Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Data Collection
4.3. Health Status
4.4. Dietary Assessment
4.5. Estimation of Polyphenol Intake
4.6. Depressive Symptoms
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jonsson, B.; The CDBE2010 study group; The European Brain Council. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Galvano, F.; Marventano, S.; Malaguarnera, M.; Bucolo, C.; Drago, F.; Caraci, F. Omega-3 fatty acids and depression: Scientific evidence and biological mechanisms. Oxid. Med. Cell. Longev. 2014, 2014, 313570. [Google Scholar] [CrossRef] [PubMed]
- Quirk, S.E.; Williams, L.J.; O’Neil, A.; Pasco, J.A.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The association between diet quality, dietary patterns and depression in adults: A systematic review. BMC Psychiatry 2013, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.; Molero, P.; Ortuno Sanchez-Pedreno, F.; Van der Does, W.; Angel Martinez-Gonzalez, M. Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, M.R.; Wei, Y.J.; Sun, L.; Zhang, J.X.; Zhang, H.G.; Li, B. Dietary patterns and depression risk: A meta-analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Castellano, S.; Pajak, A.; Galvano, F. Coffee, tea, caffeine and risk of depression: A systematic review and dose-response meta-analysis of observational studies. Mol. Nutr. Food Res. 2016, 60, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, Y.; Li, F.; Zhang, D. Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition 2016, 32, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61, 1600930. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, M.; Zhang, X.; Hou, W. Dietary flavonoid intake and the risk of stroke: A dose-response meta-analysis of prospective cohort studies. BMJ Open 2016, 6, e008680. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.Y.; Liu, J.; Zhao, G. Flavonoid intake and risk of CVD: A systematic review and meta-analysis of prospective cohort studies. Br. J. Nutr. 2014, 111, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Mocciaro, G.; Ziauddeen, N.; Godos, J.; Marranzano, M.; Chan, M.Y.; Ray, S. Does a mediterranean-type dietary pattern exert a cardio-protective effect outside the Mediterranean region? A review of current evidence. Int. J. Food Sci. Nutr. 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Platania, A.; Zappala, G.; Mirabella, M.U.; Gullo, C.; Mellini, G.; Beneventano, G.; Maugeri, G.; Marranzano, M. Association between Mediterranean diet adherence and dyslipidaemia in a cohort of adults living in the Mediterranean area. Int. J. Food Sci. Nutr. 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Beunza, J.J.; Toledo, E.; Hu, F.B.; Bes-Rastrollo, M.; Serrano-Martinez, M.; Sanchez-Villegas, A.; Martinez, J.A.; Martinez-Gonzalez, M.A. Adherence to the mediterranean diet, long-term weight change, and incident overweight or obesity: The seguimiento universidad de navarra (sun) cohort. Am. J. Clin. Nutr. 2010, 92, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.A.; Garcia-Arellano, A.; Toledo, E.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schroder, H.; Aros, F.; Gomez-Gracia, E.; et al. A 14-item mediterranean diet assessment tool and obesity indexes among high-risk subjects: The predimed trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, M.A.; Popkin, B.M.; Jakszyn, P.; Berenguer, A.; Tormo, M.J.; Sanchez, M.J.; Quiros, J.R.; Pera, G.; Navarro, C.; Martinez, C.; et al. Adherence to a mediterranean diet is associated with reduced 3-year incidence of obesity. J. Nutr. 2006, 136, 2934–2938. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, A.; Marventano, S.; Antoci, M.; Cagnetti, A.; Giogianni, G.; Nolfo, F.; Rametta, S.; Pecora, G.; Marranzano, M. Mediterranean diet adherence and body composition among southern Italian adolescents. Obes. Res. Clin. Pract. 2017, 11, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Zappala, G.; Buscemi, S.; Mule, S.; La Verde, M.; D’Urso, M.; Corleo, D.; Marranzano, M. High adherence to Mediterranean diet, but not individual foods or nutrients, is associated with lower likelihood of being obese in a Mediterranean cohort. Eat. Weight Disord. 2017. [Google Scholar] [CrossRef] [PubMed]
- La Verde, M.; Mule, S.; Zappala, G.; Privitera, G.; Maugeri, G.; Pecora, F.; Marranzano, M. Higher adherence to the Mediterranean diet is inversely associated with having hypertension: Is low salt intake a mediating factor? Int. J. Food Sci. Nutr. 2018, 69, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Cordoba, J.M.; Valencia-Serrano, F.; Toledo, E.; Alonso, A.; Martinez-Gonzalez, M.A. The mediterranean diet and incidence of hypertension: The Seguimiento Universidad de Navarra (SUN) Study. Am. J. Epidemiol. 2009, 169, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Marranzano, M.; Sumantra, R.; Godos, J.; Galvano, F. Association between dietary flavonoids intake and obesity in a cohort of adults living in the Mediterranean area. Int. J. Food Sci. Nutr. 2018. [Google Scholar] [CrossRef] [PubMed]
- Muros, J.J.; Cofre-Bolados, C.; Arriscado, D.; Zurita, F.; Knox, E. Mediterranean diet adherence is associated with lifestyle, physical fitness, and mental wellness among 10-y-olds in Chile. Nutrition 2017, 35, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Pounis, G.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Mediterranean-type diet is associated with higher psychological resilience in a general adult population: Findings from the Moli-sani study. Eur. J. Clin. Nutr. 2018, 72, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villegas, A.; Martinez-Gonzalez, M.A.; Estruch, R.; Salas-Salvado, J.; Corella, D.; Covas, M.I.; Aros, F.; Romaguera, D.; Gomez-Gracia, E.; Lapetra, J.; et al. Mediterranean dietary pattern and depression: The predimed randomized trial. BMC Med. 2013, 11, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sureda, A.; Tejada, S. Polyphenols and depression: From chemistry to medicine. Curr. Pharm. Biotechnol. 2015, 16, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Rendeiro, C.; Rhodes, J.S.; Spencer, J.P. The mechanisms of action of flavonoids in the brain: Direct versus indirect effects. Neurochem. Int. 2015, 89, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.C.; Cassidy, A.; Willett, W.C.; Rimm, E.B.; O’Reilly, E.J.; Okereke, O.I. Dietary flavonoid intake and risk of incident depression in midlife and older women. Am. J. Clin. Nutr. 2016, 104, 704–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wu, X.; Lai, W.; Long, E.; Zhang, X.; Li, W.; Zhu, Y.; Chen, C.; Zhong, X.; Liu, Z.; et al. Prevalence of depression and depressive symptoms among outpatients: A systematic review and meta-analysis. BMJ Open 2017, 7, e017173. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Scholey, A.B.; Pipingas, A.; Kras, M.; Nolidin, K.; Gibbs, A.; Wesnes, K.; Stough, C. Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. J. Psychopharmacol. 2013, 27, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Barfoot, K.L.; May, G.; Lamport, D.J.; Reynolds, S.A.; Williams, C.M. Effects of acute blueberry flavonoids on mood in children and young adults. Nutrients 2017, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Asakura, H.; Hayashi, T. Effects of olfactory stimulation from the fragrance of the Japanese Citrus Fruit Yuzu (citrus junosSieb. Ex Tanaka) on mood states and salivary Chromogranin a as an Endocrinologic stress marker. J. Altern. Complement. Med. 2014, 20, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Davinelli, S.; Scapagnini, G.; Marzatico, F.; Nobile, V.; Ferrara, N.; Corbi, G. Influence of equol and resveratrol supplementation on health-related quality of life in menopausal women: A randomized, placebo-controlled study. Maturitas 2017, 96, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Opizzi, A.; Solerte, S.B.; Trotti, R.; Klersy, C.; Cazzola, R. Administration of a dietary supplement (N-oleyl-phosphatidylethanolamine and epigallocatechin-3-gallate formula) enhances compliance with diet in healthy overweight subjects: A randomized controlled trial. Br. J. Nutr. 2009, 101, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Gea, A.; Beunza, J.J.; Estruch, R.; Sanchez-Villegas, A.; Salas-Salvado, J.; Buil-Cosiales, P.; Gomez-Gracia, E.; Covas, M.I.; Corella, D.; Fiol, M.; et al. Alcohol intake, wine consumption and the development of depression: The predimed study. BMC Med. 2013, 11, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gea, A.; Martinez-Gonzalez, M.A.; Toledo, E.; Sanchez-Villegas, A.; Bes-Rastrollo, M.; Nunez-Cordoba, J.M.; Sayon-Orea, C.; Beunza, J.J. A longitudinal assessment of alcohol intake and incident depression: The sun project. BMC Public Health 2012, 12, 954. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Sinatra, D.; Blanco, I.; Mule, S.; La Verde, M.; Marranzano, M. Association between dietary phenolic acids and hypertension in a Mediterranean cohort. Nutrients 2017, 9, 1069. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Bergante, S.; Satriano, A.; Pluchinotta, F.R.; Marranzano, M. Dietary phytoestrogen intake is inversely associated with hypertension in a cohort of adults living in the Mediterranean area. Molecules 2018, 23, 368. [Google Scholar] [CrossRef] [PubMed]
- Zainuddin, M.S.; Thuret, S. Nutrition, adult hippocampal neurogenesis and mental health. Br. Med. Bull. 2012, 103, 89–114. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med. 2004, 36, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.W.; Cheng, F.C.; Huang, Y.T.; Chen, C.F.; Tsai, T.H. Determination of naringenin and its glucuronide conjugate in rat plasma and brain tissue by high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1998, 714, 369–374. [Google Scholar] [CrossRef]
- Kalt, W.; Blumberg, J.B.; McDonald, J.E.; Vinqvist-Tymchuk, M.R.; Fillmore, S.A.; Graf, B.A.; O’Leary, J.M.; Milbury, P.E. Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J. Agric. Food Chem. 2008, 56, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Talavera, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Remesy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem. 2005, 53, 3902–3908. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, S.; Halliwell, B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr. 2012, 7, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Clarke, G.; Berk, M.; Jacka, F.N. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psychiatry 2015, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Grosso, C.; Valentao, P.; Ferreres, F.; Andrade, P.B. The use of flavonoids in central nervous system disorders. Curr. Med. Chem. 2013, 20, 4694–4719. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.; Desbrow, B.; Anoopkumar-Dukie, S.; Davey, A.K.; Arora, D.; McDermott, C.; Schubert, M.M.; Perkins, A.V.; Kiefel, M.J.; Grant, G.D. A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Res. Int. 2015, 76, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Pathak, L.; Agrawal, Y.; Dhir, A. Natural polyphenols in the management of major depression. Expert Opin. Investig. Drugs 2013, 22, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Andrade, P.B.; Grosso, C.; Valentao, P.; Bernardo, J. Flavonoids in neurodegeneration: Limitations and strategies to cross CNS barriers. Curr. Med. Chem. 2016, 23, 4151–4174. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The mediterranean healthy eating, ageing, and lifestyle (meal) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the mediterranean healthy eating, lifestyle and aging (meal) study cohort. Mediterr. J. Nutr. Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. Tabelle di Composizione degli Alimenti; Clitt: Rome, Italy, 2009. [Google Scholar]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the mediterranean healthy eating, aging and lifestyle (meal) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; Du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-explorer 3.0: A major update of the phenol-explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Bognar, A. Tables on Weight Yield of Food and Retention Factors of Food Constituents for the Calculation of Nutrient Composition of Cooked Foods (Dishes); BFE: Karlsruhe, Germany, 2002. [Google Scholar]
- Willett, W.C.L.E. Reproducibility and validity of food frequency questionnaire. In Nutritional Epidemiology, 2nd ed.; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Radloff, L.S. The use of the center for epidemiologic studies depression scale in adolescents and young adults. J. Youth Adolesc. 1991, 20, 149–166. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Total Polyphenol Quartiles | p | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Age (years), mean (SD) | 45.29 (19.09) | 46.87 (17.66) | 47.90 (16.21) | 46.30 (15.87) | 0.203 |
Men, n (%) | 158 (43.1) | 186 (45.7) | 156 (39.9) | 160 (39.3) | 0.120 |
BMI, mean (SD) | 25.75 (4.41) | 25.64 (4.58) | 25.95 (4.45) | 25.23 (4.38) | 0.167 |
Smoking status, n (%) | 0.423 | ||||
Current | 40 (10.9) | 47 (11.5) | 42 (10.5) | 49 (12.3) | |
Former | 75 (20.4) | 109 (26.8) | 111 (27.7) | 89 (22.4) | |
Never | 252 (68.7) | 251 (61.7) | 248 (61.8) | 259 (65.2) | |
Educational level, n (%) | 0.001 | ||||
Low | 147 (32.7) | 185 (37.0) | 187 (37.4) | 178 (36.6) | |
Medium | 153 (34.1) | 180 (36.0) | 213 (42.6) | 174 (35.7) | |
High | 149 (33.2) | 135 (27.0) | 100 (20.0) | 135 (27.7) | |
Occupational level, n (%) | 0.046 | ||||
Unemployed | 90 (23.7) | 115 (26.7) | 131 (28.8) | 125 (31.9) | |
Low | 64 (16.8) | 66 (15.3) | 74 (16.3) | 62 (15.8) | |
Medium | 87 (22.9) | 126 (29.2) | 123 (27.0) | 104 (26.5) | |
High | 139 (36.6) | 124 (28.8) | 127 (27.9) | 101 (25.8) | |
Physical activity level, n (%) | 0.290 | ||||
Low | 74 (20.2) | 76 (18.7) | 58 (14.5) | 69 (17.5) | |
Medium | 174 (47.4) | 215 (52.8) | 176 (44.1) | 209 (52.9) | |
High | 119 (32.4) | 116 (28.5) | 165 (41.4) | 117 (29.6) | |
Alcohol consumption, n (%) | <0.001 | ||||
None | 103 (28.1) | 95 (23.3) | 52 (13.0) | 39 (9.8) | |
Moderate (0.1–12 g/d) | 257 (70.0) | 281 (69.0) | 254 (63.3) | 213 (53.7) | |
Regular (>12 g/d) | 7 (1.9) | 31 (7.6) | 95 (23.7) | 145 (36.5) | |
Health status, n (%) | |||||
Hypertension | 193 (52.6) | 218 (53.6) | 199 (49.6) | 155 (39.0) | <0.001 |
Diabetes | 12 (3.3) | 32 (7.9) | 31 (7.7) | 18 (4.5) | 0.561 |
Dyslipidemias | 50 (13.6) | 63 (15.5) | 72 (18.0) | 68 (17.1) | 0.125 |
Cardiovascular disease | 27 (7.4) | 21 (5.2) | 32 (8.0) | 25 (6.3) | 0.978 |
Cancer | 17 (4.6) | 14 (3.4) | 10 (2.5) | 17 (4.3) | 0.667 |
Menopausal status (women only), n (%) | 142 (54.6) | 160 (55.4) | 165 (53.1) | 166 (55.5) | 0.926 |
MEDI-LITE score, mean (SD) | 10.7 (2.4) | 12.0 (2.1) | 12.8 (2.2) | 12.6 (1.9) | <0.001 |
Total energy intake (kcal/d), mean (SD) | 1666.54 (491.14) | 1873.39 (533.24) | 2050.85 (647.58) | 2728.92 (1140.65) | <0.001 |
Polyphenol Quartiles | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Total polyphenols, mean (SD), mg/d | 252.24 (57.49) | 432.65 (49.77) | 624.24 (82.21) | 1321.19 (902.24) | |
No. of cases | 119 | 139 | 121 | 130 | 0.766 |
Model 1 a | 1 | 1.08 (0.80, 1.46) | 0.90 (0.66, 1.23) | 1.01 (0.72, 1.42) | |
Model 2 b | 1 | 1.33 (0.92, 1.92) | 1.14 (0.78, 1.68) | 1.35 (0.87, 2.09) | |
Model 3 c | 1 | 1.51 (1.03, 2.22) | 1.37 (0.90, 2.09) | 1.59 (0.95, 2.64) | |
Total flavonoids, mean (SD), mg/d | 86.64 (25.08) | 157.07 (23.00) | 256.52 (37.98) | 543.71 (219.55) | |
No. of cases | 152 | 103 | 111 | 143 | 0.293 |
Model 1 a | 1 | 0.52 (0.38, 0.71) | 0.59 (0.43, 0.80) | 0.82 (0.60, 1.12) | |
Model 2 b | 1 | 0.46 (0.32, 0.68) | 0.44 (0.30, 0.65) | 0.75 (0.50, 1.12) | |
Model 3 c | 1 | 0.48 (0.33, 0.71) | 0.49 (0.32, 0.75) | 0.86 (0.51, 1.43) | |
Phenolic acids, mean (SD), mg/d | 114.68 (30.98) | 203.99 (25.79) | 313.22 (40.39) | 848.18 (987.59) | |
No. of cases | 138 | 102 | 132 | 117 | 0.423 |
Model 1 a | 1 | 0.65 (0.48, 0.89) | 0.97 (0.72, 1.31) | 0.77 (0.57, 1.05) | |
Model 2 b | 1 | 0.61 (0.42, 0.88) | 0.63 (0.44, 0.91) | 0.60 (0.41, 0.88) | |
Model 3 c | 1 | 0.64 (0.44, 0.92) | 0.66 (0.45, 0.95) | 0.64 (0.44, 0.93) | |
Stilbenes, mean (SD), mg/d | 0.06 (0.03) | 0.24 (0.08) | 0.92 (0.41) | 5.66 (4.39) | |
No. of cases | 119 | 139 | 129 | 122 | 0.385 |
Model 1 a | 1 | 1.06 (0.78, 1.43) | 0.87 (0.64, 1.19) | 0.92 (0.67,1.26) | |
Model 2 b | 1 | 1.05 (0.70, 1.57) | 0.62 (0.40, 0.98) | 0.75 (0.44, 1.26) | |
Model 3c | 1 | 1.13 (0.75, 1.71) | 0.69 (0.44, 1.11) | 0.81 (0.47, 1.41) | |
Lignans, mean (SD), mg/d | 0.73 (0.26) | 1.45 (0.26) | 2.59 (0.51) | 6.37 (3.51) | |
No. of cases | 159 | 118 | 120 | 112 | <0.001 |
Model 1 a | 1 | 0.52 (0.39, 0.71) | 0.49 (0.36, 0.67) | 0.55 (0.40, 0.75) | |
Model 2 b | 1 | 0.54 (0.37, 0.79) | 0.57 (0.39, 0.83) | 0.69 (0.47, 1.03) | |
Model 3 c | 1 | 0.62 (0.42, 0.91) | 0.73 (0.49, 1.09) | 1.21 (0.72, 2.04) |
Polyphenol Quartiles | p for Trend | ||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
Flavonoids | |||||
Flavanols, mean (SD), mg/d | 51.45 (40.19) | 200.15 (25.43) | 292.63 (35.87) | 587.05 (179.23) | |
No. of cases | <0.001 | ||||
Model 1 a | 1 | 0.69 (0.51, 0.94) | 1.32 (0.98, 1.78) | 1.12 (0.82, 1.52) | |
Model 2 b | 1 | 0.66 (0.45, 0.96) | 1.23 (0.84, 1.80) | 1.17 (0.79, 1.73) | |
Model 3 c | 1 | 0.71 (0.48, 1.04) | 1.35 (0.91, 2.01) | 1.25 (0.81, 1.91) | |
Flavonols, mean (SD), mg/d | 17.23 (6.13) | 34.06 (4.29) | 55.85 (10.54) | 120.76 (49.12) | |
No. of cases | 144 | 125 | 103 | 137 | 0.034 |
Model 1 a | 1 | 0.69 (0.51, 0.93) | 0.54 (0.39, 0.73) | 0.75 (0.55, 1.02) | |
Model 2 b | 1 | 0.65 (0.45, 0.95) | 0.53 (0.36, 0.77) | 0.78 (0.54, 1.13) | |
Model 3 c | 1 | 0.64 (0.43, 0.93) | 0.51 (0.34, 0.77) | 0.67 (0.42, 1.06) | |
Flavanones, mean (SD), mg/d | 5.46 (3.20) | 16.49 (3.65) | 34.32 (8.81) | 96.79 (44.95) | |
No. of cases | 129 | 157 | 124 | 99 | <0.001 |
Model 1 a | 1 | 0.94 (0.70, 1.27) | 0.70 (0.51, 0.96) | 0.48 (0.34, 0.66) | |
Model 2 b | 1 | 0.95 (0.66, 1.37) | 0.67 (0.46, 0.98) | 0.51 (0.34, 0.75) | |
Model 3 c | 1 | 1.00 (0.69, 1.46) | 0.67 (0.45, 0.99) | 0.54 (0.32, 0.91) | |
Flavones, mean (SD), mg/d | 2.15 (0.77) | 4.37 (0.69) | 7.47 (1.45) | 19.99 (16.09) | |
No. of cases | 122 | 138 | 126 | 123 | 0.022 |
Model 1 a | 1 | 0.87 (0.64, 1.18) | 0.76 (0.55, 1.04) | 0.68 (0.49, 0.94) | |
Model 2 b | 1 | 0.92 (0.63, 1.34) | 1.10 (0.76, 1.60) | 0.85 (0.58, 1.25) | |
Model 3 c | 1 | 0.99 (0.68, 1.46) | 1.38 (0.93, 2.05) | 1.04 (0.68, 1.61) | |
Anthocyanins, mean (SD), mg/d | 11.48 (4.79) | 27.28 (5.12) | 50. 21 (10.15) | 132.29 (67.36) | |
No. of cases | 138 | 138 | 120 | 113 | 0.001 |
Model 1 a | 1 | 0.73 (0.54, 0.98) | 0.61 (0.45, 0.83) | 0.58 (0.42, 0.81) | |
Model 2 b | 1 | 0.82 (0.56, 1.20) | 0.57 (0.39, 0.85) | 0.57 (0.37, 0.87) | |
Model 3 c | 1 | 0.90 (0.61, 1.33) | 0.64 (0.43, 0.94) | 0.61 (0.42, 0.89) | |
Isoflavones, mean (SD), mg/d | 0.01 (0.01) | 0.03 (0.01) | 0.07 (0.01) | 17.65 (26.76) | |
No. of cases | 130 | 125 | 107 | 147 | 0.347 |
Model 1 a | 1 | 0.76 (0.56, 1.03) | 0.55 (0.40, 0.75) | 0.94 (0.69, 1.28) | |
Model 2 b | 1 | 0.70 (0.48, 1.01) | 0.76 (0.53, 1.09) | 0.77 (0.53, 1.12) | |
Model 3 c | 1 | 0.73 (0.51, 1.06) | 0.84 (0.58, 1.23) | 0.73 (0.48, 1.09) | |
Phenolic acids | |||||
Hydroxybenzoic acids, mean (SD), mg/d | 13.08 (11.51) | 64.21 (6.87) | 136.26 (35.37) | 638.70 (971.59) | |
No. of cases | 124 | 126 | 139 | 120 | 0.637 |
Model 1 a | 1 | 0.78 (0.57, 1.05) | 0.96 (0.71, 1.30) | 0.85 (0.62, 1.17) | |
Model 2 b | 1 | 0.70 (0.49, 1.00) | 1.25 (0.86, 1.83) | 0.99 (0.67, 1.46) | |
Model 3 c | 1 | 0.72 (0.50, 1.02) | 1.23 (0.83, 1.82) | 0.91 (0.61, 1.37) | |
Hydroxycinnamic acids, mean (SD), mg/d | 63.99 (15.05) | 106.59 (13.02) | 156.86 (17.61) | 277.67 (96.17) | |
No. of cases | 144 | 148 | 96 | 121 | 0.007 |
Model 1 a | 1 | 0.85 (0.64, 1.14) | 0.52 (0.38, 0.71) | 0.72 (0.52, 1.00) | |
Model 2 b | 1 | 0.87 (0.60, 1.25) | 0.59 (0.40, 0.86) | 0.81 (0.54, 1.20) | |
Model 3 c | 1 | 0.91 (0.63, 1.32) | 0.65 (0.44, 0.97) | 0.88 (0.57, 1.37) |
Polyphenol Quartiles | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Flavonoids | ||||
Flavonols | ||||
Quercetin | ||||
Model 1 a | 1 | 0.60 (0.40, 0.89) | 0.91 (0.62, 1.33) | 0.48 (0.31, 0.75) |
Model 2 b | 1 | 0.60 (0.40, 0.91) | 0.98 (0.66, 1.45) | 0.53 (0.32, 0.86) |
Myricetin | ||||
Model 1 a | 1 | 0.79 (0.28, 2.22) | 0.41 (0.14, 1.17) | 0.93 (0.32, 2.69) |
Model 2 b | 1 | 0.83 (0.29, 2.35) | 0.44 (0.15, 1.25) | 0.98 (0.33, 2.87) |
Kaempferol | ||||
Model 1 a | 1 | 0.69 (0.47, 1.01) | 0.56 (0.39, 0.82) | 0.55 (0.34, 0.88) |
Model 2 b | 1 | 0.74 (0.49, 1.09) | 0.63 (0.41, 0.97) | 0.66 (0.38, 1.13) |
Flavanols | ||||
Catechins | ||||
Model 1 a | 1 | 0.84 (0.62, 1.13) | 1.28 (0.96, 1.70) | 1.30 (0.97, 1.76) |
Model 2 b | 1 | 0.90 (0.62, 1.31) | 1.24 (0.84, 1.83) | 1.55 (0.96, 2.50) |
Flavanones | ||||
Hesperetin | ||||
Model 1 a | 1 | 1.00 (0.70, 1.45) | 0.66 (0.45, 0.96) | 0.56 (0.38, 0.82) |
Model 2 b | 1 | 1.07 (0.74, 1.55) | 0.67 (0.45, 0.99) | 0.64 (0.38, 1.09) |
Naringenin | ||||
Model 1 a | 1 | 0.49 (0.34, 0.72) | 0.30 (0.20, 0.45) | 0.42 (0.28, 0.63) |
Model 2 b | 1 | 0.50 (0.34, 0.73) | 0.31 (0.20, 0.47) | 0.51 (0.30, 0.85) |
Flavones | ||||
Apigenin | ||||
Model 1 a | 1 | 1.09 (0.73, 1.62) | 1.24 (0.81, 1.89) | 0.94 (0.63, 1.39) |
Model 2 b | 1 | 1.15 (0.76, 1.72) | 1.29 (0.83, 1.99) | 1.09 (0.72, 1.66) |
Luteolin | ||||
Model 1 a | 1 | 0.59 (0.40, 0.86) | 0.94 (0.65, 1.35) | 0.87 (0.59, 1.29) |
Model 2 b | 1 | 0.62 (0.42, 0.91) | 1.05 (0.72, 1.53) | 1.02 (0.68, 1.55) |
Isoflavones | ||||
Daidzein | ||||
Model 1a | 1 | 0.77 (0.53, 1.11) | 0.83 (0.57, 1.19) | 0.85 (0.58, 1.25) |
Model 2 b | 1 | 0.82 (0.56, 1.19) | 0.92 (0.63, 1.34) | 0.84 (0.55, 1.27) |
Genistein | ||||
Model 1 a | 1 | 0.81 (0.56, 1.16) | 0.79 (0.55, 1.16) | 0.78 (0.53, 1.14) |
Model 2 b | 1 | 0.86 (0.59, 1.23) | 0.88 (0.59, 1.31) | 0.75 (0.49, 1.13) |
Biochanin A | ||||
Model 1 a | 1 | 1.48 (0.98, 2.25) | 1.24 (0.81, 1.89) | 1.57 (0.98, 2.47) |
Model 2 b | 1 | 1.57 (1.03, 2.38) | 1.29 (0.84, 1.98) | 1.56 (0.99, 2.42) |
Phenolic acids | ||||
Hydroxycinnamic acids | ||||
Caffeic acid | ||||
Model 1 a | 1 | 0.78 (0.53, 1.14) | 0.72 (0.48, 1.06) | 1.00 (0.59, 1.69) |
Model 2 b | 1 | 0.80 (0.54, 1.19) | 0.81 (0.53, 1.24) | 1.16 (0.67, 2.02) |
Cinnamic acid | ||||
Model 1 a | 1 | 0.84 (0.58, 1.21) | 1.30 (0.88, 1.92) | 1.24 (0.85, 1.80) |
Model 2 b | 1 | 0.88 (0.61, 1.28) | 1.47 (0.99, 2.19) | 1.35 (0.92, 1.99) |
Ferulic acid | ||||
Model 1 a | 1 | 0.93 (0.64, 1.35) | 1.09 (0.75, 1.57) | 1.18 (0.78, 1.78) |
Model 2 b | 1 | 1.03 (0.69, 1.51) | 1.19 (0.82, 1.75) | 1.45 (0.93, 2.25) |
Hydroxybenzoic acids | ||||
Vanillic acid | ||||
Model 1 a | 1 | 0.44 (0.29, 0.66) | 0.86 (0.58, 1.26) | 0.83 (0.54, 1.28) |
Model 2 b | 1 | 0.44 (0.29, 0.67) | 0.88 (0.59, 1.31) | 0.89 (0.56, 1.39) |
Lignans | ||||
Lariciresinol | ||||
Model 1 a | 1 | 0.51 (0.35, 0.74) | 0.42 (0.29, 0.61) | 0.62 (0.42, 0.91) |
Model 2 b | 1 | 0.57 (0.39, 0.83) | 0.51 (0.34, 0.76) | 0.96 (0.58, 1.58) |
Matairesinol | ||||
Model 1a | 1 | 0.60 (0.41, 0.86) | 0.30 (0.20, 0.44) | 0.49 (0.33, 0.74) |
Model 2 b | 1 | 0.63 (0.43, 0.91) | 0.32 (0.21, 0.49) | 0.62 (0.37, 1.04) |
Pinoresinol | ||||
Model 1 a | 1 | 0.56 (0.38, 0.82) | 0.77 (0.53, 1.12) | 0.79 (0.53, 1.17) |
Model 2 b | 1 | 0.64 (0.44, 0.95) | 1.03 (0.69, 1.56) | 1.55 (0.92, 2.62) |
Secoisolariciresinol | ||||
Model 1 a | 1 | 0.74 (0.51, 1.08) | 0.73 (0.49, 1.08) | 1.05 (0.70, 1.57) |
Model 2 b | 1 | 0.82 (0.56, 1.20) | 1.08 (0.70, 1.66) | 2.21 (0.97, 4.07) |
Food Quartiles, OR (95% CI)a | ||||
---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |
Red wine | 1 | 1.12 (0.77, 1.62) | 0.22 (0.08, 0.60) | 0.53 (0.38, 0.74) |
Beer | 1 | 0.78 (0.53, 1.14) | 0.81 (0.51, 1.29) | 0.60 (0.26, 1.38) |
Coffee | 1 | 2.10 (1.14, 3.89) | 1.66 (0.94, 2.90) | 1.41 (0.81, 2.44) |
Tea | 1 | 0.97 (0.73, 1.27) | 1.03 (0.65, 1.64) | 1.09 (0.33, 3.52) |
Olive oil | 1 | 2.35 (0.59, 9.61) | 1.48 (0.37, 5.81) | 1.97 (0.50, 7.70) |
Fruits | 1 | 0.79 (0.55, 1.15) | 0.57 (0.39, 0.83) | 0.88 (0.60, 1.30) |
Citrus fruits | 1 | 0.58 (0.41, 0.83) | 0.36 (0.25, 0.52) | 0.51 (0.35, 0.75) |
Vegetables | 1 | 1.08 (0.75, 1.56) | 0.98 (0.67, 1.42) | 1.23 (0.83, 1.82) |
Legumes | 1 | 0.94 (0.66, 1.33) | 1.00 (0.69, 1.45) | 0.67 (0.46, 1.00) |
Nuts and seeds | 1 | 0.89 (0.65, 1.22) | 0.67 (0.41, 1.10) | 0.80 (0.45, 1.41) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godos, J.; Castellano, S.; Ray, S.; Grosso, G.; Galvano, F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules 2018, 23, 999. https://doi.org/10.3390/molecules23050999
Godos J, Castellano S, Ray S, Grosso G, Galvano F. Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules. 2018; 23(5):999. https://doi.org/10.3390/molecules23050999
Chicago/Turabian StyleGodos, Justyna, Sabrina Castellano, Sumantra Ray, Giuseppe Grosso, and Fabio Galvano. 2018. "Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study" Molecules 23, no. 5: 999. https://doi.org/10.3390/molecules23050999
APA StyleGodos, J., Castellano, S., Ray, S., Grosso, G., & Galvano, F. (2018). Dietary Polyphenol Intake and Depression: Results from the Mediterranean Healthy Eating, Lifestyle and Aging (MEAL) Study. Molecules, 23(5), 999. https://doi.org/10.3390/molecules23050999