A review. Mol. Nutr. Food Res. 2010, 54, 875–896. [Google Scholar] [CrossRef]
- Cranganu, A.; Camporeale, J. Nutrition aspects of lung cancer. Nutr. Clin. Pract. 2009, 24, 688–700. [Google Scholar] [CrossRef]
- Riccioni, G. Carotenoids and cardiovascular disease. Curr. Atheroscler. Rep. 2009, 11, 434–439. [Google Scholar] [CrossRef]
- Di Mascio, P.; Kaiser, S.; Sies, H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys. 1989, 274, 532–538. [Google Scholar] [CrossRef]
- Levin, G.; Mokady, S. Antioxidant activity of 9-cis compared to all-trans β-carotene in vitro. Free Radic. Biol. Med. 1994, 17, 77–82. [Google Scholar] [CrossRef]
- Levin, G.; Yeshurun, M.; Mokady, S. In vivo antiperoxidative effect of 9-cis β-carotene compared with that of the all-trans isomer. Nutr. Cancer 1997, 27, 293–297. [Google Scholar] [CrossRef]
- Böhm, V.; Puspitasari-Nienaber, N.L.; Ferruzzi, M.G.; Schwartz, S.J. Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanth. J. Agric. Food Chem. 2002, 50, 221–226. [Google Scholar] [CrossRef]
- Patrick, L. Beta-carotene: the controversy continues. Altern. Med. Rev. 2000, 5, 530–545. [Google Scholar]
- Palozza, P.; Simone, R.; Mele, M.C. Interplay of carotenoids with cigarette smoking: implications in lung cancer. Curr. Med. Chem. 2008, 15, 844–854. [Google Scholar] [CrossRef]
- Leneberger, M.G.; Engeloch-Jarret, C.; Woggon, W.-D. The reaction mechanism of the enzyme-catalyzed central cleavage of β-carotene in retinal. Angew. Chem., Int. Ed. 2001, 40, 2614–2617. [Google Scholar]
- Yeum, K.J.; Russell, R.M. Carotenoid bioavailability and bioconversion. Annu. Rev. Nutr. 2002, 22, 483–504. [Google Scholar] [CrossRef]
- von Lintig, J.; Hessel, S.; Isken, A.; Kiefer, C.; Lampert, J.M.; Voolstra, O.; Vogt, K. Towards a better understanding of carotenoid metabolism in animals. Biochim. Biophys. Acta 2005, 1740, 122–131. [Google Scholar] [CrossRef]
- Wang, X.D.; Tang, G.W.; Fox, J.G.; Krinsky, N.I.; Russell, R.M. Enzymatic conversion of β-carotene into β-apo-carotenals and retinoids by human, monkey, ferret, and rat tissues. Arch. Biochem. Biophys. 1991, 285, 8–16. [Google Scholar] [CrossRef]
- Nagao, A. Oxidative conversion of carotenoids to retinoids and other products. J. Nutr. 2004, 134, 237S–240S. [Google Scholar]
- Ho, C.C.; de Moura, F.F.; Kim, S.H.; Clifford, A.J. Excentral cleavage of β-carotene in vivo in a healthy man. Am. J. Clin. Nutr. 2007, 85, 770–777. [Google Scholar]
- Weedon, B.C.L. II. Occurence. In Carotenoids; O., Isler, Ed.; Birkhäuser Verlag: Basel, 1976; pp. 29–60. [Google Scholar]
- Barua, A.B.; Olson, J.A. β-Carotene is converted primarily to retinoids in rats in vivo. J. Nutr. 2000, 130, 1996–2001. [Google Scholar]
- Alija, A.J.; Bresgen, N.; Sommerburg, O.; Langhans, C.D.; Siems, W.; Eckl, P.M. Cyto- and genotoxic potential of β-carotene and cleavage products under oxidative stress. Biofactors 2005, 24, 159–163. [Google Scholar] [CrossRef]
- Mortensen, A.; Skibsted, L.H.; Truscott, T.G. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 2001, 385, 13–19. [Google Scholar] [CrossRef]
- Lavy, A.; Ben Amotz, A.; Aviram, M. Preferential inhibition of LDL oxidation by the all-trans isomer of β-carotene in comparison with 9-cis β-carotene. Eur. J. Clin. Chem. Clin. Biochem. 1993, 31, 83–90. [Google Scholar]
- Miller, N.J.; Sampson, J.; Candeias, L.P.; Bramley, P.M.; Rice-Evans, C.A. Antioxidant activities of carotenes and xanthophylls. FEBS lett. 1996, 384, 240–242. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2010. submitted. [Google Scholar]
- Böhm, H.; Boeing, H.; Hempel, J.; Raab, B.; Kroke, A. Flavonols, flavones, and anthocyanins as native antioxidants of food and their possible role in the prevention of chronic diseases. Z. Ernährungswiss. 1998, 37, 147–163. [Google Scholar] [CrossRef]
- Halliwell, B.; Rafter, J.; Jenner, A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 2005, 81, 268S–276S. [Google Scholar]
- El-Agamey, A.; Lowe, G.M.; McGarvey, D.J.; Mortensen, A.; Phillip, D.M.; Truscott, T.G.; Young, A.J. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 2004, 430, 37–48. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 2001, 385, 20–27. [Google Scholar] [CrossRef]
- Guo, W.H.; Tu, C.Y.; Hu, C.H. Cis-trans isomerizations of β-carotene and lycopene: a theoretical study. J. Phys. Chem. 2008, 112, 12158–12167. [Google Scholar] [CrossRef]
- Ceron-Carrasco, J.P.; Bastida, A.; Zuniga, J.; Requena, A.; Miguel, B. Density functional theory study of the stability and vibrational spectra of the β-carotene isomers. J. Phys. Chem. 2009, 113, 9899–9907. [Google Scholar] [CrossRef]
- Yoshida, H.; Kisugi, R. Mechanisms of LDL oxidation. Clin. Chim. Acta 2010, 411, 1875–1822. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar]
- Spiteller, G. Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic. Biol. Med. 2006, 41, 362–387. [Google Scholar] [CrossRef]
- Foti, M.C.; Amorati, R. Non-phenolic radical-trapping antioxidants. J. Pharm. Pharmacol. 2009, 61, 1435–48. [Google Scholar]
- Woodall, A.A.; Lee, S.W.-M.; Weesie, R.J.; Jackson, M.J.; Britton, G. Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Biochim. Biophys. Acta 1997, 1336, 33–42. [Google Scholar] [CrossRef]
- Burton, G.W.; Ingold, K.U. β-Carotene: an unusual type of lipid antioxidant. Science 1984, 224, 569–573. [Google Scholar]
- Terao, J. Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 1989, 24, 659–661. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Scita, G.; Freisleben, H.J.; Kagan, V.E.; Packer, L. Antioxidant radical-scavenging activity of carotenoids and retinoids compared to α-tocopherol. Meth. Enzym. 1992, 213, 460–472. [Google Scholar] [CrossRef]
- Woodall, A.A.; Britton, G.; Jackson, M.J. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: Relationship between carotenoid structure and protective ability. Biochim. Biophys. Acta 1997, 1336, 575–586. [Google Scholar] [CrossRef]
- Galano, A. Relative antioxidant efficiency of a large series of carotenoids in terms of one electron transfer reactions. J. Phys. Chem. B 2007, 111, 12898–12908. [Google Scholar] [CrossRef]
- Naguib, Y.M.A. Antioxidant activities of astaxanthin and related carotenoids. J. Agric. Food Chem. 2000, 48, 1150–1154. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Gradelet, S.; Leclerc, J.; Siess, M.H.; Astorg, P.O. β-apo-8'-Carotenal, but not β-carotene, is a strong inducer of liver cytochromes P4501A1 and 1A2 in rat. Xenobiotica 1996, 26, 909–919. [Google Scholar] [CrossRef]
- Salgo, M.G.; Cueto, R.; Winston, G.W.; Pryor, W.A. β-Carotene and its oxidation products have different effects on microsome mediated binding of benzo[a]pyrene to DNA. Free Radic. Biol. Med. 1999, 26, 162–173. [Google Scholar] [CrossRef]
- Siems, W.; Sommerburg, O.; Schild, L.; Augustin, W.; Langhans, C.D.; Wiswedel, I. β-Carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J. 2002, 16, 1289–1291. [Google Scholar]
- Siems, W.; Wiswedel, I.; Salerno, C.; Crifo, C.; Augustin, W.; Schild, L.; Langhans, C.D.; Sommerburg, O. β-Carotene breakdown products may impair mitochondrial functions - potential side effects of high-dose β-carotene supplementation. J. Nutr. Biochem. 2005, 16, 385–397. [Google Scholar] [CrossRef]
- Siems, W.; Salerno, C.; Crifo, C.; Sommerburg, O.; Wiswedel, I. β-Carotene degradation products - formation, toxicity and prevention of toxicity. Forum Nutr. 2009, 61, 75–86. [Google Scholar] [CrossRef]
- Marques, S.A.; Loureiro, A.P.; Gomes, O.F.; Garcia, C.C.; Di Mascio, P.; Medeiros, M.H. Induction of 1,N(2)-etheno-2'-deoxyguanosine in DNA exposed to β-carotene oxidation products. FEBS lett. 2004, 560, 125–130. [Google Scholar] [CrossRef]
- Carail, M.; Caris-Veyrat, C. Carotenoid oxidation products: from villain to saviour? Pure Appl. Chem. 2006, 78, 1493–1503. [Google Scholar] [CrossRef]
- Müller, L.; Theile, K.; Böhm, V. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res. 2010, 54, 731–742. [Google Scholar] [CrossRef]
- Jimenez-Alvarez, D.; Giuffrida, F.; Vanrobaeys, F.; Golay, P.A.; Cotting, C.; Lardeau, A.; Keely, B.J. High-throughput methods to assess lipophilic and hydrophilic antioxidant capacity of food extracts in vitro. J. Agric. Food Chem. 2008, 56, 3470–3477. [Google Scholar] [CrossRef]
- Olmedilla, B.; Granado, F.; Rojas-Hidalgo, E.; Blanco, I. A rapid separation of ten carotenoids, three retinoids, α-tocopherol and D-α-tocopherol acetate by high performance liquid chromatography and its application to serum and vegetable samples. J. Liq. Chromatogr. 1990, 13, 1455–1483. [Google Scholar] [CrossRef]
- Schierle, J.; Härdi, W.; Faccin, N.; Bühler, I.; Schüep, W. Example 8: Geometrical isomers of β,β-carotene. A rapid routine method for quantitative determination. In Carotenoids; Britton, G., Liaaen-Jensen, S., Pfander, H., Eds.; Birkhäuser Verlag: Basel, Switzerland, 1995; pp. 265–272. [Google Scholar]
- Naumann, C.; Bassler, R. Die chemische Untersuchung von Futtermitteln; VDLUFA-Verlag: Darmstadt, Germany, 1976. [Google Scholar]
- Franke, A.A.; Murphy, S.P.; Lacey, R.; Custer, L.J. Tocopherol and tocotrienol levels of foods consumed in Hawaii. J. Agric. Food Chem. 2007, 55, 769–778. [Google Scholar]
- Lissi, E.; Pascual, C.; Del Castillo, M.D. Luminol luminescence induced by 2,2'-azo-bis(2-amidinopropane) thermolysis. Free Radic Res. Comm. 1992, 17, 299–311. [Google Scholar] [CrossRef]
- Sample Availability: All compounds are commercially available.
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mueller, L.; Boehm, V. Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays. Molecules 2011, 16, 1055-1069. https://doi.org/10.3390/molecules16021055
Mueller L, Boehm V. Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays. Molecules. 2011; 16(2):1055-1069. https://doi.org/10.3390/molecules16021055
Chicago/Turabian StyleMueller, Lars, and Volker Boehm. 2011. "Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays" Molecules 16, no. 2: 1055-1069. https://doi.org/10.3390/molecules16021055
APA StyleMueller, L., & Boehm, V. (2011). Antioxidant Activity of β-Carotene Compounds in Different in Vitro Assays. Molecules, 16(2), 1055-1069. https://doi.org/10.3390/molecules16021055