Linking Personality and Trust in Intelligent Virtual Assistants
Abstract
:1. Introduction
2. Theoretical Background and Related Work
2.1. IVA Technology Ecosystem
2.2. IVAs and Their Function in Everyday Life
2.3. Making IVAs More Humanlike
2.4. IVA Privacy Concerns
2.5. IVAs and Trust
2.6. Linking IVA Privacy and Trust Concerns
2.7. IVAs and Personality
3. Methodology
3.1. Research Model and Hypotheses Development
3.1.1. Hypotheses Category A—Personality and Propensity to Trust
- H-A01: Agreeableness positively correlates with trusting stance.
- H-A02: Agreeableness positively correlates with faith in general technology.
- H-A03: Neuroticism negatively correlates with trusting stance.
- H-A04: Neuroticism negatively correlates with faith in general technology.
3.1.2. Hypotheses Category B—Personality and Trusting Beliefs in a Specific Technology
- H-B01: Extraversion positively correlates with trusting beliefs in a specific technology.
- H-B02: Agreeableness positively correlates with trusting beliefs in a specific technology.
- H-B03: Conscientiousness positively correlates with trusting beliefs in a specific technology.
- H-B04: Openness positively correlates with trusting beliefs in a specific technology.
3.1.3. Hypotheses Category C—Propensity to Trust and Trusting Beliefs in a Specific Technology
- H-C01: Trusting stance positively correlates with trusting beliefs in a specific technology.
- H-C02: Faith in general technology positively correlates with trusting beliefs in a specific technology.
3.1.4. Hypotheses Category D—Affinity for Technology Interaction and Trusting Beliefs in a Specific Technology
- H-D01: ATI positively correlates with trusting beliefs in a specific technology.
3.2. Survey Design and Operationalization
3.2.1. IVA Use
3.2.2. Trust
3.2.3. Personality
3.2.4. Affinity for Technology Interaction
3.2.5. Demographics
3.3. Pretest and Sampling
4. Results
4.1. Trust
4.2. Affinity for Technology Interaction
5. Hypotheses Testing
5.1. Category A—Personality and Propensity to Trust
5.2. Category B—Personality and Trusting Beliefs in a Specific Technology
5.3. Category C—Propensity to Trust and Trusting Beliefs in a Specific Technology
5.4. Category D—Affinity for Technology Interaction and Trusting Beliefs in a Specific Technology
5.5. Additional Investigations
6. Discussion
7. Conclusions, Limitations, and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IVA | Intelligent Virtual Agent |
NUI | Natural User Interfaces |
GDPR | General Data Protection Regulation |
DCT | Data Collection Transparency |
AI | Affinity for Technology Interaction |
BFI | Big Five Inventory |
References
- Statista, G. Anzahl der Nutzer Virtueller Digitaler Assistenten Weltweit in den Jahren von 2015 bis 2021. Available online: https://de.statista.com/statistik/daten/studie/620321/umfrage/nutzung-von-virtuellen-digitalen-assistenten-weltweit/ (accessed on 30 September 2022).
- Attig, C.; Wessel, D.; Franke, T. Assessing personality differences in human-technology interaction: An overview of key self-report scales to predict successful interaction. In Proceedings of the International Conference on Human-Computer Interaction, Vancouver, BC, Canada, 9–14 July 2017; pp. 19–29. [Google Scholar]
- Gray, S. Always on: Privacy implications of microphone-enabled devices. In Proceedings of the Future of Privacy Forum, Washington, DC, USA, 25 April 2016; pp. 1–10. [Google Scholar]
- Campagna, G.; Ramesh, R.; Xu, S.; Fischer, M.; Lam, M.S. Almond: The architecture of an open, crowdsourced, privacy-preserving, programmable virtual assistant. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 341–350. [Google Scholar]
- Glass, A.; McGuinness, D.L.; Wolverton, M. Toward establishing trust in adaptive agents. In Proceedings of the 13th International Conference on Intelligent User Interfaces, Canaria, Spain, 13–16 January 2008; pp. 227–236. [Google Scholar]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Salanitri, D.; Lawson, G.; Waterfield, B. The relationship between presence and trust in virtual reality. In Proceedings of the European Conference on Cognitive Ergonomics, Nottingham, UK, 5–8 September 2016; pp. 1–4. [Google Scholar]
- Ding, S.; Yang, S.; Zhang, Y.; Liang, C.; Xia, C. Combining QoS prediction and customer satisfaction estimation to solve cloud service trustworthiness evaluation problems. Knowl.-Based Syst. 2014, 56, 216–225. [Google Scholar] [CrossRef]
- Lee, J.; Moray, N. Trust, control strategies and allocation of function in human-machine systems. Ergonomics 1992, 35, 1243–1270. [Google Scholar] [CrossRef] [PubMed]
- McKnight, D.H.; Carter, M.; Thatcher, J.B.; Clay, P.F. Trust in a specific technology: An investigation of its components and measures. ACM Trans. Manag. Inf. Syst. (TMIS) 2011, 2, 1–25. [Google Scholar] [CrossRef]
- Detweiler, C.; Broekens, J. Trust in online technology: Towards practical guidelines based on experimentally verified theory. In Proceedings of the International Conference on Human-Computer Interaction, San Diego, CA, USA, 19–24 July 2009; pp. 605–614. [Google Scholar]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied artificial intelligence and trust—The case of autonomous vehicles and medical assistance devices. Technol. Forecast. Soc. Chang. 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Lee, M.K.; Turban, E. A trust model for consumer internet shopping. Int. J. Electron. Commer. 2001, 6, 75–91. [Google Scholar] [CrossRef]
- Bente, G.; Dratsch, T.; Kaspar, K.; Häßler, T.; Bungard, O.; Al-Issa, A. Cultures of trust: Effects of avatar faces and reputation scores on German and Arab players in an online trust-game. PLoS ONE 2014, 9, e98297. [Google Scholar] [CrossRef]
- Behrenbruch, K.; Söllner, M.; Leimeister, J.M.; Schmidt, L. Understanding diversity—The impact of personality on technology acceptance. In Proceedings of the IFIP Conference on Human-Computer Interaction, Cape Town, South Africa, 2–6 September 2013; pp. 306–313. [Google Scholar]
- Franke, T.; Attig, C.; Wessel, D. A personal resource for technology interaction: Development and validation of the affinity for technology interaction (ATI) scale. Int. J. Hum. –Comput. Interact. 2019, 35, 456–467. [Google Scholar] [CrossRef]
- Gessl, A.S.; Schlögl, S.; Mevenkamp, N. On the perceptions and acceptance of artificially intelligent robotics and the psychology of the future elderly. Behav. Inf. Technol. 2019, 38, 1068–1087. [Google Scholar] [CrossRef]
- Gartner, I. Anzahl der Nutzer Virtueller Digitaler Assistenten Weltweit in den Jahren von 2015 bis 2021. Available online: https://www.gartner.com/it-glossary/virtual-assistant-va/ (accessed on 30 September 2022).
- Hoy, M.B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [Google Scholar] [CrossRef]
- Chung, H.; Iorga, M.; Voas, J.; Lee, S. Alexa, can I trust you? Computer 2017, 50, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Cho, E. Hey Google, can I ask you something in private? In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–9. [Google Scholar]
- López, G.; Quesada, L.; Guerrero, L.A. Alexa vs. Siri vs. Cortana vs. Google Assistant: A comparison of speech-based natural user interfaces. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Los Angeles, CA, USA, 17–21 July 2017; pp. 241–250. [Google Scholar]
- Lopatovska, I.; Rink, K.; Knight, I.; Raines, K.; Cosenza, K.; Williams, H.; Sorsche, P.; Hirsch, D.; Li, Q.; Martinez, A. Talk to me: Exploring user interactions with the Amazon Alexa. J. Librariansh. Inf. Sci. 2019, 51, 984–997. [Google Scholar] [CrossRef]
- Aylett, M.P.; Cowan, B.R.; Clark, L. Siri, echo and performance: You have to suffer darling. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–10. [Google Scholar]
- Čaić, M.; Odekerken-Schröder, G.; Mahr, D. Service robots: Value co-creation and co-destruction in elderly care networks. J. Serv. Manag. 2018, 29, 178–205. [Google Scholar] [CrossRef]
- Looije, R.; Neerincx, M.A.; Cnossen, F. Persuasive robotic assistant for health self-management of older adults: Design and evaluation of social behaviors. Int. J. Hum.-Comput. Stud. 2010, 68, 386–397. [Google Scholar] [CrossRef]
- Bell, S.; Wood, C.; Sarkar, A. Perceptions of chatbots in therapy. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6. [Google Scholar]
- Dale, R. The return of the chatbots. Nat. Lang. Eng. 2016, 22, 811–817. [Google Scholar] [CrossRef]
- Mori, M.; MacDorman, K.F.; Kageki, N. The uncanny valley [from the field]. Ieee Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- Heater, C. Being there: The subjective experience of presence. Presence Teleoperators Virtual Environ. 1992, 1, 262–271. [Google Scholar] [CrossRef]
- Biocca, F. The cyborg’s dilemma: Progressive embodiment in virtual environments. J. Comput.-Mediat. Commun. 1997, 3, JCMC324. [Google Scholar] [CrossRef]
- Lee, K.M.; Nass, C. Designing social presence of social actors in human computer interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Fort Lauderdale, FL, USA, 5–10 April 2003; pp. 289–296. [Google Scholar]
- Lankton, N.K.; McKnight, D.H.; Tripp, J. Technology, humanness, and trust: Rethinking trust in technology. J. Assoc. Inf. Syst. 2015, 16, 1. [Google Scholar] [CrossRef]
- Eisenberg, N.; Strayer, J. Empathy and Its Development; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Decety, J.; Jackson, P.L. The functional architecture of human empathy. Behav. Cogn. Neurosci. Rev. 2004, 3, 71–100. [Google Scholar] [CrossRef]
- Rodrigues, S.H.; Mascarenhas, S.; Dias, J.; Paiva, A. A process model of empathy for virtual agents. Interact. Comput. 2015, 27, 371–391. [Google Scholar] [CrossRef]
- Ochs, M.; Pelachaud, C.; Sadek, D. An empathic virtual dialog agent to improve human-machine interaction. In Proceedings of the 7th International joint Conference on Autonomous Agents and Multiagent Systems—Volume 1, Estoril, Portugal, 12–16 May 2008; pp. 89–96. [Google Scholar]
- Ghafurian, M.; Budnarain, N.; Hoey, J. Role of emotions in perception of humanness of virtual agents. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, Montreal, QC, Canada, 13–17 May 2019; pp. 1979–1981. [Google Scholar]
- Lisetti, C.; Amini, R.; Yasavur, U.; Rishe, N. I can help you change! an empathic virtual agent delivers behavior change health interventions. ACM Trans. Manag. Inf. Syst. (TMIS) 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Paiva, A.; Leite, I.; Boukricha, H.; Wachsmuth, I. Empathy in virtual agents and robots: A survey. ACM Trans. Interact. Intell. Syst. (Tiis) 2017, 7, 1–40. [Google Scholar] [CrossRef]
- Alepis, E.; Patsakis, C. Monkey says, monkey does: Security and privacy on voice assistants. IEEE Access 2017, 5, 17841–17851. [Google Scholar] [CrossRef]
- Graeff, T.R.; Harmon, S. Collecting and using personal data: Consumers’ awareness and concerns. J. Consum. Mark. 2002, 19, 302–318. [Google Scholar] [CrossRef]
- Spiekermann, S.; Cranor, L.F. Engineering privacy. IEEE Trans. Softw. Eng. 2008, 35, 67–82. [Google Scholar] [CrossRef]
- Srinivas, J.; Reddy, K.V.S.; Qyser, A.M. Cloud computing basics. Int. J. Adv. Res. Comput. Commun. Eng. 2012, 1, 343–347. [Google Scholar]
- Wolford, B. What Is GDPR, the EU’s New Data Protection Law? Available online: https://gdpr.eu/what-is-gdpr/ (accessed on 30 September 2022).
- Peslak, A.R. Internet privacy policies of the largest international companies. J. Electron. Commer. Organ. (JECO) 2006, 4, 46–62. [Google Scholar] [CrossRef]
- Flikkema, P.G.; Cambou, B. When things are sensors for cloud AI: Protecting privacy through data collection transparency in the age of digital assistants. In Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Linz, Austria, 22–25 October 2017; pp. 1–4. [Google Scholar]
- Luhmann, N. Vertrauen—Ein Mechanismus der Reduktion sozialer Komplexität, 5th ed.; UTB: Stuttgart, Germany, 2014. [Google Scholar]
- Gulati, S.; Sousa, S.; Lamas, D. Modelling trust: An empirical assessment. In Proceedings of the IFIP Conference on Human-Computer Interaction, Mumbai, India, 25–29 September 2017; pp. 40–61. [Google Scholar]
- Clark, L.; Pantidi, N.; Cooney, O.; Doyle, P.; Garaialde, D.; Edwards, J.; Spillane, B.; Gilmartin, E.; Murad, C.; Munteanu, C.; et al. What makes a good conversation? Challenges in designing truly conversational agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Neururer, M.; Schlögl, S.; Brinkschulte, L.; Groth, A. Perceptions on authenticity in chat bots. Multimodal Technol. Interact. 2018, 2, 60. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Communications Networks, Content and Technology (CNECT). Ethics Guidelines for Trustworthy AI; European Commission: Brussels, Belgium, 2019. [Google Scholar] [CrossRef]
- Vimalkumar, M.; Sharma, S.K.; Singh, J.B.; Dwivedi, Y.K. ‘Okay google, what about my privacy?’: User’s privacy perceptions and acceptance of voice based digital assistants. Comput. Hum. Behav. 2021, 120, 106763. [Google Scholar] [CrossRef]
- Burbach, L.; Halbach, P.; Plettenberg, N.; Nakayama, J.; Ziefle, M.; Valdez, A.C. “Hey, Siri”, “Ok, Google”, “Alexa”. Acceptance-Relevant Factors of Virtual Voice-Assistants. In Proceedings of the 2019 IEEE International Professional Communication Conference (ProComm), Aachen, Germany, 23–26 July 2019; pp. 101–111. [Google Scholar]
- Liao, Y.; Vitak, J.; Kumar, P.; Zimmer, M.; Kritikos, K. Understanding the role of privacy and trust in intelligent personal assistant adoption. In Proceedings of the Information in Contemporary Society: 14th International Conference, iConference 2019, Washington, DC, USA, 31 March–3 April 2019; pp. 102–113. [Google Scholar]
- Jo, H. Impact of Information Security on Continuance Intention of Artificial Intelligence Assistant. Procedia Comput. Sci. 2022, 204, 768–774. [Google Scholar] [CrossRef]
- Brunotte, W.; Specht, A.; Chazette, L.; Schneider, K. Privacy explanations—A means to end-user trust. J. Syst. Softw. 2023, 195, 111545. [Google Scholar] [CrossRef]
- Tupes, E.C.; Christal, R.E. Recurrent personality factors based on trait ratings. J. Personal. 1992, 60, 225–251. [Google Scholar] [CrossRef] [PubMed]
- John, O.P.; Srivastava, S. The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In Handbook of Personality: Theory and Research; Pervin, L.A., John, O.P., Eds.; Guilford Press: New York, NY, USA, 1999; pp. 102–138. [Google Scholar]
- Komiak, S.Y.X.; Benbasat, I. The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents. MIS Q. 2006, 30, 941–960. [Google Scholar] [CrossRef]
- John, O.P.; Donahue, E.M.; Kentle, R.L. Big five inventory. J. Personal. Soc. Psychol. 1991. [Google Scholar] [CrossRef]
- Rammstedt, B.; John, O.P. Measuring personality in one minute or less: A 10-item short version of the Big Five Inventory in English and German. J. Res. Personal. 2007, 41, 203–212. [Google Scholar] [CrossRef]
- Evans, A.M.; Athenstaedt, U.; Krueger, J.I. The development of trust and altruism during childhood. J. Econ. Psychol. 2013, 36, 82–95. [Google Scholar] [CrossRef]
- Cowan, B.R.; Pantidi, N.; Coyle, D.; Morrissey, K.; Clarke, P.; Al-Shehri, S.; Earley, D.; Bandeira, N. “What can i help you with?” infrequent users’ experiences of intelligent personal assistants. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, Vienna, Austria, 4–7 September 2017; pp. 1–12. [Google Scholar]
- Jain, S.; Basu, S.; Dwivedi, Y.K.; Kaur, S. Interactive voice assistants—Does brand credibility assuage privacy risks? J. Bus. Res. 2022, 139, 701–717. [Google Scholar] [CrossRef]
- Furumo, K.; de Pillis, E.; Green, D. Personality influences trust differently in virtual and face-to-face teams. Int. J. Hum. Resour. Dev. Manag. 2009, 9, 36–58. [Google Scholar] [CrossRef]
- Tov, W.; Nai, Z.L.; Lee, H.W. Extraversion and Agreeableness: Divergent Routes to Daily Satisfaction with Social Relationships. J. Personal. 2016, 84, 121–134. [Google Scholar] [CrossRef]
- Elson, J.; Derrick, D.; Ligon, G. Examining trust and reliance in collaborations between humans and automated agents. In Proceedings of the HICCS Hawaii International Conference on System Sciences affiliated Conference on Processes and Technologies for Small and Large Team Collaboration, Village, HI, USA, 3–6 January 2018; pp. 430–439. [Google Scholar]
- Oviedo-Trespalacios, O.; Peden, A.E.; Cole-Hunter, T.; Costantini, A.; Haghani, M.; Kelly, S.; Torkamaan, H.; Tariq, A.; Newton, J.D.A.; Gallagher, T.; et al. The risks of using chatgpt to obtain common safety-related information and advice. SSRN 2023. [Google Scholar] [CrossRef]
- Hesse, L.S.; Walter, G.; Tietze, S. Influence of personality, affinity for technology and risk awareness on technology acceptance using the example of voice control. In Proceedings of the Mensch und Computer 2020, Magdeburg, Germany, 6–9 September 2020; pp. 211–221. [Google Scholar]
- Gulati, S.; Sousa, S.; Lamas, D. Modelling trust in human-like technologies. In Proceedings of the 9th Indian Conference on Human Computer Interaction, Bangalore, India, 16–18 December 2018; pp. 1–10. [Google Scholar]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An integrative model of organizational trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
Cronbach’s | |||
---|---|---|---|
Construct | Overall | German | English |
Propensity to trust | |||
Trusting stance | 0.86 | 0.87 | 0.83 |
Faith in general technology | 0.75 | 0.72 | 0.78 |
Institution-based trust | |||
Structural assurance | 0.90 | 0.88 | 0.90 |
Situational normality | 0.76 | 0.70 | 0.81 |
Trusting beliefs in a specific technology | |||
Functionality | 0.82 | 0.77 | 0.87 |
Reliability | 0.87 | 0.87 | 0.89 |
Helpfulness | 0.87 | 0.87 | 0.85 |
German | English | ||||
---|---|---|---|---|---|
Propensity to Trust | No. of Items | Mean | SD | Mean | SD |
Trusting stance | 3 | 3.2139 | 0.9790 | 3.4778 | 0.9781 |
Faith in general technology | 4 | 3.6590 | 0.6135 | 3.9143 | 0.7146 |
Mean | 3.4365 | 3.6961 |
German | English | |||
---|---|---|---|---|
Propensity to Trust | Mean | SD | Mean | SD |
Trusting stance | ||||
Users | 3.5021 | 0.9024 | 3.8810 | 0.8538 |
Non-users | 3.0843 | 0.9868 | 3.0170 | 0.9118 |
Faith in general technology | ||||
Users | 3.7885 | 0.5594 | 4.0938 | 0.5772 |
Non-users | 3.6014 | 0.6290 | 3.7092 | 0.8026 |
German | English | ||||
---|---|---|---|---|---|
Institution-Based Trust | No. of Items | Mean | SD | Mean | SD |
Structural assurance | 4 | 2.8240 | 0.9484 | 3.4122 | 0.9541 |
Situational normality | 4 | 3.3537 | 0.7422 | 3.6964 | 0.8198 |
Mean | 3.0889 | 3.5543 |
Trusting Beliefs in a Specific Technology | No. of Items | Mean | SD |
---|---|---|---|
Functionality | 3 | 3.6437 | 0.7931 |
Reliability | 4 | 3.0036 | 0.9115 |
Helpfulness | 4 | 3.5021 | 0.8002 |
Mean | 3.3718 |
German | English | |||
---|---|---|---|---|
ATI | Mean | SD | Mean | SD |
Users | 4.2948 | 0.9581 | 3.9238 | 0.8190 |
Nonusers | 3.7945 | 1.0444 | 3.3991 | 0.8029 |
German | English | |
---|---|---|
Category A—Personality and Propensity to Trust | ||
H-A01: Agreeableness positively correlates with trusting stance. | Yes | No |
H-A02: Agreeableness positively correlates with faith in general technology. | Yes | No |
H-A03: Neuroticism negatively correlates with trusting stance. | No | No |
H-A04: Neuroticism negatively correlates with faith in general technology. | No | No |
Category B—Personality and Trusting Beliefs in a Specific Technology | ||
H-B01: Extraversion positively correlates with trusting beliefs in a specific technology. | No | No |
H-B02: Agreeableness positively correlates with trusting beliefs in a specific technology. | No | No |
H-B03: Conscientiousness positively correlates with trusting beliefs in a specific technology. | No | No |
H-B04: Openness positively correlates with trusting beliefs in a specific technology. | No | No |
Category C—Propensity to Trust and Trusting Beliefs in a Specific Technology | ||
H-C01: Trusting stance positively correlates with trusting beliefs in a specific technology. | Yes | Yes |
H-C02: Faith in general technology positively correlates with trusting beliefs in a specific technology. | Yes | Yes |
Category D—Affinity for Technology Interaction and Trusting Beliefs in a Specific Technology | ||
H-D01: ATI positively correlates with trusting beliefs in a specific technology. | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schadelbauer, L.; Schlögl, S.; Groth, A. Linking Personality and Trust in Intelligent Virtual Assistants. Multimodal Technol. Interact. 2023, 7, 54. https://doi.org/10.3390/mti7060054
Schadelbauer L, Schlögl S, Groth A. Linking Personality and Trust in Intelligent Virtual Assistants. Multimodal Technologies and Interaction. 2023; 7(6):54. https://doi.org/10.3390/mti7060054
Chicago/Turabian StyleSchadelbauer, Lisa, Stephan Schlögl, and Aleksander Groth. 2023. "Linking Personality and Trust in Intelligent Virtual Assistants" Multimodal Technologies and Interaction 7, no. 6: 54. https://doi.org/10.3390/mti7060054
APA StyleSchadelbauer, L., Schlögl, S., & Groth, A. (2023). Linking Personality and Trust in Intelligent Virtual Assistants. Multimodal Technologies and Interaction, 7(6), 54. https://doi.org/10.3390/mti7060054